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ZERO-DIVISOR GRAPH OF THE RINGS OF REAL
MEASURABLE FUNCTIONS WITH THE MEASURES

H. HEJAZIPOUR AND A. R. NAGHIPOUR∗

Abstract. Let M(X,A, µ) be the ring of real-valued measurable
functions on a measurable space (X,A) with measure µ. In this
paper, we study the zero-divisor graph of M(X,A, µ), denoted by
Γ(M(X,A, µ)). We give the relationships among graph properties
of Γ(M(X,A, µ)), ring properties of M(X,A, µ) and measure prop-
erties of (X,A, µ). Finally, we investigate the continuity properties
of Γ(M(X,A, µ)).

1. Introduction

A σ-algebra on a set X is a collection A of subsets of X that in-
cludes the empty subset, is closed under complement, and is closed
under countable unions. If A is a σ-algebra on X, then (X,A) is called
a measurable space and the members of A are called the measurable
sets in X. A function µ from a σ-algebra A to the extended real num-
ber line is called a measure if for all countable collections {Ai}∞i=1 of
pairwise disjoint sets in A, µ(

∪∞
i=1 Ai) =

∑∞
i=1 µ(Ai). To avoid trivi-

alities, we shall also assume that µ(A) < ∞ for at least one A ∈ A.
A measure space is a triple (X,A, µ), where X is a set, A a σ-algebra
on X, and µ a measure on A. A complete measure (or, more pre-
cisely, a complete measure space) is a measure space in which every
subset of every set of measure zero is measurable. The statement “P

DOI: 10.22044/jas.2020.9745.1474.
MSC(2010): Primary: 28A99, 13A99; Secondary: 05C38.
Keywords: Rings of measurable functions, Measure space, Zero-divisor graph, Continuous
function, Cycle, Girth, Triangulated graph, Hypertriangulated graph.
Received: 29 May 2020, Accepted: 18 December 2020.
∗Corresponding author.

175



176 HEJAZIPOUR AND NAGHIPOUR

holds almost everywhere on (X,A, µ)” (abbreviated to “P holds a.e.
on (X,A, µ)”) means that

µ({x ∈ X : P does not hold on x}) = 0.

If Y is a topological space and f : X −→ Y is a function, then f is
said to be measurable provided that f−1(V ) is a measurable set in X
for every open set V in Y . The characteristic function is the function
χA : X −→ {0, 1}, which for a given measurable set A, has value 1 at
elements of A and 0 at elements of X\A. For every measurable function
f , the zero set and the cozero set of f are Zf := {x ∈ X : f(x) = 0}
and coZf := X \ Zf , respectively.

The space of real measurable functions with pointwise addition and
multiplication is a commutative ring with identity. Rings of real-valued
measurable functions have been studied in many ways for a long time
by many mathematicians (see [2, 3, 15, 16, 27, 28]). In recent years,
significant researches have been done by some mathematicians like
Momtahan and Henriksen (see [4, 7, 21]). In [18], Hejazipour and
Naghipour by valuing the measures on measurable spaces studied the
hereditary rings in the rings of real measurable functions. For nota-
tional convenience, we assume that M(X,A, µ) is the space of mea-
surable functions from X to R with arbitrary σ-algebra A on X and
arbitrary measure µ on A. For more information about this ring, see
[4, 10, 13, 17, 19, 23, 26].

The concept of the zero-divisor graph of a commutative ring was
introduced by Beck in 1988 [9]. However, he let all elements of the
ring be vertices of the graph and was mainly interested in colorings.
Anderson et al. [5] associated an undirect simple graph to a commu-
tative ring with vertices nonzero zero-divisors and with two distinct
vertices a and b are adjacent if ab = 0. The zero-divisor graph of
a commutative ring also has been studied by several other authors
[1, 6, 12, 20, 25]. Azarpanah and Motamedi in [8], studied the zero-
divisor graph of C(X), ring of real-valued continuous functions on a
completely regular Hausdorff space X. In this paper, we study the
zero-divisor graph of the ring of real measurable functions with mea-
sures.

This paper has two main purposes. Firstly, we study the relation-
ships among graph properties of the graph Γ(M(X,A, µ)), ring proper-
ties of the ring M(X,A, µ) and measure properties of the measure space
(X,A, µ). Secondly, we investigate the relationship between vertices
and edges of Γ(M(X,A, µ)) and continuous functions. The organiza-
tion of the paper is as follows: In Section 2, we determine the distance
between vertices, radius, diameter and the girth of Γ(M(X,A, µ)) by
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the properties of measure spaces. In Section 3, we investigate cy-
cles in Γ(M(X,A, µ)). In Section 4, we study continuity properties
of Γ(M(X,A, µ)). As the main result of this section, we approximate
vertices of Γ(M(X,A, µ)) by the vertices of Γ(CC(X)), the zero-divisor
graph of CC(X).

