Journal of Algebraic Systems Vol. 9, No. 2, (2022), pp 175-192

ZERO-DIVISOR GRAPH OF THE RINGS OF REAL MEASURABLE FUNCTIONS WITH THE MEASURES

H. HEJAZIPOUR AND A. R. NAGHIPOUR*

ABSTRACT. Let $M(X, \mathcal{A}, \mu)$ be the ring of real-valued measurable functions on a measurable space (X, \mathcal{A}) with measure μ . In this paper, we study the zero-divisor graph of $M(X, \mathcal{A}, \mu)$, denoted by $\Gamma(M(X, \mathcal{A}, \mu))$. We give the relationships among graph properties of $\Gamma(M(X, \mathcal{A}, \mu))$, ring properties of $M(X, \mathcal{A}, \mu)$ and measure properties of (X, \mathcal{A}, μ) . Finally, we investigate the continuity properties of $\Gamma(M(X, \mathcal{A}, \mu))$.

1. INTRODUCTION

A σ -algebra on a set X is a collection \mathcal{A} of subsets of X that includes the empty subset, is closed under complement, and is closed under countable unions. If \mathcal{A} is a σ -algebra on X, then (X, \mathcal{A}) is called a measurable space and the members of \mathcal{A} are called the measurable sets in X. A function μ from a σ -algebra \mathcal{A} to the extended real number line is called a measure if for all countable collections $\{A_i\}_{i=1}^{\infty}$ of pairwise disjoint sets in \mathcal{A} , $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$. To avoid trivialities, we shall also assume that $\mu(\mathcal{A}) < \infty$ for at least one $\mathcal{A} \in \mathcal{A}$. A measure space is a triple (X, \mathcal{A}, μ) , where X is a set, \mathcal{A} a σ -algebra on X, and μ a measure on \mathcal{A} . A complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every set of measure zero is measurable. The statement "P

DOI: 10.22044/jas.2020.9745.1474.

MSC(2010): Primary: 28A99, 13A99; Secondary: 05C38.

Keywords: Rings of measurable functions, Measure space, Zero-divisor graph, Continuous function, Cycle, Girth, Triangulated graph, Hypertriangulated graph.

Received: 29 May 2020, Accepted: 18 December 2020.

^{*}Corresponding author.

holds almost everywhere on (X, \mathcal{A}, μ) " (abbreviated to "P holds a.e. on (X, \mathcal{A}, μ) ") means that

 $\mu(\{x \in X : P \text{ does not hold on } x\}) = 0.$

If Y is a topological space and $f: X \longrightarrow Y$ is a function, then f is said to be *measurable* provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y. The *characteristic function* is the function $\chi_A: X \longrightarrow \{0, 1\}$, which for a given measurable set A, has value 1 at elements of A and 0 at elements of $X \setminus A$. For every measurable function f, the zero set and the cozero set of f are $Z_f := \{x \in X : f(x) = 0\}$ and $\operatorname{co} Z_f := X \setminus Z_f$, respectively.

The space of real measurable functions with pointwise addition and multiplication is a commutative ring with identity. Rings of real-valued measurable functions have been studied in many ways for a long time by many mathematicians (see [2, 3, 15, 16, 27, 28]). In recent years, significant researches have been done by some mathematicians like Momtahan and Henriksen (see [4, 7, 21]). In [18], Hejazipour and Naghipour by valuing the measures on measurable spaces studied the hereditary rings in the rings of real measurable functions. For notational convenience, we assume that $M(X, \mathcal{A}, \mu)$ is the space of measurable functions from X to \mathbb{R} with arbitrary σ -algebra \mathcal{A} on X and arbitrary measure μ on \mathcal{A} . For more information about this ring, see [4, 10, 13, 17, 19, 23, 26].

The concept of the zero-divisor graph of a commutative ring was introduced by Beck in 1988 [9]. However, he let all elements of the ring be vertices of the graph and was mainly interested in colorings. Anderson et al. [5] associated an undirect simple graph to a commutative ring with vertices nonzero zero-divisors and with two distinct vertices a and b are adjacent if ab = 0. The zero-divisor graph of a commutative ring also has been studied by several other authors [1, 6, 12, 20, 25]. Azarpanah and Motamedi in [8], studied the zerodivisor graph of C(X), ring of real-valued continuous functions on a completely regular Hausdorff space X. In this paper, we study the zero-divisor graph of the ring of real measurable functions with measures.

This paper has two main purposes. Firstly, we study the relationships among graph properties of the graph $\Gamma(M(X, \mathcal{A}, \mu))$, ring properties of the ring $M(X, \mathcal{A}, \mu)$ and measure properties of the measure space (X, \mathcal{A}, μ) . Secondly, we investigate the relationship between vertices and edges of $\Gamma(M(X, \mathcal{A}, \mu))$ and continuous functions. The organization of the paper is as follows: In Section 2, we determine the distance between vertices, radius, diameter and the girth of $\Gamma(M(X, \mathcal{A}, \mu))$ by the properties of measure spaces. In Section 3, we investigate cycles in $\Gamma(M(X, \mathcal{A}, \mu))$. In Section 4, we study continuity properties of $\Gamma(M(X, \mathcal{A}, \mu))$. As the main result of this section, we approximate vertices of $\Gamma(M(X, \mathcal{A}, \mu))$ by the vertices of $\Gamma(C_C(X))$, the zero-divisor graph of $C_C(X)$.

2. Basic properties of $\Gamma(M(X, \mathcal{A}, \mu))$

Naturally, the rings of real measurable functions are studied without paying attention to the measures (see [4, 7, 15, 16, 21, 27, 28]). But the measures played such a prominent role in the study of the spaces of measurable functions. In [18], we studied the rings of real measurable functions with measures. Since this article intends to examine the zero-divisor graph of the rings of real measurable functions with measures, we redefine the definition of the zero-divisor graph.

Definition 2.1. A function $f \in M(X, \mathcal{A}, \mu)$ is called a *zero-divisor* of $M(X, \mathcal{A}, \mu)$, if there exists a function $g \in M(X, \mathcal{A}, \mu)$ such that

 $\mu(\{x \in X : g(x) \neq 0\}) \neq 0 \quad \text{and} \quad \mu(\{x \in X : f(x)g(x) \neq 0\}) = 0.$ Let $Z(M(X, \mathcal{A}, \mu))$ denote the set of zero-divisors of $M(X, \mathcal{A}, \mu)$.

Definition 2.2. The zero-divisor graph of $M(X, \mathcal{A}, \mu)$, denoted by $\Gamma(M(X, \mathcal{A}, \mu))$, is the graph with vertices

$$Z(M(X, \mathcal{A}, \mu)) \setminus \{ f \in M(X, \mathcal{A}, \mu) : f = 0 \text{ a.e. on } (X, \mathcal{A}, \mu) \}$$

and two distinct vertices f and g are adjacent if fg = 0 a.e. on (X, \mathcal{A}, μ) .

To enter the discussion, we need the following important lemma.

Lemma 2.3. Let (X, \mathcal{A}, μ) be a measure space and $f \in M(X, \mathcal{A}, \mu)$. Then $f \in \Gamma(M(X, \mathcal{A}, \mu))$ if and only if $\mu(Z_f)$ and $\mu(coZ_f)$ are nonzero.

Proof. Suppose that $f \in \Gamma(M(X, \mathcal{A}, \mu))$. Then there exists a measurable function g such that $g \neq 0$ a.e. on (X, \mathcal{A}, μ) and g is adjacent to f. If $\mu(Z_f) = 0$, then $\mu(\operatorname{co} Z_g) \leq \mu(Z_f) = 0$, which is a contradiction. Also, since $f \neq 0$ a.e. on (X, \mathcal{A}, μ) , we have $\mu(\operatorname{co} Z_f) \neq 0$. Conversely, assume that $\mu(Z_f)$ and $\mu(\operatorname{co} Z_f)$ are nonzero. Obviously, $f \neq 0$ a.e. on (X, \mathcal{A}, μ) . Moreover the measurable function $g := \chi_{Z_f}$ is a nonzero function a.e. on (X, \mathcal{A}, μ) and $\mu(\{x \in X : f(x)g(x) \neq 0\}) = 0$.

