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 In this investigation, the impact of confining pressure on the tensile strength 
obtained by point load test (PLT) is examined by particle flow code in two dimensions. 
In this regard, at first, a numerical model is calibrated using the Brazilian experimental 
test results. The tensile strength of the model material is equal to 2.5 MPa. Secondly, 
PLT is performed on the numerical models with dimension of 15 cm × 50 cm. The 
rectangular models are tested by PLT under the presence of the confining pressure. 
The loading rate is 0.001 mm/min, confining that the pressure is changed with the 13 
different values of 0 MPa, 0.002 MPa, 1MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3MPa, 3.5 
MPa, 4 MPa, 5MPa, 6 MPa, 9 MPa, and 11 MPa. The results obtained show that the 
vertical tensile crack develops through the model under a low confining pressure, 
while several shear bands are developed in the models under a high confining pressure. 
The number of shear cracks is augmented by augmenting the confining pressure. Is(50) 
is the augment by augmenting the confining pressure. Also a new criterion is rendered 
in order to determine Is(50) based on the confining pressure. 
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1. Introduction 

Some methods such as direct pull-on briquettes 
or indirect tensile and bending tests can determine 
the rock tensile strength. Although the most 
appropriate one could possibly be the uniaxial 
tensile test, a very stiff closed-loop servo-
controlled testing system is required for the 
stability of the test (Basant [1]; Shah [2]). Due to 
the fragile nature of rocks, performing direct 
tensile tests is hectic; however, if it is performed 
accurately, it will generate a very useful data. So 
far there have been various modes of direct tensile 
tests on the cementitious specimens presented in 
the literature (Chen [3]; Mazars, [4]). However, 
these experiments had some demerits such as the 
lack of reliability, reproducibility, and simplicity. 
Thus it requires an alternative approach in order to 
overcome these defects. Measuring the tensile 
strength indirectly (Brazilian test, Double punch 
test DPT, 3- and 4-point bending tests, point load 

test, etc.) is usually replaced by the direct uniaxial 
tests; this is due to the fact that (1) they are more 
simple and easier to use, in particular, for 
controlling the production of materials (for plain 
rock, for instance, the point load test is common 
and standard), and (2) the scattering results is 
reduced. One of the methods that satisfies the 
introduced requirement is the point load test (PLT). 
PLT is a useful and cheap testing procedure to 
predict the tensile and rocks compressive strengths 
because of the ease of specimen preparation, its 
simplicity of testing, and possible field application. 
Also it is possible to perform the point load test on 
the irregular specimens. The idea of examining 
irregular rock lumps, at first, was suggested by 
Protodyakonov (Protodyakonov, [5]) in Russia in 
1960. Bieniawski [6] introduced the general 
applications of PLT. In 1964, the International 
Bureau for Rock Mechanics (Broch and Franklin, 
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[7]) adopted PLT. Since the beginning of PLT, 
various schemes of correction have been 
represented for size over the years (e.g. Broch and 
Franklin [7]; Basu [8]; Basu [9]). The approach that 
is revised and recommended for PL testing 
represents repeated proposals to enhance the 
approach of evaluating the PL strength index 
(Broch and Franklin [7]; Bieniawski [6]; Singh 
[10]; Chau and Wong [11]; Fener et al. [12]; 
Sonmez et al. [13-15]; Basu and Aydin [16]; 
Kahraman and Gunaydin [17]; Kayabal and Selcuk 
[18]; Ma [19]; Heidari et al. [20]; Singh [21]; Li et 
al. [22]; Haeri et al. [23, 24]). The specimens can 
be of various shapes, and are applied to test with 
weak and strong rocks (Tsiambaos and Sabatakakis 
[25]; Heidari et al. [20]). There are diverse kinds of 
sample geometries and testing methods that can be 
applied in order to evaluate the compressive and 
tensile strengths under different loading conditions 
(Zhou et al. [26], Ayatollahi and Alborzi [27], Wei 
et al. [28]; Xu et al. [29]; Lee [30]; Rajabi [31]; 
Yaylac [32]; Lin et al. [33-37]). Correlation 
determination of the point of load index (Is(50)) 
and the uniaxial compressive strength/tensile 
strength are vital points in using PLT on diverse 
kinds of rocks. Several experimental tests have 
indicated that the conversion parameters are 
different in igneous, metamorphic, and 
sedimentary rocks (Kahraman et al. [38]; Fener et 
al. [12]). The relationship between Is(50) and the 
Brazilian tensile strength is also often considered 
(Heidari et al. [20]). The objective of this 
investigation is to determine the influences of 
confining pressure on the point-load index Is(50). 
Also a new criteria was rendered to determine 
Is(50) based on the confining pressure. 