2. Basic properties of Γ(M(X,A, µ))

Naturally, the rings of real measurable functions are studied without
paying attention to the measures (see [4, 7, 15, 16, 21, 27, 28]). But
the measures played such a prominent role in the study of the spaces of
measurable functions. In [18], we studied the rings of real measurable
functions with measures. Since this article intends to examine the zero-
divisor graph of the rings of real measurable functions with measures,
we redefine the definition of the zero-divisor graph.
Definition 2.1. A function f ∈ M(X,A, µ) is called a zero-divisor of
M(X,A, µ), if there exists a function g ∈ M(X,A, µ) such that
µ({x ∈ X : g(x) ̸= 0}) ̸= 0 and µ({x ∈ X : f(x)g(x) ̸= 0}) = 0.

Let Z(M(X,A, µ)) denote the set of zero-divisors of M(X,A, µ).
Definition 2.2. The zero-divisor graph of M(X,A, µ), denoted by
Γ(M(X,A, µ)), is the graph with vertices

Z(M(X,A, µ))\{f ∈ M(X,A, µ) : f = 0 a.e. on (X,A, µ)}
and two distinct vertices f and g are adjacent if fg = 0 a.e. on
(X,A, µ).

To enter the discussion, we need the following important lemma.
Lemma 2.3. Let (X,A, µ) be a measure space and f ∈ M(X,A, µ).
Then f ∈ Γ(M(X,A, µ)) if and only if µ(Zf ) and µ(coZf ) are nonzero.
Proof. Suppose that f ∈ Γ(M(X,A, µ)). Then there exists a measur-
able function g such that g ̸= 0 a.e. on (X,A, µ) and g is adjacent to
f . If µ(Zf ) = 0, then µ(coZg) ≤ µ(Zf ) = 0, which is a contradiction.
Also, since f ̸= 0 a.e. on (X,A, µ), we have µ(coZf ) ̸= 0. Conversely,
assume that µ(Zf ) and µ(coZf ) are nonzero. Obviously, f ̸= 0 a.e.
on (X,A, µ). Moreover the measurable function g := χZf

is a nonzero
function a.e. on (X,A, µ) and µ({x ∈ X : f(x)g(x) ̸= 0}) = 0. □

According to the above lemma, the set that is presented in the next
notation has an important role in the study of Γ(M(X,A, µ)).
Notation 2.4. Let A be a σ − algebra on X. We set:

Mµ := {A ∈ A : µ(A) and µ(Ac) are nonzero}.
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Recall that for two vertices f and g of Γ(M(X,A, µ)), d(f, g) is
the length of the shortest path from f to g. The following theorem
characterizes the concept of distance in Γ(M(X,A, µ)).

Theorem 2.5. Let (X,A, µ) be a measure space. Then the graph
Γ(M(X,A, µ)) is a connected graph and for every f, g ∈ Γ(M(X,A, µ)),
we have:

(a) d(f, g) = 1 if and only if µ(coZf ∩ coZg) = 0.
(b) d(f, g) = 2 if and only if µ(coZf ∩ coZg) and µ(Zf ∩ Zg) are

nonzero.
(c) d(f, g) = 3 if and only if µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩Zg) = 0.

Proof. (a) By the definition, f is adjacent to g if and only if µ({x :
f(x)g(x) ̸= 0}) = 0 if and only if µ({x : f(x) ̸= 0 and g(x) ̸= 0}) = 0
if and only if µ(coZf ∩ coZg) = 0.

(b) Assume that d(f, g) = 2. Then µ(coZf ∩ coZg) ̸= 0 and there
exists h ∈ Γ(M(X,A, µ)) such that h is adjacent to both f and g.
Therefore µ(coZh∩coZf ) = µ(coZh∩coZg) = 0 and so coZh ⊆ (Zf∩Zg)
a.e. on (X,A, µ). Now if µ(Zf ∩Zg) = 0, then µ(coZh) = 0, which is a
contradiction. Conversely, let µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩Zg) ̸= 0.
Then d(f, g) > 1 and χZf∩Zg is a vertex of Γ(M(X,A, µ)). It is easy
to check that fh = gh = 0 a.e. on (X,A, µ).
(c) Assume that µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩ Zg) = 0. Then

d(f, g) > 2 and coZf ∪ coZg = X a.e. on (X,A, µ). If µ(Zf \ Zg) = 0,
then coZf ⊆ coZg and so coZg = X a.e. on (X,A, µ), which is a contra-
diction. Therefore Zg\Zf , Zf \Zg ∈ Mµ and fχZf\Zg = χZg\Zf

χZf\Zg =
gχZg\Zf

= 0 a.e. on (X,A, µ). Conversely, suppose that d(f, g) = 3.
Then µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩ Zg) = 0, by parts (a) and (b).