According to the above lemma, the set that is presented in the next notation has an important role in the study of $\Gamma(M(X, \mathcal{A}, \mu))$.

Notation 2.4. Let \mathcal{A} be a σ – algebra on X. We set:

 $M_{\mu} := \{A \in \mathcal{A} : \mu(A) \text{ and } \mu(A^c) \text{ are nonzero}\}.$

Recall that for two vertices f and g of $\Gamma(M(X, \mathcal{A}, \mu))$, d(f, g) is the length of the shortest path from f to g. The following theorem characterizes the concept of distance in $\Gamma(M(X, \mathcal{A}, \mu))$.

Theorem 2.5. Let (X, \mathcal{A}, μ) be a measure space. Then the graph $\Gamma(M(X, \mathcal{A}, \mu))$ is a connected graph and for every $f, g \in \Gamma(M(X, \mathcal{A}, \mu))$, we have:

(a) d(f,g) = 1 if and only if $\mu(coZ_f \cap coZ_g) = 0$.

(b) d(f,g) = 2 if and only if $\mu(coZ_f \cap coZ_g)$ and $\mu(Z_f \cap Z_g)$ are nonzero.

(c) d(f,g) = 3 if and only if $\mu(coZ_f \cap coZ_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$.

Proof. (a) By the definition, f is adjacent to g if and only if $\mu(\{x : f(x)g(x) \neq 0\}) = 0$ if and only if $\mu(\{x : f(x) \neq 0 \text{ and } g(x) \neq 0\}) = 0$ if and only if $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$.

(b) Assume that d(f,g) = 2. Then $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and there exists $h \in \Gamma(M(X, \mathcal{A}, \mu))$ such that h is adjacent to both f and g. Therefore $\mu(\operatorname{co}Z_h \cap \operatorname{co}Z_f) = \mu(\operatorname{co}Z_h \cap \operatorname{co}Z_g) = 0$ and so $\operatorname{co}Z_h \subseteq (Z_f \cap Z_g)$ a.e. on (X, \mathcal{A}, μ) . Now if $\mu(Z_f \cap Z_g) = 0$, then $\mu(\operatorname{co}Z_h) = 0$, which is a contradiction. Conversely, let $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) \neq 0$. Then d(f,g) > 1 and $\chi_{Z_f \cap Z_g}$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$. It is easy to check that fh = gh = 0 a.e. on (X, \mathcal{A}, μ) .

(c) Assume that $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$. Then d(f,g) > 2 and $\operatorname{co}Z_f \cup \operatorname{co}Z_g = X$ a.e. on (X, \mathcal{A}, μ) . If $\mu(Z_f \setminus Z_g) = 0$, then $\operatorname{co}Z_f \subseteq \operatorname{co}Z_g$ and so $\operatorname{co}Z_g = X$ a.e. on (X, \mathcal{A}, μ) , which is a contradiction. Therefore $Z_g \setminus Z_f, Z_f \setminus Z_g \in M_\mu$ and $f\chi_{Z_f \setminus Z_g} = \chi_{Z_g \setminus Z_f}\chi_{Z_f \setminus Z_g} = g\chi_{Z_g \setminus Z_f} = 0$ a.e. on (X, \mathcal{A}, μ) . Conversely, suppose that d(f, g) = 3. Then $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$, by parts (a) and (b).

The connectivity of $\Gamma(M(X, \mathcal{A}, \mu))$ is a consequence of parts (a), (b) and (c).

In the following, we recall an important definition for studying the rings of real measurable functions $M(X, \mathcal{A}, \mu)$, (see [18], Definition 2.5).

Definition 2.6. Suppose that $E \in \mathcal{A}$ and $\mu(E) \neq 0$. Then the set *E* is called *near-zero* if for every subset $A \subseteq E$ such that $\mu(A) \neq 0$, A = E a.e. on (X, \mathcal{A}, μ) .

The associated number of a vertex f, denoted by e(f), is

 $e(f) := \max\{d(f,g) : g \in \Gamma(M(X,\mathcal{A},\mu)) \text{ and } f \neq g \text{ a.e. on } (X,\mathcal{A},\mu)\}.$

The radius of $\Gamma(M(X, \mathcal{A}, \mu))$ is the smallest associated number and denoted by $\rho\Gamma(M(X, \mathcal{A}, \mu))$.

Theorem 2.7. Let (X, \mathcal{A}, μ) be a measure space and $f \in \Gamma(M(X, \mathcal{A}, \mu))$. Then the following properties hold:

(a) If $|M_{\mu}| = 2$, then e(f) = 1.

(b) If $|M_{\mu}| \neq 2$ and coZ_f is a near-zero set, then e(f) = 2.

(c) If $|M_{\mu}| \neq 2$ and coZ_f is not a near-zero set, then e(f) = 3.

In respect to the above three properties, we have the following statements about the radius of $\Gamma(M(X, \mathcal{A}, \mu))$:

(a') If $|M_{\mu}| = 2$, then $\rho \Gamma(M(X, \mathcal{A}, \mu)) = 1$.

(b') If $|M_{\mu}| \neq 2$ and M_{μ} has a near-zero set, then $\rho\Gamma(M(X, \mathcal{A}, \mu)) = 2.$

(c') If $|M_{\mu}| \neq 2$ and M_{μ} has not any near-zero set, then $\rho\Gamma(M(X, \mathcal{A}, \mu)) = 3$.

Proof. (a) Suppose that $|M_{\mu}| = 2$. Thus $M_{\mu} = \{coZ_f, Z_f\}$ a.e. on (X, \mathcal{A}, μ) and hence $\Gamma(M(X, \mathcal{A}, \mu))$ is a collection of segments. This means that e(f) = 1.

(b) Suppose that $|M_{\mu}| \neq 2$ and $\operatorname{co}Z_{f}$ is a near-zero set. For every $g \in \Gamma(M(X, \mathcal{A}, \mu)) \setminus \{f\}$, we consider two following cases:

Case 1: $\operatorname{co}Z_g \subseteq Z_f$ a.e. on (X, \mathcal{A}, μ) . Then d(f, g) = 1, by Theorem 2.5(a).

Case 2: $\operatorname{co}Z_f \subseteq \operatorname{co}Z_g$ a.e on (X, \mathcal{A}, μ) . By using Theorem 2.5(b), d(f, g) = 2.

Now for $A \in M_{\mu} \setminus \{Z_f, \operatorname{co} Z_f\}, d(f, \chi_{A \cup \operatorname{CO} Z_f}) = 2$ and according to the above cases e(f) = 2.

(c) Assume that $|M_{\mu}| \neq 2$ and $\operatorname{co}Z_{f}$ is not a near-zero set. Then there exists $A \in M_{\mu}$ such that $A \subseteq \operatorname{co}Z_{f}$ and $\mu(A) \neq \mu(\operatorname{co}Z_{f})$. Set $B := Z_{f} \cup A$ and $g := \chi_{B}$. Since $\mu(\operatorname{co}Z_{f} \cap \operatorname{co}Z_{g}) = \mu(A) \neq 0$ and $\mu(Z_{f} \cap Z_{g}) = 0, d(f, g) = 3$ and therefore e(f) = 3.

(a') Suppose that $M_{\mu} = \{A, B\}$. Then for every $g \in \Gamma(M(X, \mathcal{A}, \mu))$, $\operatorname{co} Z_g = A$ or $\operatorname{co} Z_g = B$. By using part (a), e(g) = 1 and so $\rho \Gamma(M(X, \mathcal{A}, \mu)) = 1$.