2. Point load test (PLT) 

As shown in Figure 1, the conical plates apply an 
alight focused compressive force on the concrete 
sample, and it continues till the collapse of sample 
due to splitting (Figure 1). An assembly consisting 
of the structures such as a pressure gage, a frame, 
and a hydraulic jack forms the system of loading. 
Based on the following equation, the failure load 
should be recorded and applied for calculation of 
the index of point load strength, Is(50), (Heidari et 
al. [20]). 

(50)ݏܫ = ܲ
ଶൗܦ  (1) 

where P is the peak load and D is equivalent to 
the core diameter for the diametric and other forms. 

 
Figure 1. A schematic view of PLT. 

3. Numerical simulation 
3.1. Bonded particle model and particle flow 
code 2D (PFC2D) 

PFC2D is a discreet element code that introduces 
a substance as a rigid particles structure, which can 
transfer discreetly and its interaction is just at the 
contacts (Potyondy and Cundall [39]). Particle 
movements and interaction forces were calculated 
by a central finite difference approach (similar to 
the one used in DEM). In the case of contact 
models (either linear or non-linear) both the linear 
and non-linear contact models with frictional 
sliding can be used for the contact models. In this 
investigation, the linear contact model was used. 
An elastic relationship was established between the 
particle contact force and the relative 
displacements. Some provided routines were used 
for producing a parallel-bonded particle model for 
PFC2D. For producing this model, some micro-
characteristics such as parallel-bond stiffness ratio, 
minimum radius of ball, ratio of stiffness kn over 
ks, ball-to-ball contact modulus, parallel normal 
bond strength, coefficient of ball friction, parallel 
bond modulus, ratio of standard deviation to mean 
of bond strength both in the normal and shear 
direction, parallel shear bond strength, and parallel 
bond radius multiplier must be introduced. A 
calibration approach is critical to establish the 
appropriate micro-properties for application to an 
assembly of particles. The tests conducted on the 
laboratory model samples cannot exactly 
determine the bonding properties and contact of 
particles. The characteristics of a substance that are 
represented by laboratory tests are macro-
mechanical in nature; this is due to the fact that they 
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show a continuum behavior. A reverse modeling 
approach was applied to represent the suitable 
micro-mechanical characteristics of the numerical 
models from the macro-mechanical characteristics 
defined in the laboratory experiments. The trial-
and-error method is an approach that can be 
applied to connect these two sets of material 
characteristic. This approach provides an 
estimation of the micro-mechanical characteristic 
quantities, and compares the properties of the 
strength and deformation derived from the 
numerical models and the laboratory specimens. 
Then the closest simulated macroscopic respond of 
the micro-mechanical characteristic quantities to 
that of the laboratory tests is considered for the 
discontinuous jointed blocks. 