The connectivity of Γ(M(X,A, µ)) is a consequence of parts (a), (b)
and (c). □

In the following, we recall an important definition for studying the
rings of real measurable functions M(X,A, µ), (see [18], Definition 2.5).

Definition 2.6. Suppose that E ∈ A and µ(E) ̸= 0. Then the set E is
called near -zero if for every subset A ⊆ E such that µ(A) ̸= 0, A = E
a.e. on (X,A, µ).

The associated number of a vertex f , denoted by e(f), is

e(f) := max{d(f, g) : g ∈ Γ(M(X,A, µ)) and f ̸= g a.e. on (X,A, µ)}.

The radius of Γ(M(X,A, µ)) is the smallest associated number and
denoted by ρΓ(M(X,A, µ)).
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Theorem 2.7. Let (X,A, µ) be a measure space and f ∈ Γ(M(X,A, µ)).
Then the following properties hold:

(a) If |Mµ| = 2, then e(f) = 1.
(b) If |Mµ| ̸= 2 and coZf is a near-zero set, then e(f) = 2.
(c) If |Mµ| ̸= 2 and coZf is not a near-zero set, then e(f) = 3.
In respect to the above three properties, we have the following state-

ments about the radius of Γ(M(X,A, µ)):
(a′) If |Mµ| = 2, then ρΓ(M(X,A, µ)) = 1.
(b′) If |Mµ| ̸= 2 and Mµ has a near-zero set, then

ρΓ(M(X,A, µ)) = 2.
(c′) If |Mµ| ̸= 2 and Mµ has not any near-zero set, then

ρΓ(M(X,A, µ)) = 3.

Proof. (a) Suppose that |Mµ| = 2. Thus Mµ = {coZf , Zf} a.e. on
(X,A, µ) and hence Γ(M(X,A, µ)) is a collection of segments. This
means that e(f) = 1.
(b) Suppose that |Mµ| ̸= 2 and coZf is a near-zero set. For every

g ∈ Γ(M(X,A, µ))\{f}, we consider two following cases:
Case 1: coZg ⊆ Zf a.e. on (X,A, µ). Then d(f, g) = 1, by Theorem

2.5(a).
Case 2: coZf ⊆ coZg a.e on (X,A, µ). By using Theorem 2.5(b),

d(f, g) = 2.
Now for A ∈ Mµ\{Zf , coZf}, d(f, χA∪coZf

) = 2 and according to
the above cases e(f) = 2.

(c) Assume that |Mµ| ̸= 2 and coZf is not a near-zero set. Then
there exists A ∈ Mµ such that A ⊆ coZf and µ(A) ̸= µ(coZf ). Set
B := Zf ∪ A and g := χB. Since µ(coZf ∩ coZg) = µ(A) ̸= 0 and
µ(Zf ∩ Zg) = 0, d(f, g) = 3 and therefore e(f) = 3.
(a

′
) Suppose that Mµ = {A,B}. Then for every g ∈ Γ(M(X,A, µ)),

coZg = A or coZg = B. By using part (a), e(g) = 1 and so
ρΓ(M(X,A, µ)) = 1.
(b

′
) Assume that |Mµ| > 2 and A ∈ Mµ is a near-zero set. Then

the function g := χA satisfies in the part (b) and so e(g) = 2. If
h ∈ Γ(M(X,A, µ)) and e(h) = 1, then Zh and coZh are near-zero sets,
which is a contradiction. Therefore ρΓ(M(X,A, µ)) = 2.
(c

′
) Let g ∈ Γ(M(X,A, µ)). Since |Mµ| > 2 and Mµ has not any

near-zero set, there exists a measurable set A such that A ⊆ coZg,
µ(A) ̸= 0 and µ(A) ̸= µ(coZg). Set B := Zg ∪ A and h := χB.
Therefore d(g, h) = 3, by Theorem 2.5(c). Thus e(g) = 3 and hence
ρΓ(M(X,A, µ)) = 3. □
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Remark 2.8. Regarding to the above theorem, it does not occur that
Mµ is a singleton. If Mµ has only two members, then Γ(M(X,A, µ))
is a collection of segments.

The diameter of Γ(M(X,A, µ)) is
diamΓ(M(X,A, µ)) := sup{d(f, g) : f, g ∈ Γ(M(X,A, µ))}.

The girth of Γ(M(X,A, µ)) is the length of the shortest cycle in
Γ(M(X,A, µ)), denoted by grΓ(M(X,A, µ)), and we set
grΓ(M(X,A, µ)) = ∞ if Γ(M(X,A, µ)) contains no cycle. It should
be noted by Theorems 2.5 and 2.7 that diamΓ(M(X,A, µ)) ≤ 3.

Theorem 2.9. Let (X,A, µ) be a measure space and Mµ has at least
three members. Then

diamΓ(M(X,A, µ)) = gr Γ(M(X,A, µ)) = 3.