(b) Assume that $|M_{\mu}| > 2$ and $A \in M_{\mu}$ is a near-zero set. Then the function $g := \chi_A$ satisfies in the part (b) and so e(g) = 2. If $h \in \Gamma(M(X, \mathcal{A}, \mu))$ and e(h) = 1, then Z_h and $\operatorname{co} Z_h$ are near-zero sets, which is a contradiction. Therefore $\rho \Gamma(M(X, \mathcal{A}, \mu)) = 2$.

(c') Let $g \in \Gamma(M(X, \mathcal{A}, \mu))$. Since $|M_{\mu}| > 2$ and M_{μ} has not any near-zero set, there exists a measurable set A such that $A \subseteq \operatorname{co}Z_g$, $\mu(A) \neq 0$ and $\mu(A) \neq \mu(\operatorname{co}Z_g)$. Set $B := Z_g \cup A$ and $h := \chi_B$. Therefore d(g, h) = 3, by Theorem 2.5(c). Thus e(g) = 3 and hence $\rho\Gamma(M(X, \mathcal{A}, \mu)) = 3$. Remark 2.8. Regarding to the above theorem, it does not occur that M_{μ} is a singleton. If M_{μ} has only two members, then $\Gamma(M(X, \mathcal{A}, \mu))$ is a collection of segments.

The diameter of $\Gamma(M(X, \mathcal{A}, \mu))$ is

 $\operatorname{diam}\Gamma(M(X,\mathcal{A},\mu)) := \sup\{d(f,g) : f,g \in \Gamma(M(X,\mathcal{A},\mu))\}.$

The girth of $\Gamma(M(X, \mathcal{A}, \mu))$ is the length of the shortest cycle in $\Gamma(M(X, \mathcal{A}, \mu))$, denoted by $\operatorname{gr} \Gamma(M(X, \mathcal{A}, \mu))$, and we set $\operatorname{gr} \Gamma(M(X, \mathcal{A}, \mu)) = \infty$ if $\Gamma(M(X, \mathcal{A}, \mu))$ contains no cycle. It should be noted by Theorems 2.5 and 2.7 that $\operatorname{diam} \Gamma(M(X, \mathcal{A}, \mu)) \leq 3$.

Theorem 2.9. Let (X, \mathcal{A}, μ) be a measure space and M_{μ} has at least three members. Then

diam
$$\Gamma(M(X, \mathcal{A}, \mu)) = \operatorname{gr} \Gamma(M(X, \mathcal{A}, \mu)) = 3.$$

Proof. Suppose that M_{μ} has at least three disjoint members A, B and C. Consider the following six cases:

Case 1: Assume that A, B and C are pairwise disjoint members in M_{μ} . Set $K := A^c \cap B^c$, $L := A \cup K$ and $M := B \cup K$. Then by Lemma 2.3, the measurable functions $\chi_A, \chi_B, \chi_K, \chi_L$ and χ_M are in $\Gamma(M(X, \mathcal{A}, \mu))$. Since $\mu(L \cap M) = \mu(K) \neq 0$, $d(\chi_L, \chi_M) \neq 1$, by Theorem 2.5(a). On the other hand, if $f \in \Gamma(M(X, \mathcal{A}, \mu))$ is adjacent to both χ_L and χ_M , then $\operatorname{co}Z_f \subseteq A \cap B$, which is a contradiction. Therefore by Theorem 2.5(c), $d(\chi_K, \chi_L) = 3$ and so diam $\Gamma(M(X, \mathcal{A}, \mu)) = 3$. It is easy to check that $\chi_A \chi_B = \chi_A \chi_C = \chi_B \chi_C = 0$ a.e. on (X, \mathcal{A}, μ) and so gr $\Gamma(M(X, \mathcal{A}, \mu)) = 3$.

Case 2: Assume that $A \subseteq B \subseteq C$. If $\mu(C \setminus B) = 0$, then $\mu(C) = \mu(B)$ and therefore B = C a.e. on (X, \mathcal{A}, μ) , which is a contradiction. On the other hand, $\mu((C \setminus B)^c) = \mu(C^c \cup B) \ge \mu(B) \ne 0$ and so $C \setminus B \in M_{\mu}$. Similarly, it can be show that $B \setminus A \in M_{\mu}$. Now $C \setminus B$, $B \setminus A$ and A are in M_{μ} and satisfy in Case 1.

Case 3: Assume that $A \subseteq B$ and $C \cap B = \emptyset$. As the proof of of Case 2, we can be shown that $B \setminus A \in M_{\mu}$. Therefore $B \setminus A$, A and C satisfy in Case 1.

Case 4: Assume that $A \cap B$, $A \setminus B$ and $B \setminus A$ are not empty sets and $C \cap (A \cup B) = \emptyset$. Then $A \setminus B$, $B \setminus A$ and C satisfy in Case 1.

Case 5: Assume that $A \subseteq B \cup C$. If $\mu(C \setminus (A \cup B)) = 0$, then $C \subseteq A \subseteq B$ or $A \subseteq C \subseteq B$. This means that the sets A, B and C satisfy in Case 2. If $\mu(C \setminus (A \cup B)) \neq 0$, then $\mu((C \setminus (A \cup B))^c) \geq \mu(A \cup B) \neq 0$ and so $C \setminus (A \cup B) \in M_{\mu}$. In the same way, it can be shown that if $\mu(B \setminus (A \cup C)) \neq 0$, $B \setminus (A \cup C) \in M_{\mu}$. Therefore $C \setminus (A \cup B), B \setminus (A \cup C)$ and A satisfy in Case 1.

Case 6: Assume that the above five cases are not establish. We claim that $A \setminus (B \cup C)$, $B \setminus (A \cup C)$ and $C \setminus (A \cup B)$ satisfy in Case 1. If $\mu(A \setminus (B \cup C) = 0$, then $A \subseteq B \cup C$ and hence A, B and C satisfy in the Case 5. On the other hand, $\mu((A \setminus (B \cup C))^c) \ge \mu(B \cup C) \ne 0$ and so $A \setminus (B \cup C) \in M_{\mu}$. Similarly, it can be shown that $B \setminus (A \cup C)$ and $C \setminus (A \cup B)$ are in M_{μ} .

3. Cycles in zero-divisor graph of $M(X, \mathcal{A}, \mu)$

In this section, we intend to study the cycles and related issues to the cycles in the zero-divisor graph of the rings of real measurable functions, $\Gamma(M(X, \mathcal{A}, \mu))$.

A graph is called *triangulated* if each vertices is a vertex of a triangle.

Theorem 3.1. Let (X, \mathcal{A}, μ) be a measure space and $|M_{\mu}| > 2$. The following statements are equivalent:

(a) The graph $\Gamma(M(X, \mathcal{A}, \mu))$ is a triangulated graph.

(b) M_{μ} has not any near-zero set.

(c) There is no any maximal ideal in the ring $M(X, \mathcal{A}, \mu)$ generated by an idempotent.

Proof. (a) \Longrightarrow (b). Assume that $\Gamma(M(X, \mathcal{A}, \mu))$ is a triangulated graph and $A \in M_{\mu}$. By Lemma 2.3, $f := 1 - \chi_A$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$. Thus there exist two vertices g and h such that fg = gh = hf = 0 a.e. $\operatorname{on}(X, \mathcal{A}, \mu)$ and hence $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_h) = \mu(\operatorname{co}Z_g \cap \operatorname{co}Z_h) = \mu(\operatorname{co}Z_f \cap \operatorname{co}Z_h) = 0$. This means that $\operatorname{co}Z_g$ and $\operatorname{co}Z_h$ are disjoint subsets of Aa.e. on (X, \mathcal{A}, μ) . Since $\mu(\operatorname{co}Z_g) \neq 0$ and $\mu(\operatorname{co}Z_h) \neq 0$, A is not a near-zero set.