3.2. Preparation and calibration of numerical 
model 

The uniaxial compression test and the Brazilian 
test were applied to calibrate the compressive 
strength, young modulus, and sample tensile 
strength in the PFC2D model. The generated 
standard process of a PFC2D assembly to show a 

test model includes four sections: (a) particles 
generating and packing, (b) installation of isotropic 
stress, (c) deletion of floated particles, and (d) 
installing the band. Using the micro-characteristics 
indicated in Table 2 and the standard approaches of 
calibrating (Potyondy and Cundall, [39]), a 
calibrated assembly of the PFC particles was 
provided. A Brazilian test with the diameter of 54 
mm was used in the numerical tests. The sample 
was created by 5,615 particles. The disk was 
fractured by the movement of the lateral walls 
toward each other with a slight velocity of 0.016 
m/s. Figures 2a and 2b indicate the patterns of 
failure of the experimental and numerical 
experimented specimens, respectively. 
Furthermore, Figure 2b depicts the particle 
displacement vector and the distribution of bond 
force. According to the results obtained, there is a 
well matching between numerical the simulation 
and experimental tests. A comparison between the 
experimental measurements and the numerical 
tensile strength is shown in Table 2. This table 
indicates a well accordance between the 
experimental and numerical results.  

Table 1. Micro-characteristics used to introduce the intact rock. 
Parameter Value Parameter Value 

Type of particle disc Parallel bond radius multiplier 1 
Density 3000 Young modulus of parallel bond (GPa) 40 

Minimum radius 0.27 Parallel bond stiffness ratio 1.7 
Size ratio 1.56 Particle friction coefficient 0.4 

Porosity ratio 0.08 Parallel bond normal strength, mean (MPa) 9 
Damping coefficient 0.7 Parallel bond normal strength, SD (MPa) 2 

Contact young modulus (GPa) 40 Parallel bond shear strength, mean (MPa) 9 
Stiffness ratio 1.7 Parallel bond shear strength, SD (MPa) 2 

 

  
(a) (b) 

Figure 2. Failure patterns in a) physical sample, b) PFC2D model. 
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Table 2. Brazilian tensile strength of physical and 
numerical specimens. 

Physical tensile strength (MPa) 2.5 
Numerical tensile strength (MPa) 2.6 

3.3. Preparation of model by PFC  

After PFC2D calibration, PLTs were simulated 
by generating a rectangular model in PFC2D (by 
applying the calibrated micro-parameters) (Figure 
3). The dimensions of the PFC sample were 15 mm 
x 50 mm. In order to build the rectangular sample, 
a number of 8,183 disks was used; the minimum 
radius of the disks was 0.27. The rectangular 
models are subjected to the confining pressures of 
0 MPa, 0.002 MPa, 1 MPa, 1.5 MPa, 2 MPa, 2.5 
MPa, 3 MPa, 3.5 MPa, 4 MPa, 5 MPa, 6 MPa, 9 
MPa, and 11 MPa. The value of confining pressure 
was chosen randomly. The maximum confining 
pressure was nearly five times more than the value 
of the tensile strength. These models were loaded 
vertically till the failure occurred. The reaction 
forces on the top wall were considered and 
registered as the tensile forces.  

3.4. Crack distribution in model 

Figures 4, 5, 6, and 7 show the effect of confining 
pressure on the crack distribution in the models. 

The red line and the black line are related to the 
shear and tensile cracks, respectively. In the case 
that confining pressure is less than 1.5 MPa (σt/2), 
one or two vertical tensile cracks bring the model 
to failure (Figure 4). When the confining pressure 
is between 1.5 MPa and 5 MPa, the shear bands 
consisting of the tensile and shear cracks lead to the 
failure of the model (Figure 5). When the confining 
pressure is 6 MPa, the tensile and shear cracks are 
developed beneath the loading walls, and no major 
failure occurs (Figure 6). In these conditions, the 
cone penetrates in the model. In some cases, the 
models fail under a high confining pressure (Figure 
7). 

 
Figure 3. A schematic view of PLT. 

 

  

 
Figure 4. Failure pattern in PLT. 
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Figure 5. Failure pattern in PLT. 

 
Figure 6. Failure pattern in PLT. 
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Figure 7. Failure pattern in PLT. 

3.5. Influence of confining pressure on Is50 

Figure 8 shows the influence of the confining 
pressure on Is50. Is50 is increased with increase in 
the confining pressure. The best curve fitting on 
these data shows that Y = 2.69e0.1105x. This equation 
shows that when the confining pressure is zero, the 
tensile strength obtained by the equation is 2.69 
MPa, which is a real one. Therefore, this equation 
can be used for measurement of Is50 when the 
model is under the confining pressure. 