Proof. Suppose that Mµ has at least three disjoint members A, B and
C. Consider the following six cases:

Case 1: Assume that A, B and C are pairwise disjoint members
in Mµ. Set K := Ac ∩ Bc, L := A ∪ K and M := B ∪ K. Then by
Lemma 2.3, the measurable functions χA, χB, χK , χL and χM are in
Γ(M(X,A, µ)). Since µ(L∩M) = µ(K) ̸= 0, d(χL, χM) ̸= 1, by Theo-
rem 2.5(a). On the other hand, if f ∈ Γ(M(X,A, µ) is adjacent to both
χL and χM , then coZf ⊆ A ∩ B, which is a contradiction. Therefore
by Theorem 2.5(c), d(χK , χL) = 3 and so diamΓ(M(X,A, µ)) = 3. It
is easy to check that χAχB = χAχC = χBχC = 0 a.e. on (X,A, µ) and
so gr Γ(M(X,A, µ)) = 3.

Case 2: Assume that A ⊆ B ⊆ C. If µ(C \ B) = 0, then µ(C) =
µ(B) and therefore B = C a.e. on (X,A, µ), which is a contradiction.
On the other hand, µ((C\B)c) = µ(Cc ∪ B) ≥ µ(B) ̸= 0 and so
C\B ∈ Mµ. Similarly, it can be show that B \ A ∈ Mµ. Now C \ B,
B \ A and A are in Mµ and satisfy in Case 1.

Case 3: Assume that A ⊆ B and C ∩ B = ∅. As the proof of of
Case 2, we can be shown that B \A ∈ Mµ. Therefore B \A, A and C
satisfy in Case 1.

Case 4: Assume that A∩B, A\B and B\A are not empty sets and
C ∩ (A ∪B) = ∅. Then A \B, B \ A and C satisfy in Case 1.

Case 5: Assume that A ⊆ B ∪ C. If µ(C \ (A ∪ B)) = 0, then C ⊆
A ⊆ B or A ⊆ C ⊆ B. This means that the sets A, B and C satisfy in
Case 2. If µ(C \ (A∪B)) ̸= 0, then µ((C \ (A∪B))c) ≥ µ(A∪B) ̸= 0
and so C \ (A ∪ B) ∈ Mµ. In the same way, it can be shown that if
µ(B\(A∪C)) ̸= 0, B\(A∪C) ∈ Mµ. Therefore C\(A∪B), B\(A∪C)
and A satisfy in Case 1.
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Case 6: Assume that the above five cases are not establish. We
claim that A \ (B ∪C), B \ (A∪C) and C \ (A∪B) satisfy in Case 1.
If µ(A \ (B ∪ C) = 0, then A ⊆ B ∪ C and hence A, B and C satisfy
in the Case 5. On the other hand, µ((A \ (B ∪ C))c) ≥ µ(B ∪ C) ̸= 0
and so A \ (B ∪C) ∈ Mµ. Similarly, it can be shown that B \ (A ∪C)
and C \ (A ∪B) are in Mµ. □

3. Cycles in zero-divisor graph of M(X,A, µ)

In this section, we intend to study the cycles and related issues to
the cycles in the zero-divisor graph of the rings of real measurable
functions, Γ(M(X,A, µ)).

A graph is called triangulated if each vertices is a vertex of a triangle.

Theorem 3.1. Let (X,A, µ) be a measure space and |Mµ| > 2. The
following statements are equivalent:

(a) The graph Γ(M(X,A, µ)) is a triangulated graph.
(b) Mµ has not any near-zero set.
(c) There is no any maximal ideal in the ring M(X,A, µ) generated

by an idempotent.

Proof. (a) =⇒ (b). Assume that Γ(M(X,A, µ)) is a triangulated graph
and A ∈ Mµ. By Lemma 2.3, f := 1−χA is a vertex of Γ(M(X,A, µ)).
Thus there exist two vertices g and h such that fg = gh = hf = 0 a.e.
on(X,A, µ) and hence µ(coZf ∩ coZh) = µ(coZg ∩ coZh) = µ(coZf ∩
coZh) = 0. This means that coZg and coZh are disjoint subsets of A
a.e. on (X,A, µ). Since µ(coZg) ̸= 0 and µ(coZh) ̸= 0, A is not a
near-zero set.

(b) =⇒ (c). Assume that Mµ has not any near-zero set and M be a
maximal ideal in M(X,A, µ) generated by an idempotent. Since every
idempotent in the rings of real measurable functions has the form of
a characteristic function of a measurable set, there exists A ∈ A such
that M = ⟨χA⟩. Suppose that B is a measurable set in Mµ such that
B ⊆ A a.e. on (X,A, µ) and µ(B) ̸= 0. Therefore χAχB ∈ M and
so χB ∈ M . This means that B = A a.e. on (X,A, µ) and so A is a
near-zero set.