 $(b) \Longrightarrow (c)$. Assume that M_{μ} has not any near-zero set and M be a maximal ideal in $M(X, \mathcal{A}, \mu)$ generated by an idempotent. Since every idempotent in the rings of real measurable functions has the form of a characteristic function of a measurable set, there exists $A \in \mathcal{A}$ such that $M = \langle \chi_A \rangle$. Suppose that B is a measurable set in M_{μ} such that $B \subseteq A$ a.e. on (X, \mathcal{A}, μ) and $\mu(B) \neq 0$. Therefore $\chi_A \chi_B \in M$ and so $\chi_B \in M$. This means that B = A a.e. on (X, \mathcal{A}, μ) and so A is a near-zero set.

 $(c) \implies (a)$. Assume that there is not any maximal ideal in $M(X, \mathcal{A}, \mu)$ generated by an idempotent and f is an arbitrary vertex of $\Gamma(M(X, \mathcal{A}, \mu))$. If Z_f is near-zero, we set $W := \langle \chi_{Z_f} \rangle$. Suppose that U is an ideal in $M(X, \mathcal{A}, \mu)$, $W \subseteq U$ and $h \in U \setminus W$. Therefore $\operatorname{co} Z_h \subseteq Z_f$ a.e. on (X, \mathcal{A}, μ) and so $\mu(\operatorname{co} Z_h) = 0$ or $h \in W$. This means that W is a maximal ideal in $M(X, \mathcal{A}, \mu)$ generated by an idempotent, which is a contradiction. Now, since Z_f is not a near-zero set, there

exists $A \subseteq Z_f$ such that $\mu(A) \neq 0$ and $\mu(A) \neq \mu(Z_f)$. We set $g := \chi_A$ and $h := \chi_{Z_f \setminus A}$. It easy to check that $g, h \in \Gamma(M(X, \mathcal{A}, \mu))$. Therefore fg = gh = hf = 0 a.e. on (X, \mathcal{A}, μ) and so $\Gamma(M(X, \mathcal{A}, \mu))$ is a triangulated graph. \Box

Corollary 3.2. Let (X, \mathcal{A}, μ) be a measure space and $\Gamma(M(X, \mathcal{A}, \mu))$ be a triangulated graph. Then for every countable set $B \in \mathcal{A}$, $\mu(B) = 0$.

Proof. Suppose that for $x \in X$, $\mu(\{x\}) \neq 0$. Then $\{x\}$ is a near-zero and by Theorem 3.1, $\Gamma(M(X, \mathcal{A}, \mu))$ is not a triangulated graph, which is a contradiction. Hence for every countable set $B = \{x_1, x_2, ...\} \in \mathcal{A}$, $\mu(B) = \sum_{i=1}^{\infty} \mu(\{x_i\}) = 0$.

A graph is called *hypertriangulated* if each edge of $\Gamma(M(X, \mathcal{A}, \mu))$ is a edge of a triangle.

Proposition 3.3. Let (X, \mathcal{A}, μ) be a measure space. Then $\Gamma(M(X, \mathcal{A}, \mu))$ is not hypertriangulated.

Proof. Suppose that $f \in \Gamma(M(X, \mathcal{A}, \mu))$. Then f is adjacent to $g := \chi_{Z_f}$. Since $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$ and $\mu(Z_f \cap Z_g) = 0$, there is not any element in $\Gamma(M(X, \mathcal{A}, \mu))$ such that adjacent to both f and g, by Theorem 2.5(b).

A graph is called a *tree*, if it is connected and has no cycles. A *star* graph is a tree with one vertex adjacent to all other vertices.

Theorem 3.4. Let (X, \mathcal{A}, μ) be a measure space and $|M_{\mu}| > 2$. Then $\Gamma(M(X, \mathcal{A}, \mu))$ is not a star graph.

Proof. (a) Assume that $|M_{\mu}| > 2$ and $\Gamma(M(X, \mathcal{A}, \mu))$ is a star graph. Then there exists $f \in \Gamma(M(X, \mathcal{A}, \mu))$ such that f is adjacent to other vertices of $\Gamma(M(X, \mathcal{A}, \mu))$. By Lemma 2.3, $Z_f, \operatorname{co} Z_f \in M_{\mu}$. Since $|M_{\mu}| > 2$, there exists $A \in M_{\mu}$ such that A is other than both Z_f and $\operatorname{co} Z_f$. By the assumptions, $g := \chi_A$ and $h := \chi_{A^c}$ are two vertices of $\Gamma(M(X, \mathcal{A}, \mu))$ and adjacent to f. This implies that $\mu(\operatorname{co} Z_f) =$ $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) + \mu(\operatorname{co} Z_f \cap \operatorname{co} Z_h) = 0$, which is a contradiction. \Box

In the following, we present a notation and a definition that are important in the studying of cycles in $\Gamma(M(X, \mathcal{A}, \mu))$.

Notation 3.5. (a) Let $f \in \Gamma(M(X, \mathcal{A}, \mu))$. We set:

 $[f] := \{h \in \Gamma(M(X, \mathcal{A}, \mu)) : \operatorname{co}Z_f = \operatorname{co}Z_h \text{ a.e. on } (X, \mathcal{A}, \mu)\}$

(b) For $f,g \in \Gamma(M(X,\mathcal{A},\mu))$, we say that $f \sim g$ if and only if [f] = [g].

As noted in [22], \sim is an equivalence relation. Furthermore, if $h_1 \sim h_2$ and $h_1g = 0$, then $\mu(\operatorname{co} Z_{h_1} \cap \operatorname{co} Z_g) = \mu(\operatorname{co} Z_{h_2} \cap \operatorname{co} Z_g) = 0$ and hence $h_2g = 0$. It follows that multiplication is well-defined on the equivalence classes of \sim ; that is, if [f] denotes the class of f, then the product [f][g] = [fg] makes sense.

Definition 3.6. The graph of equivalence classes $\Gamma(M(X, \mathcal{A}, \mu))$, denoted by $\Gamma_E(M(X, \mathcal{A}, \mu))$, is the graph associated to $\Gamma(M(X, \mathcal{A}, \mu))$ whose vertices are the classes of elements in $\Gamma(M(X, \mathcal{A}, \mu))$, and each pair of distinct classes [f], [g] are adjacent by an edge if and only if [f][g] = 0.

Theorem 3.7. Let (X, \mathcal{A}, μ) be a measure space. For every $f \in \Gamma(M(X, \mathcal{A}, \mu))$, the following properties hold:

- (a) There exists a 4 cycle contains f.
- (b) If Z_f or coZ_f is not near-zero, then [f] is in a 3-cycle.
- (c) If Z_f and coZ_f are near-zero, then there is no cycle contains [f].

Proof. (a) For every vertex f, Z_f and coZ_f are in M_{μ} . Hence the path with vertices f, χ_{Z_f} , $2\chi_{coZ_f}$ and $2\chi_{Z_f}$ is a cycle with length 4 containing f.

(b) If Z_f is not a near-zero set, then there exist disjoint members $A, B \in M_{\mu}$ such that $\mu(A) \neq 0, \ \mu(B) \neq 0$ and $A \cup B \subseteq Z_f$ a.e. on (X, \mathcal{A}, μ) . Therefore $[f] \cap [\chi_A] \cap [\chi_B] = \emptyset$ and so $[f][\chi_A] = [\chi_A][\chi_B] = [\chi_B][f] = 0$. If $\operatorname{co} Z_f$ is not near-zero, then there exists a measurable set $D \in M_{\mu}$ such that $\mu(D) \neq 0, \ D \subseteq \operatorname{co} Z_f$ a.e. on (X, \mathcal{A}, μ) and $\mu(D) \neq \mu(\operatorname{co} Z_f)$. Therefore $[f] \cap [\chi_D] \cap [\chi_{Z_f}] = \emptyset$ and so $[f][\chi_D] = [\chi_D][\chi_{Z_f}] = [\chi_{Z_f}][f] = 0$.

(c) Suppose that Z_f and coZ_f are near-zero. Then every $g \in \Gamma(M(X, \mathcal{A}, \mu)) \setminus [f]$ is in $[\chi_{Z_f}]$ and every $h \in \Gamma(M(X, \mathcal{A}, \mu)) \setminus [\chi_{Z_f}]$ is in [f]. Therefore there is no cycle contains [f].