 
Figure 8. Influence of confining pressure on tensile 

strength. 

The influence of lateral confinement on the PLT 
results has also been given by Palassi and Afzali 
[40]. Figure 9a shows the assembly of PLT in the 
presence of confining pressure. Figure 9b shows 
the typical failure pattern occurring in the samples. 
Also Figure 9c shows the effect of confining 
pressure on the point load index for marble. By a 

comparison between Figure 8 and Figure 9c, it can 
be concluded that a good accordance was 
established between the numerical results and the 
experimental test. 

4. Conclusions 

In this investigation, the impact of confining 
pressure on the tensile strength obtained by the 
point load test (PLT) was examined by PFC2D. In 
this regard, at first, the calibration of the numerical 
model was conducted by the Brazilian 
experimental test results. Secondly, PLT was 
performed on the numerical models with 
dimensions of 15 cm × 50 cm. The rectangular 
models were tested by PLT under the presence of a 
confining pressure. The confining pressure was 
changed with the 13 different values of 0 MPa, 
0.002 MPa, 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3 
MPa, 3.5 MPa, 4 MPa, 5 MPa, 6 MPa, 9 MPa, and 
11 MPa. The results obtained showed that: 

 The vertical tensile crack was developed 
through the model under a low confining 
pressure, while several shear bands were 
developed in the models under a high confining 
pressure. The number of shear cracks augments 
by augmenting the confining pressure. 

 When the confining pressure is less than 1.5 
MPa (σt/3), one or two vertical tensile cracks 
bring the model to a failure. When the confining 
pressure is between 1.5 MPa and 5 MPa, the 
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shear bands consisting of the tensile and shear 
cracks lead to the failure of the model. When the 
confining pressure is 6 MPa, the tensile and 
shear cracks are developed beneath the loading 
walls, and no major failure occurs. In some 
cases, the models fail under a high confining 
pressure. 

 Is50 is increased with increase in the confining 
pressure. The best curve fitting on this data 
shows that Y = 2.69e0.1105x. This equation shows 
that when the confining pressure is zero, the 
tensile strength obtained by the equation is 2.69 
MPa, which is a real one.  Therefore, this 
equation can be used for measurement of Is50 
when the model is under the confining pressure. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. a) Assembly of PLT in the presence of confining pressure, b) typical failure pattern occurring in the 
samples, c) effect of confining pressure on the point load index for marble. 
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  چکیده:

اي بوسیله کد جریان ذره مطالعه شده است. در مرحله اول مدل عددي در این مقاله تاثیر فشار محصورکننده بر مقاومت کششی بدست آمده از آزمایش بار نقطه
هایی به ابعاد ده بر مدلاي در حضور فشار محصورکننمگاپاسکال است. آزمایش بار نقطه 5/2توسط نتایج آزمایش برزیلی کالیبّره گردید. مقاومت کششی مدل 

 MPa 0، MPa002/0، MPa 1، MPa 5/1، MPa 2، MPa 5/2، MPaمقدار متفاوت دارد که عبارتند از:  13سانتیمتر انجام شد. فشار محصورکننده  150*15
3، MPa 5/3، MPa4، MPa5 ، MPa6 ، MPa9 و MPa 11 نرخ بارگذاري . mm/min001/0 هاي حت تنش نرمال کم، تركدهند که تاست. نتایج نشان می

ه فشار هاي برشی بیابد. تعداد تركکنند. تحت فشار محصورکننده زیاد، چندین شکستگی برشی متثاطع در مدل توسعه میکششی بطور قایم در مدل رشد می
 تحت فشار محصورکننده ارایه شده است.   Is(50)محصورکننده بستگی دارد. همچنین یک ربطه براي تخمین

  ، ترك کششی.PFC2Dاي، آزمایش بار نقطه کلمات کلیدي:
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