(c) =⇒ (a). Assume that there is not any maximal ideal in
M(X,A, µ) generated by an idempotent and f is an arbitrary ver-
tex of Γ(M(X,A, µ)). If Zf is near-zero, we set W := ⟨χZf

⟩. Suppose
that U is an ideal in M(X,A, µ), W ⊆ U and h ∈ U\W . Therefore
coZh ⊆ Zf a.e. on (X,A, µ) and so µ(coZh) = 0 or h ∈ W . This means
that W is a maximal ideal in M(X,A, µ) generated by an idempotent,
which is a contradiction. Now, since Zf is not a near-zero set, there
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exists A ⊆ Zf such that µ(A) ̸= 0 and µ(A) ̸= µ(Zf ). We set g := χA

and h := χZf\A. It easy to check that g, h ∈ Γ(M(X,A, µ)). There-
fore fg = gh = hf = 0 a.e. on (X,A, µ) and so Γ(M(X,A, µ)) is a
triangulated graph. □

Corollary 3.2. Let (X,A, µ) be a measure space and Γ(M(X,A, µ))
be a triangulated graph. Then for every countable set B ∈ A, µ(B) = 0.

Proof. Suppose that for x ∈ X, µ({x}) ̸= 0. Then {x} is a near-zero
and by Theorem 3.1, Γ(M(X,A, µ)) is not a triangulated graph, which
is a contradiction. Hence for every countable set B = {x1, x2, ...} ∈ A,
µ(B) =

∑∞
i=1 µ({xi}) = 0. □

A graph is called hypertriangulated if each edge of Γ(M(X,A, µ)) is
a edge of a triangle.

Proposition 3.3. Let (X,A, µ) be a measure space. Then
Γ(M(X,A, µ)) is not hypertriangulated.

Proof. Suppose that f ∈ Γ(M(X,A, µ)). Then f is adjacent to
g := χZf

. Since µ(coZf ∩ coZg) = 0 and µ(Zf ∩ Zg) = 0, there is
not any element in Γ(M(X,A, µ)) such that adjacent to both f and g,
by Theorem 2.5(b). □

A graph is called a tree, if it is connected and has no cycles. A star
graph is a tree with one vertex adjacent to all other vertices.

Theorem 3.4. Let (X,A, µ) be a measure space and |Mµ| > 2. Then
Γ(M(X,A, µ)) is not a star graph.

Proof. (a) Assume that |Mµ| > 2 and Γ(M(X,A, µ)) is a star graph.
Then there exists f ∈ Γ(M(X,A, µ)) such that f is adjacent to other
vertices of Γ(M(X,A, µ)). By Lemma 2.3, Zf , coZf ∈ Mµ. Since
|Mµ| > 2, there exists A ∈ Mµ such that A is other than both Zf and
coZf . By the assumptions, g := χA and h := χAc are two vertices
of Γ(M(X,A, µ)) and adjacent to f . This implies that µ(coZf ) =
µ(coZf ∩ coZg) + µ(coZf ∩ coZh) = 0, which is a contradiction. □

In the following, we present a notation and a definition that are
important in the studying of cycles in Γ(M(X,A, µ)).

Notation 3.5. (a) Let f ∈ Γ(M(X,A, µ)). We set:
[f ] := {h ∈ Γ(M(X,A, µ)) : coZf = coZh a.e. on (X,A, µ)}

(b) For f, g ∈ Γ(M(X,A, µ)), we say that f ∼ g if and only if
[f ] = [g].
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As noted in [22], ∼ is an equivalence relation. Furthermore, if h1 ∼
h2 and h1g = 0, then µ(coZh1 ∩ coZg) = µ(coZh2 ∩ coZg) = 0 and
hence h2g = 0. It follows that multiplication is well-defined on the
equivalence classes of ∼; that is, if [f ] denotes the class of f , then the
product [f ][g] = [fg] makes sense.
Definition 3.6. The graph of equivalence classes Γ(M(X,A, µ)), de-
noted by ΓE(M(X,A, µ)), is the graph associated to Γ(M(X,A, µ))
whose vertices are the classes of elements in Γ(M(X,A, µ)), and each
pair of distinct classes [f ], [g] are adjacent by an edge if and only if
[f ][g] = 0.
Theorem 3.7. Let (X,A, µ) be a measure space. For every f ∈
Γ(M(X,A, µ)), the following properties hold:

(a) There exists a 4− cycle contains f .
(b) If Zf or coZf is not near-zero, then [f ] is in a 3− cycle.
(c) If Zf and coZf are near-zero, then there is no cycle contains [f ].

Proof. (a) For every vertex f , Zf and coZf are in Mµ. Hence the
path with vertices f , χZf

, 2χcoZf
and 2χZf

is a cycle with length 4
containing f .