If f and g are two vertices of $\Gamma(M(X, \mathcal{A}, \mu))$, by c(f, g), we mean the length of the smallest cycle containing f and g. If there is no cycle containing f and g, $c(f,g) = \infty$. For every two vertices f and g, all possible cases for c(f,g) and c([f], [g]) are given in the following two theorems.

Theorem 3.8. Let f and g be two vertices of $\Gamma(M(X, \mathcal{A}, \mu))$. Then the following properties hold:

- (a) c(f,g) = 3 if and only if $\mu(coZ_f \cap coZ_g) = 0$ and $\mu(Z_f \cap Z_g) \neq 0$.
- (b) c(f,g) = 4 if and only if one of the following statements hold:
 - (1) $\mu(coZ_f \cap coZ_q) \neq 0$ and $\mu(Z_f \cap Z_q) \neq 0$.
 - (2) $\mu(coZ_f \cap coZ_g) = 0$ and $\mu(Z_f \cap Z_g) = 0$.
- (c) c(f,g) = 6 if and only if $\mu(coZ_f \cap coZ_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$.

Proof. (a) Assume that c(f,g) = 3. Then there exists a vertex h such that fg = gh = fh = 0 a.e. on (X, \mathcal{A}, μ) . Thus

$$\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = \mu(\operatorname{co} Z_h \cap \operatorname{co} Z_f) = \mu(\operatorname{co} Z_h \cap \operatorname{co} Z_g) = 0$$

a.e. on (X, \mathcal{A}, μ) and hence $\operatorname{co} Z_h \subseteq Z_f \cap Z_g$ a.e. on (X, \mathcal{A}, μ) . Since h is a vertex, $\mu(\operatorname{co} Z_h) \neq 0$ and therefore $\mu(Z_f \cap Z_g) \neq 0$. Conversely, let $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$ and $\mu(Z_f \cap Z_g) \neq 0$. Then f is adjacent to g and $\chi_{Z_f \cap Z_g}$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$. Therefore

$$fg = f\chi_{Z_f \cap Z_g} = g\chi_{Z_f \cap Z_g} = 0$$

a.e. on (X, \mathcal{A}, μ) .

(b) If $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) \neq 0$, then f is not adjacent to g and $h := \chi_{Z_f \cap Z_g}$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$. Therefore

$$fh = hg = g(-h) = (-h)g = 0$$

a.e. on (X, \mathcal{A}, μ) and so $c(f, g) \leq 4$. If c(f, g) = 3, then $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$, by part (a), which is a contradiction.

If $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$ and $\mu(Z_f \cap Z_g) = 0$, then f is adjacent to g and $\operatorname{co} Z_f \cup \operatorname{co} Z_g = X$ a.e. on (X, \mathcal{A}, μ) . We set $h := \frac{1}{2}f$ and $k := \frac{1}{2}g$. Thus fg = gh = hk = kf = 0 a.e. on (X, \mathcal{A}, μ) and hence $c(f, g) \leq 4$. If c(f, g) = 3, then $\mu(Z_f \cap Z_g) \neq 0$, by part (a), which is a contradiction. Conversely, suppose that c(f, g) = 4. We have two cases:

Case 1: $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$. Then f is not adjacent to g. Since c(f,g) = 4, there exist two vertices h and k of $\Gamma(M(X, \mathcal{A}, \mu))$ such that fh = hg = gk = kf = 0 a.e. on (X, \mathcal{A}, μ) . Therefore $\operatorname{co} Z_h \subseteq Z_f$ and $\operatorname{co} Z_h \subseteq Z_g$ and so $\operatorname{co} Z_h \subseteq Z_f \cap Z_g$. Since $\mu(\operatorname{co} Z_h) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$.

Case 2: $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$. Then f is adjacent to g. If $\mu(Z_f \cap Z_g) \neq 0$, then $\chi_{Z_f \cap Z_g}$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$ and

$$fg = g\chi_{Z_f \cap Z_g} = \chi_{Z_f \cap Z_g} f = 0$$

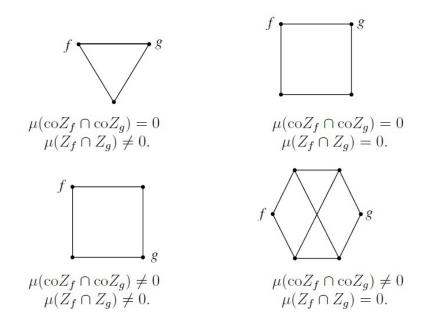
a.e. on (X, \mathcal{A}, μ) . This means that c(f, g) = 3, which is a contradiction.

(c) If c(f,g) = 6, then parts (a) and (b) imply that $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$. Conversely, since $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$, then by part (c) of Theorem 2.5, d(f,g) = 3. Hence there exist vertices h and k such that fh = hk = kg = 0 a.e. on (X, \mathcal{A}, μ) . Now if some vertex t is adjacent to g, then $\operatorname{co} Z_t \subseteq Z_g$ and $\operatorname{co} Z_h \subseteq Z_f$ a.e. on (X, \mathcal{A}, μ) imply that

$$\mu(\operatorname{co} Z_t \cap \operatorname{co} Z_h) \le \mu(Z_f \cap Z_g) = 0$$

and so t is adjacent to h. This shows that $c(f,g) \ge 5$. But d(f,g) = 3 implies that f is not adjacent to t and hence $c(f,g) \ge 6$. If we consider

the vertices p := 2h and q := 2k, then we have a cycle with vertices f, g, h, k, p and q, and so c(f, g) = 6.



Theorem 3.9. Let [f] and [g] be two vertices of $\Gamma_E(M(X, \mathcal{A}, \mu))$. Then the following properties hold:

(a) c([f], [g]) = 3 if and only if $\mu(coZ_f \cap coZ_g) = 0$ and $\mu(Z_f \cap Z_g) \neq 0$.

(b) c([f], [g]) = 4 if and only if one of the following statements hold:

 $(1)\mu(coZ_f \cap coZ_g) = 0, \ \mu(Z_f \cap Z_g) = 0 \ and \ both \ coZ_f \ and \ coZ_g$ are not near-zero sets.

(2) $\mu(coZ_f \cap coZ_g) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$ and $Z_f \cap Z_g$ is not near-zero.

(c) c([f], [g]) = 5 if and only if $\mu(coZ_f \cap coZ_g) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$ and $Z_f \cap Z_g$ is a near-zero set.

(d) c([f], [g]) = 6 if and only if $\mu(coZ_f \cap coZ_g) \neq 0$, $\mu(Z_f \cap Z_g) = 0$ and both $coZ_f \setminus coZ_g$ and $coZ_g \setminus coZ_f$ are not near-zero sets.

(e) $c([f], [g]) = \infty$ if and only if one of the following statements hold: (1) $\mu(coZ_f \cap coZ_g) = 0$, $\mu(Z_f \cap Z_g) = 0$ and coZ_f or coZ_g is near-zero.

(2) $\mu(coZ_f \cap coZ_g) \neq 0$, $\mu(Z_f \cap Z_g) = 0$ and $coZ_f \setminus coZ_g$ or $coZ_g \setminus coZ_f$ is near-zero.

Proof. (a) Assume that c([f], [g]) = 3. Then c(f, g) = 3 and so $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$ and $\mu(Z_f \cap Z_g) \neq 0$, by Theorem 3.8(a). Conversely, suppose

that $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$ and $\mu(Z_f \cap Z_g) \neq 0$. Then $\chi_{Z_f \cap Z_g}$ is a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$ and $fg = g\chi_{Z_f \cap Z_g} = f\chi_{Z_f \cap Z_g} = 0$ a.e. on (X, \mathcal{A}, μ) . It is easy to check that $[f] \cap [g] \cap [\chi_{Z_f \cap Z_g}] = \emptyset$ and c([f], [g]) = 3.

(b) Suppose that c([f], [g]) = 4. Then $c(f, g) \le 4$. If c(f, g) = 3, then c([f], [g]) = 3, by part (a) and Theorem 3.8(a), which is a contradiction. Therefore c(f, g) = 4 and we have two cases, by Theorem 3.8(b):

Case 1: $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) = 0$ and $\mu(Z_f \cap Z_g) = 0$. Then f is adjacent to g and $\operatorname{co}Z_f \cap \operatorname{co}Z_g = X$ a.e. on (X, \mathcal{A}, μ) . If $\operatorname{co}Z_f$ is near-zero, then for every $h, k \in \Gamma(M(X, \mathcal{A}, \mu))$ such that fg = gh = hk = kf = 0 a.e. on $(X, \mathcal{A}, \mu), h \in [f]$, which is a contradiction.

Case 2: $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) \neq 0$. If $Z_f \cap Z_g$ is near-zero, then for every $h, k \in \Gamma(M(X, \mathcal{A}, \mu))$ such that fh = hg = $gk = kf = 0, \operatorname{co}Z_h = Z_f \cap Z_g$ and $\operatorname{co}Z_k = Z_f \cap Z_g$ a.e. on (X, \mathcal{A}, μ) . This means that $h, k \in [\chi_{Z_f \cap Z_g}]$, which is a contradiction.

Conversely, if $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$, $\mu(Z_f \cap Z_g) = 0$ and both $\operatorname{co} Z_f$ and $\operatorname{co} Z_g$ are not near-zero sets, then f is adjacent to g and there exist $A \subseteq \operatorname{co} Z_f$ and $B \subseteq \operatorname{co} Z_g$ such that $\mu(A) < \mu(\operatorname{co} Z_f)$, $\mu(B) < \mu(\operatorname{co} Z_g)$, $\mu(A) \neq 0$ and $\mu(B) \neq 0$. Thus $[f][g] = [f][\chi_B] = [\chi_B][\chi_A] = [\chi_A][g] =$ 0 and hence $c([f], [g]) \leq 4$. If c([f], [g]) = 3, then $\mu(Z_f \cap Z_g) \neq 0$, by part (a), which is a contradiction.

If $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$ and $Z_f \cap Z_g$ is not nearzero, then f is not adjacent to g and there exist two measurable sets $A, B \subseteq Z_f \cap Z_g$ such that $A \cap B = \emptyset$ and $\chi_A, \chi_B \in \Gamma(M(X, \mathcal{A}, \mu))$. Therefore $[f][\chi_A] = [\chi_A][g] = [g][\chi_B] = [\chi_B][f] = 0$ and so $c([f], [g]) \leq$ 4. If c([f], [g]) = 3, then $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) = 0$, by part (a), which is a contradiction.

(c) Suppose that c([f], [g]) = 5. Then $c(f, g) \leq 5$. By Theorem 3.8, c(f, g) = 3 or 4. If c(f, g) = 3, then d([f], [g]) = 3, by part (a) and Theorem 3.8(a), which is a contradiction. Therefore c(f, g) = 4 and we have two cases, by Theorem 3.8(b):

Case 1: $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) = 0$ and $\mu(Z_f \cap Z_g) = 0$. If $\operatorname{co}Z_f$ and $\operatorname{co}Z_g$ are not near-zero, then c([f], [g]) = 4, by part (b), which is a contradiction. If $\operatorname{co}Z_f$ is near-zero, then for every vertex h such that $[gh] = 0, h \in [f]$. Therefore $c([f], [g]) = \infty$.

Case 2: $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) \neq 0$. If $Z_f \cap Z_g$ is not near-zero, then c([f], [g]) = 4, by part (b), which is a contradiction.

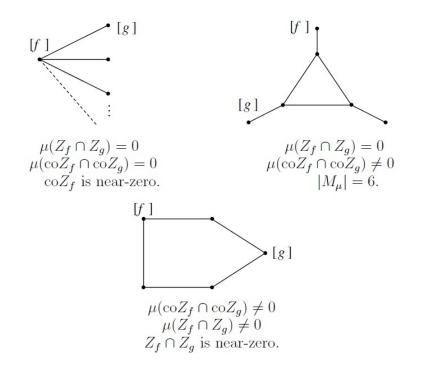
Therefore c([f], [g]) = 5 implies that $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$ and $Z_f \cap Z_g$ is a near-zero set.

Conversely, suppose that $\mu(\operatorname{co} Z_f \cap \operatorname{co} Z_g) \neq 0$, $\mu(Z_f \cap Z_g) \neq 0$ and $Z_f \cap Z_g$ is a near-zero set. By Theorem 2.5(b), d(f,g) = 2 and there exists a vertex h such that fh = gh = 0 a.e. on (X, \mathcal{A}, μ) . Since

 $Z_f \cap Z_g$ is near-zero, then $h \in [\chi_{Z_f \cap Z_g}]$. On the other hand d(f,g) = 3in the zero-divisor graph of $\operatorname{co} Z_f \cup \operatorname{co} Z_g$, by Theorem 2.5(c). Therefore there exists two vertices k and t such that fk = kt = tg = 0 a.e. on (X, \mathcal{A}, μ) . Since d(f, g) = 3 in the zero-divisor graph of $\operatorname{co} Z_f \cup \operatorname{co} Z_g$, $[f] \cap [k] \cap [t] \cap [g] \cap [h] = \emptyset$ and therefore c([f], [g]) = 5.

(d) Suppose that c([f], [g]) = 6. Then $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$ and $\mu(Z_f \cap Z_g) = 0$, by parts (a), (b) and (c). If $\operatorname{co}Z_f \setminus \operatorname{co}Z_g$ is nearzero, then [g] is only adjacent to $[\chi_{\operatorname{co}Z_f \setminus \operatorname{co}Z_g}]$, which is a contradiction. Conversely, suppose that $\mu(\operatorname{co}Z_f \cap \operatorname{co}Z_g) \neq 0$, $\mu(Z_f \cap Z_g) = 0$ and both $\operatorname{co}Z_f \setminus \operatorname{co}Z_g$ and $\operatorname{co}Z_g \setminus \operatorname{co}Z_f$ are not near-zero sets. Then $c([f], [g]) \geq 6$, by parts (a), (b) and (c). Since $\operatorname{co}Z_f \setminus \operatorname{co}Z_g$ and $\operatorname{co}Z_g \setminus \operatorname{co}Z_f$ are not near-zero sets, there exists $A, B \in M_\mu$ such that $A \subseteq \operatorname{co}Z_f \setminus \operatorname{co}Z_g$, $B \subseteq \operatorname{co}Z_g \setminus \operatorname{co}Z_f$, $\mu(A) \neq \mu(\operatorname{co}Z_f \setminus \operatorname{co}Z_g)$ and $\mu(B) \neq \mu(\operatorname{co}Z_g \setminus \operatorname{co}Z_f)$. Therefore $[f], [g], [\chi_A], [\chi_B], [1 - \chi_A]$ and $[1 - \chi_B]$ are different classes in $\Gamma_E(M(X, \mathcal{A}, \mu))$ and $[f][\chi_B] = [\chi_B][\chi_A] = [\chi_A][g] = [g][1 - \chi_A] =$ $[1 - \chi_A][1 - \chi_B] = [1 - \chi_B][f] = 0$.

(e) The proof of this part is a consequence of the proofs of parts (c) and (d).



HEJAZIPOUR AND NAGHIPOUR

4. Continuity properties of $\Gamma(M(X, \mathcal{A}, \mu))$

In this section, we assume that μ is a measure on a locally compact Hausdorff space X which has the properties stated in Riesz Representation Theorem [21, Theorem 2.14]. Since the continuous functions played such a prominent role in the construction of Borel measures, it seems reasonable to expect that there are some interesting relations between continuous functions and the zero-divisor graph of the ring of measurable functions. In the following, we shall give two main theorems of this kind. In the first theorem, we approximate the vertices of $\Gamma(M(X, \mathcal{A}, \mu))$ by the vertices of the zero-divisor graph of $C_C(X)$, denoted by $\Gamma(C_C(X))$. In the second theorem, we give a relation between continuity and the edges of $\Gamma(M(X, \mathcal{A}, \mu))$.