(b) If Zf is not a near-zero set, then there exist disjoint members
A,B ∈ Mµ such that µ(A) ̸= 0, µ(B) ̸= 0 and A ∪ B ⊆ Zf a.e. on
(X,A, µ). Therefore [f ] ∩ [χA] ∩ [χB] = ∅ and so [f ][χA] = [χA][χB] =
[χB][f ] = 0. If coZf is not near-zero, then there exists a measurable
set D ∈ Mµ such that µ(D) ̸= 0, D ⊆ coZf a.e. on (X,A, µ) and
µ(D) ̸= µ(coZf ). Therefore [f ] ∩ [χD] ∩ [χZf

] = ∅ and so [f ][χD] =
[χD][χZf

] = [χZf
][f ] = 0.

(c) Suppose that Zf and coZf are near-zero. Then every
g ∈ Γ(M(X,A, µ))\[f ] is in [χZf

] and every h ∈ Γ(M(X,A, µ))\[χZf
]

is in [f ]. Therefore there is no cycle contains [f ]. □
If f and g are two vertices of Γ(M(X,A, µ)), by c(f, g), we mean

the length of the smallest cycle containing f and g. If there is no cycle
containing f and g, c(f, g) = ∞. For every two vertices f and g, all
possible cases for c(f, g) and c([f ], [g]) are given in the following two
theorems.
Theorem 3.8. Let f and g be two vertices of Γ(M(X,A, µ)). Then
the following properties hold:

(a) c(f, g) = 3 if and only if µ(coZf ∩ coZg) = 0 and µ(Zf ∩Zg) ̸= 0.
(b) c(f, g) = 4 if and only if one of the following statements hold:

(1) µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩ Zg) ̸= 0.
(2) µ(coZf ∩ coZg) = 0 and µ(Zf ∩ Zg) = 0.

(c) c(f, g) = 6 if and only if µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩Zg) = 0.
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Proof. (a) Assume that c(f, g) = 3. Then there exists a vertex h such
that fg = gh = fh = 0 a.e. on (X,A, µ). Thus

µ(coZf ∩ coZg) = µ(coZh ∩ coZf ) = µ(coZh ∩ coZg) = 0

a.e. on (X,A, µ) and hence coZh ⊆ Zf ∩ Zg a.e. on (X,A, µ). Since h
is a vertex, µ(coZh) ̸= 0 and therefore µ(Zf ∩ Zg) ̸= 0. Conversely, let
µ(coZf ∩ coZg) = 0 and µ(Zf ∩ Zg) ̸= 0. Then f is adjacent to g and
χZf∩Zg is a vertex of Γ(M(X,A, µ)). Therefore

fg = fχZf∩Zg = gχZf∩Zg = 0

a.e. on (X,A, µ).
(b) If µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩Zg) ̸= 0, then f is not adjacent

to g and h := χZf∩Zg is a vertex of Γ(M(X,A, µ)). Therefore

fh = hg = g(−h) = (−h)g = 0

a.e. on (X,A, µ) and so c(f, g) ≤ 4. If c(f, g) = 3, then
µ(coZf ∩ coZg) = 0, by part (a), which is a contradiction.

If µ(coZf∩coZg) = 0 and µ(Zf∩Zg) = 0, then f is adjacent to g and
coZf ∪ coZg = X a.e. on (X,A, µ). We set h := 1

2
f and k := 1

2
g. Thus

fg = gh = hk = kf = 0 a.e. on (X,A, µ) and hence c(f, g) ≤ 4. If
c(f, g) = 3, then µ(Zf ∩Zg) ̸= 0, by part (a), which is a contradiction.

Conversely, suppose that c(f, g) = 4. We have two cases:
Case 1: µ(coZf ∩ coZg) ̸= 0. Then f is not adjacent to g. Since

c(f, g) = 4, there exist two vertices h and k of Γ(M(X,A, µ)) such that
fh = hg = gk = kf = 0 a.e. on (X,A, µ). Therefore coZh ⊆ Zf and
coZh ⊆ Zg and so coZh ⊆ Zf ∩Zg. Since µ(coZh) ̸= 0, µ(Zf ∩Zg) ̸= 0.
Case 2: µ(coZf∩coZg) = 0. Then f is adjacent to g. If µ(Zf∩Zg) ̸=

0, then χZf∩Zg is a vertex of Γ(M(X,A, µ)) and

fg = gχZf∩Zg = χZf∩Zgf = 0

a.e. on (X,A, µ). This means that c(f, g) = 3, which is a contradiction.
(c) If c(f, g) = 6, then parts (a) and (b) imply that µ(coZf ∩coZg) ̸=

0 and µ(Zf ∩ Zg) = 0. Conversely, since µ(coZf ∩ coZg) ̸= 0 and
µ(Zf ∩ Zg) = 0, then by part (c) of Theorem 2.5, d(f, g) = 3. Hence
there exist vertices h and k such that fh = hk = kg = 0 a.e. on
(X,A, µ). Now if some vertex t is adjacent to g, then coZt ⊆ Zg and
coZh ⊆ Zf a.e. on (X,A, µ) imply that

µ(coZt ∩ coZh) ≤ µ(Zf ∩ Zg) = 0

and so t is adjacent to h. This shows that c(f, g) ≥ 5. But d(f, g) = 3
implies that f is not adjacent to t and hence c(f, g) ≥ 6. If we consider
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the vertices p := 2h and q := 2k, then we have a cycle with vertices f ,
g, h, k, p and q, and so c(f, g) = 6.

□
Theorem 3.9. Let [f ] and [g] be two vertices of ΓE(M(X,A, µ)). Then
the following properties hold:

(a) c([f ], [g]) = 3 if and only if µ(coZf∩coZg) = 0 and µ(Zf∩Zg) ̸= 0.
(b) c([f ], [g]) = 4 if and only if one of the following statements hold:

(1)µ(coZf ∩ coZg) = 0, µ(Zf ∩ Zg) = 0 and both coZf and coZg

are not near-zero sets.
(2) µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) ̸= 0 and Zf ∩ Zg is not

near-zero.
(c) c([f ], [g]) = 5 if and only if µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) ̸= 0

and Zf ∩ Zg is a near-zero set.
(d) c([f ], [g]) = 6 if and only if µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) = 0

and both coZf\coZg and coZg\coZf are not near-zero sets.
(e) c([f ], [g]) = ∞ if and only if one of the following statements hold:

(1) µ(coZf ∩ coZg) = 0, µ(Zf ∩ Zg) = 0 and coZf or coZg is
near-zero.

(2) µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) = 0 and coZf\coZg or
coZg\coZf is near-zero.
Proof. (a) Assume that c([f ], [g]) = 3. Then c(f, g) = 3 and so µ(coZf∩
coZg) = 0 and µ(Zf∩Zg) ̸= 0, by Theorem 3.8(a). Conversely, suppose
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that µ(coZf ∩ coZg) = 0 and µ(Zf ∩ Zg) ̸= 0. Then χZf∩Zg is a vertex
of Γ(M(X,A, µ)) and fg = gχZf∩Zg = fχZf∩Zg = 0 a.e. on (X,A, µ).
It is easy to check that [f ] ∩ [g] ∩ [χZf∩Zg ] = ∅ and c([f ], [g]) = 3.

(b) Suppose that c([f ], [g]) = 4. Then c(f, g) ≤ 4. If c(f, g) = 3, then
c([f ], [g]) = 3, by part (a) and Theorem 3.8(a), which is a contradiction.
Therefore c(f, g) = 4 and we have two cases, by Theorem 3.8(b):

Case 1: µ(coZf ∩ coZg) = 0 and µ(Zf ∩Zg) = 0. Then f is adjacent
to g and coZf ∩ coZg = X a.e. on (X,A, µ). If coZf is near-zero, then
for every h, k ∈ Γ(M(X,A, µ)) such that fg = gh = hk = kf = 0 a.e.
on (X,A, µ), h ∈ [f ], which is a contradiction.

Case 2: µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩ Zg) ̸= 0. If Zf ∩ Zg is
near-zero, then for every h, k ∈ Γ(M(X,A, µ)) such that fh = hg =
gk = kf = 0, coZh = Zf ∩ Zg and coZk = Zf ∩ Zg a.e. on (X,A, µ).
This means that h, k ∈ [χZf∩Zg ], which is a contradiction.

Conversely, if µ(coZf ∩ coZg) = 0, µ(Zf ∩ Zg) = 0 and both coZf

and coZg are not near-zero sets, then f is adjacent to g and there exist
A ⊆ coZf and B ⊆ coZg such that µ(A) < µ(coZf ), µ(B) < µ(coZg),
µ(A) ̸= 0 and µ(B) ̸= 0. Thus [f ][g] = [f ][χB] = [χB][χA] = [χA][g] =
0 and hence c([f ], [g]) ≤ 4. If c([f ], [g]) = 3, then µ(Zf ∩ Zg) ̸= 0, by
part (a), which is a contradiction.

If µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) ̸= 0 and Zf ∩ Zg is not near-
zero, then f is not adjacent to g and there exist two measurable sets
A,B ⊆ Zf ∩ Zg such that A ∩ B = ∅ and χA, χB ∈ Γ(M(X,A, µ)).
Therefore [f ][χA] = [χA][g] = [g][χB] = [χB][f ] = 0 and so c([f ], [g]) ≤
4. If c([f ], [g]) = 3, then µ(coZf ∩ coZg) = 0, by part (a), which is a
contradiction.