We recall that a Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods. A topological space X is called locally compact, if every point $x \in X$ has a compact neighbourhood. A topological space X is a completely regular space if given any closed set $F \subseteq X$ and any point $x \in X$ that does not belong to F, then there is a continuous function f from X to the real line \mathbb{R} such that f(x) = 0 and, for every $y \in F$, f(y) = 1. The support of a function f on a topological space X is the closure of the set $\{x \in X : f(x) \neq 0\}$, denoting by $\supp(f)$. The collection of all continuous functions on a completely regular Hausdorff space X whose support is compact is denoted by Cc(X). For every function $f : X \longrightarrow [-\infty, +\infty]$, $|f| = \sup\{|f(x)| : x \in X\}$. The reader is referred to [11, 14] for undefined terms and concepts.

To enter the discussion, we recall that a corollary of the Lusin theorem [21, Theorem 2.24]: Suppose that f is a complex measurable function on X, $\mu(A) < \infty$, f(x) = 0 if $x \notin A$ and $|f| \leq 1$. Then there exists a sequence $g_n \in C_C(X)$ such that $|g_n| \leq 1$ and $f(x) = \lim g_n(x)$ a.e. on (X, \mathcal{A}, μ) .

Theorem 4.1. For every vertex f of $\Gamma(M(X, \mathcal{A}, \mu))$ which $\mu(\operatorname{co} Z_f) < \infty$ and $|f| \leq 1$, there exists a sequence of vertices $\{f_n\}$ of $\Gamma(C_C(X))$ such that

$$f(x) = \lim f_n(x)$$
 a.e. on (X, \mathcal{A}, μ) .

Proof. Let f be a vertex of $\Gamma(M(X, \mathcal{A}, \mu))$, $|f| \leq 1$ and $\mu(\operatorname{co} Z_f) < \infty$. Using Lusin Theorem [21, Theorem 2.24], for every $n \in \mathbb{N}$, there exists $f_n \in C_C(X)$ such that

$$\mu(E_n = \{x : f(x) \neq f_n(x)\}) < 2^{-n}.$$

We claim that every $x \in X$ lies in at most finitely many of the sets E_n . Let $g := \sum_{n=1}^{\infty} \chi_{E_n}$ and

 $K := \{ x \in X : x \text{ lies in infinitely many } E_n \}.$

It is easy to check that $x \in K$ if and only if $g(x) = \infty$. Now we have

$$\int_{X} g d\mu = \int_{X} \sum_{n=1}^{\infty} \chi_{E_n} d\mu = \sum_{n=1}^{\infty} \int_{X} \chi_{E_n} d\mu = \sum_{n=1}^{\infty} \mu(E_n) \le \sum_{n=1}^{\infty} 2^{-n} = 1.$$

This implies that $g \in L^1(X, \mathcal{A}, \mu)$ and so $\mu(K) = 0$. Thus for every $x \in X$ and all large enough $n, f(x) = f_n(x)$ and hence

$$f(x) = \lim f_n(x)$$
 a.e. on (X, \mathcal{A}, μ) .

Now, we claim that $\{f_n\}$ has a subsequence of the vertices of $\Gamma(C_C(X))$. If for infinitely many $n \in \mathbb{N}$, $\mu(\operatorname{co} Z_{f_n}) = 0$, then there exists a sequence $\{n_k\} \subseteq \mathbb{N}$ such that for every $k \in \mathbb{N}$, $\mu(\operatorname{co} Z_{f_{n_k}}) = 0$ and $f(x) = \lim f_{n_k}(x)$ a.e. on (X, \mathcal{A}, μ) . According to the assumptions and measure properties, for every $n \in \mathbb{N}$,

$$\mu(\operatorname{co} Z_f) \le \mu(\operatorname{co} Z_{f_{n_k}}) + \mu(E_n) \le 2^{-n}.$$

This means that $\mu(\operatorname{co} Z_f) = 0$, which is a contradiction. Now suppose that for infinitely many $n \in \mathbb{N}$, $\mu(Z_{f_n}) = 0$. Then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that for every $k \in \mathbb{N}$, $\mu(Z_{f_{n_k}}) = 0$. Therefore for every $k \in \mathbb{N}$, f_{n_k} is unit a.e. on (X, \mathcal{A}, μ) and $\mu(Z_f \setminus E_{n_k}) = 0$. As a consequence of the assumptions, for every $k \in \mathbb{N}$,

$$\mu(Z_f) \le \mu(E_{n_k}) \le 2^{-n_k}.$$

This implies that $\mu(Z_f) = 0$, which is a contradiction. Therefore without considering the elements of $\{f_n\}$ which their cozero sets are not in M_{μ} , there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that all members are in $\Gamma(C_C(X))$.

In order to establish a relation between continuity and the edges of $\Gamma(M(X, \mathcal{A}, \mu))$, we need the following definition.

Definition 4.2. A measurable function $f \in M(X, \mathcal{A}, \mu)$ is called ϵ -continuous if

 $\mu(\{x \in X : f \text{ is not continuous at } x\}) < \epsilon.$

Now, we find a relationship between the edges of the graph $\Gamma(M(X, \mathcal{A}, \mu))$ and the edges of $\Gamma(C_C(X))$.

Theorem 4.3. Let $f, g \in \Gamma(M(X, \mathcal{A}, \mu)), |f| \leq 1, |g| \leq 1$ and $\sum_{n=1}^{\infty} \epsilon_n$ be a convergence series in real line \mathbb{R} . Then f is adjacent to g if and

only if there exist two sequences $\{f_n\}$ and $\{g_n\}$ in $\Gamma(C_C(X))$ such that the following statements hold:

- (1) For every $n \in \mathbb{N}$, f_n and g_n are ϵ_n -continuous.
- (2) $\{f_n\}$ and $\{g_n\}$ pointwise convergence to f and g, respectively.
- (3) $\{f_n\}$ and $\{g_n\}$ are the parts of a complete bipartite graph.

Proof. Using Lusin Theorem [21, Theorem 2.24], for every $n \in \mathbb{N}$, there exists $h_n \in C_C(X)$ such that

$$\mu(E_n = \{x : f(x) \neq h_n(x)\}) < \epsilon_n.$$

As the proof of Theorem 4.1, since $\sum_{n=1}^{\infty} \epsilon_n < \infty$, $f(x) = \lim h_n(x)$ a.e. on (X, \mathcal{A}, μ) . For each $n \in \mathbb{N}$, we define

$$f_n(x) := \begin{cases} h_n(x) & x \in E_n^c, \\ 0 & x \in E_n. \end{cases}$$

It is easy to check that f_n is ϵ_n -continuous function and $\mu(Z_{f_n}) \geq \mu(Z_{h_n}) \neq 0$, for every $n \in \mathbb{N}$. If for infinitely many $n \in \mathbb{N}$, $\mu(\operatorname{co} Z_{f_n}) = 0$, then there exists $\{n_k\} \subseteq \mathbb{N}$ such that $\mu(\operatorname{co} Z_{f_{n_k}}) = 0$ and $\{f_{n_k}\}$ pointwise converges to f, for every $k \in \mathbb{N}$. This means that $\mu(\operatorname{co} Z_f) = 0$, which is a contradiction. Therefore we can assume that $f_n \in \Gamma(C_C(X))$, for every $n \in \mathbb{N}$. On the other hand, for ever $n \in \mathbb{N}$,

$$\mu(\{x : f(x) \neq f_n(x)\}) \le \mu(E_n) < \epsilon_n.$$

This means that $f(x) = \lim f_n(x)$ a.e. on (X, \mathcal{A}, μ) . If for $m, n \in \mathbb{N}$, f_n is adjacent to f_m , then

$$\mu(\operatorname{co}Z_f) \le \mu(E_n) + \mu(E_m) \le \epsilon_n + \epsilon_m.$$

Now if for infinitely many $m, n \in \mathbb{N}$, f_m is adjacent to f_n , $\mu(\operatorname{co} Z_f) = 0$, which is a contradiction. Therefore without considering the elements of $\{f_n\}$ which they are adjacent, there exists a subsequence of $\{f_n\}$ such that f_n is not adjacent to f_m , for every $m, n \in \mathbb{N}$. Similarly, there exists a sequence of ϵ -continuous functions $\{g_n\}$ in $\Gamma(C_C(X))$ such that $\{g_n\}$ pointwise convergence to g and g_n is not adjacent to g_m , for every $m, n \in \mathbb{N}$. By the definition of $\{f_n\}$ and $\{g_n\}$, $\operatorname{co} Z_{f_n} \subseteq \operatorname{co} Z_f$ and $\operatorname{co} Z_{g_n} \subseteq \operatorname{co} Z_g$, for every $n \in \mathbb{N}$. Now since f is adjacent to g, for every $m, n \in \mathbb{N}$, f_n is adjacent to g_m . Therefore $\{f_n\}$ and $\{g_n\}$ are the parts of a bipartite graph.

Conversely, assume that $\{f_n\}$ and $\{g_n\}$ are two sequences in $\Gamma(C_C(X))$ such that the conditions (1), (2) and (3) are true. Now suppose that $\mu(\operatorname{co} Z_{f_k} \cap \operatorname{co} Z_g) \neq 0$, for $k \in \mathbb{N}$. Since for every $m, n \in \mathbb{N}$, f_n and g_m are adjacent, $\{g_n\}$ pointwise convergence to $g(1 - \chi_{\operatorname{co} Z_{f_k} \cap \operatorname{co} Z_g})$,

which is a contradiction. This means that for every $n \in \mathbb{N}$, f_n is adjacent to g. Similarly, for every $n \in \mathbb{N}$, g_n is adjacent to f. Therefore by the assumptions, f is adjacent to g.

Remark 4.4. According to Theorems 4.1 and 4.3, in some cases, for the study of $\Gamma(M(X, \mathcal{A}, \mu))$, we can use the behavior of the members of $\Gamma(C_C(X))$ and ε -continuous functions. The question that arises is that how can we characterize the features of the graph $\Gamma(M(X, \mathcal{A}, \mu))$ by the continuous functions?

Acknowledgments

The authors are deeply grateful to the referees for helpful comments and suggestions.

References

- 1. M. Abedi, Zero-divisor graph of real-valued continuous functions on a frame, Filomat, **33**(1) (2019), 135–146.
- S. Acharyya, S. K. Acharyya, S. Bag and J. Sack, Recent progress in rings and subrings of real valued measurable functions, *Quaest. Math.*, 43(7) (2019), 959– 973.
- S. K. Acharyya, S. Bag and J. Sack, Ideals in rings and intermediate rings of measurable functions, J. Algebra Appl., 19(2) (2020), 205–238.
- A. Amini, B. Amini, E. Momtahan and M. H. Shirdeh Haghighi, Generalized rings of measurable and continuous functions, *Bull. Iranian Math. Soc.*, 39(1) (2013), 49–64.
- 5. D. F. Anderson, A. Frazier, A. Lauve and P. Livingston, The zero-divisor graph of a commutative ring, *J. Algebra*, **217** (1999), 434–447.
- D. F. Anderson and G. D. LaGrange, Some remarks on the compressed zerodivisor graph, J. Algebra, 447 (2016), 297–321.
- H. Azadi, M. Henriksen and E. Momtahen, Some properties of algebras of realvalued mesurable functions, Acta Math. Hungar., 124(1-2) (2009), 15–23.
- F. Azarpanah and M. Motamedi, Zero-divisor graph of C(X), Acta Math. Hungar., 108(1-2) (2005), 25–36.
- 9. I. Beck, Coloring of commutative rings, J. Algebra, 11 (1988), 208-2267.
- J. Connor and E. Avas, Lacunary statical and sliding window convergence for measurable functions, Acta Math. Hungar., 145(2) (2015), 416–4327.
- 11. R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
- A. A. Estaji and T. Haghdadi, Zero- divisor graph for S-act, Lobachevskii J. Math., 36(1) (2015), 1–8.
- K. R. Goodearl, Von neumann regular rings, Krieger Publishing Company, New York, 1991.
- L. Gillman and M. Jerison, *Rings of Continuous Functions*, Springer-Verlag, New York, 1989.
- A. W. Hager, Algebras of measurable functions, Duke Math. J., 38 (1971), 214–277.

- A. W. Hager, An example concerning algebras of measurable functions, *Rocky Mountain J. Math.*, 3 (1971), 415–418.
- 17. P. R. Halmous, Measure theory, New York, Reprint, Springer-Verlag, 1973.
- H. Hejazipour and A. R. Naghipour, When is the ring of real measurable functions a hereditary ring? Bull. Iranian Math. Soc., 43 (2017), 1905–1912.
- A. Jarai, Regularity properties of measurable functions satisfying a multiplicative type functional equation almost everywhere, *Aequationes Math.*, 89 (2015), 367–381.
- R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745–750.
- E. Momtahan, Essential ideals in rings of measurable functions, Comm. Algebra, 38(12) (2010), 4739–4746.
- S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30(7) (2002), 3533–3558.
- P. Niemiec, Spaces of measurable functions, *Eur. J. Math.*, **11** (2013), 1304– 1316.
- 24. W. Rudin, Real and Complex Analysis, New York, Springer-Verlag 1985.
- T. Tamizh Chelvam and S. Nithya, Crosscape of the ideal based zero-divisor graph, Arab J. Math. Sci., 22 (2016), 29–37.
- A. M. Vershik, P. B. Zatitskiy and F. V. Petrov, Virtual continuity of measurable functions of several variables and embedding theorems, *Funct. Anal. Appl.*, 47(3) (2013), 165–173.
- R. Viertl, A note on maximal ideals and residue class rings of rings of measurable functions, An. Acad. Brasil. Ciênc., 49 (1977), 357–358.
- R. Viertl, Ideale in ringen messbarer funktionen, Math. Nachr., 79 (1981), 201–205.

Homayon Hejazipour

Department of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.

Email: homayhejazipour@gmail.com

Ali Reza Naghipour

Department of Mathematical Sciences, Shahrekord University, P.O. Box 115, City, Country.

Email: naghipour@sci.sku.ac.ir

Journal of Algebraic Systems

ZERO-DIVISOR GRAPH OF THE RINGS OF REAL MEASURABLE FUNCTIONS WITH THE MEASURES

H. HEJAZIPOUR AND A. R. NAGHIPOUR

گراف مقسوم علیه صفر حلقههای توابع اندازه پذیر با اندازهها همایون حجازی پور^۱ و علیرضا نقی پور^۲ ۱٫۲ دانشکده علوم ریاضی، دانشگاه شهرکرد، شهرکرد، ایران

فرض کنیم $M(X, \mathcal{A}, \mu)$ حلقه توابع انداره پذیر روی فضای اندازه پذیر (X, \mathcal{A}, μ) با اندازه μ باشد. در این مقاله گراف مقسوم علیه صفر $M(X, \mathcal{A}, \mu)$ که با $\Gamma(M(X, \mathcal{A}, \mu))$ نمایش داده می شود را مطالعه میکنیم. ارتباط بین خواص گرافی $\Gamma(M(X, \mathcal{A}, \mu))$ ، خواص حلقه ای $M(X, \mathcal{A}, \mu)$ و خواص اندازه ای ($\Gamma(X, \mathcal{A}, \mu)$ را بررسی خواص اندازه می در نهایت خواص پیوستگی ($\Gamma(M(X, \mathcal{A}, \mu))$ را بررسی می کنیم.

کلمات کلیدی: حلقههای توابع اندازه پذیر، فضای اندازه، گراف مقسوم علیه صفر، تابع پیوسته، دور، گراف مثلثی شونده، گراف ابر مثلثی شونده.