(c) Suppose that c([f ], [g]) = 5. Then c(f, g) ≤ 5. By Theorem 3.8,
c(f, g) = 3 or 4. If c(f, g) = 3, then d([f ], [g]) = 3, by part (a) and
Theorem 3.8(a), which is a contradiction. Therefore c(f, g) = 4 and
we have two cases, by Theorem 3.8(b):

Case 1: µ(coZf ∩ coZg) = 0 and µ(Zf ∩ Zg) = 0. If coZf and
coZg are not near-zero, then c([f ], [g]) = 4, by part (b), which is a
contradiction. If coZf is near-zero, then for every vertex h such that
[gh] = 0, h ∈ [f ]. Therefore c([f ].[g]) = ∞.
Case 2: µ(coZf ∩ coZg) ̸= 0 and µ(Zf ∩ Zg) ̸= 0. If Zf ∩ Zg is not

near-zero, then c([f ], [g]) = 4, by part (b), which is a contradiction.
Therefore c([f ], [g]) = 5 implies that µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩

Zg) ̸= 0 and Zf ∩ Zg is a near-zero set.
Conversely, suppose that µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩ Zg) ̸= 0 and

Zf ∩ Zg is a near-zero set. By Theorem 2.5(b), d(f, g) = 2 and there
exists a vertex h such that fh = gh = 0 a.e. on (X,A, µ). Since
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Zf ∩Zg is near-zero, then h ∈ [χZf∩Zg ]. On the other hand d(f, g) = 3
in the zero-divisor graph of coZf ∪ coZg, by Theorem 2.5(c). Therefore
there exists two vertices k and t such that fk = kt = tg = 0 a.e. on
(X,A, µ). Since d(f, g) = 3 in the zero-divisor graph of coZf ∪ coZg,
[f ] ∩ [k] ∩ [t] ∩ [g] ∩ [h] = ∅ and therefore c([f ], [g]) = 5.

(d) Suppose that c([f ], [g]) = 6. Then µ(coZf ∩ coZg) ̸= 0 and
µ(Zf ∩ Zg) = 0, by parts (a), (b) and (c). If coZf\coZg is near-
zero, then [g] is only adjacent to [χcoZf\coZg ], which is a contradiction.
Conversely, suppose that µ(coZf ∩ coZg) ̸= 0, µ(Zf ∩Zg) = 0 and both
coZf\coZg and coZg\coZf are not near-zero sets. Then c([f ], [g]) ≥ 6,
by parts (a), (b) and (c). Since coZf\coZg and coZg\coZf are not
near-zero sets, there exists A,B ∈ Mµ such that A ⊆ coZf\coZg,
B ⊆ coZg\coZf , µ(A) ̸= µ(coZf\coZg) and µ(B) ̸= µ(coZg\coZf ).
Therefore [f ], [g], [χA], [χB], [1 − χA] and [1 − χB] are different classes
in ΓE(M(X,A, µ)) and [f ][χB] = [χB][χA] = [χA][g] = [g][1 − χA] =
[1− χA][1− χB] = [1− χB][f ] = 0.

(e) The proof of this part is a consequence of the proofs of parts (c)
and (d).

□
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4. Continuity properties of Γ(M(X,A, µ))

In this section, we assume that µ is a measure on a locally compact
Hausdorff space X which has the properties stated in Riesz Represen-
tation Theorem [21, Theorem 2.14]. Since the continuous functions
played such a prominent role in the construction of Borel measures,
it seems reasonable to expect that there are some interesting relations
between continuous functions and the zero-divisor graph of the ring of
measurable functions. In the following, we shall give two main theo-
rems of this kind. In the first theorem, we approximate the vertices of
Γ(M(X,A, µ)) by the vertices of the zero-divisor graph of CC(X), de-
noted by Γ(CC(X)). In the second theorem, we give a relation between
continuity and the edges of Γ(M(X,A, µ)).

We recall that a Hausdorff space is a topological space in which dis-
tinct points have disjoint neighbourhoods. A topological space X is
called locally compact , if every point x ∈ X has a compact neighbour-
hood. A topological space X is a completely regular space if given any
closed set F ⊆ X and any point x ∈ X that does not belong to F , then
there is a continuous function f from X to the real line R such that
f(x) = 0 and, for every y ∈ F , f(y) = 1. The support of a function f
on a topological space X is the closure of the set {x ∈ X : f(x) ̸= 0},
denoting by supp(f). The collection of all continuous functions on
a completely regular Hausdorff space X whose support is compact
is denoted by Cc(X). For every function f : X −→ [−∞,+∞],
|f | = sup{|f(x)| : x ∈ X}. The reader is referred to [11, 14] for
undefined terms and concepts.

To enter the discussion, we recall that a corollary of the Lusin
theorem [21, Theorem 2.24]: Suppose that f is a complex measur-
able function on X, µ(A) < ∞, f(x) = 0 if x ̸∈ A and |f | ≤ 1.
Then there exists a sequence gn ∈ CC(X) such that |gn| ≤ 1 and
f(x) = lim gn(x) a.e. on (X,A, µ).

Theorem 4.1. For every vertex f of Γ(M(X,A, µ)) which
µ(coZf ) < ∞ and |f | ≤ 1, there exists a sequence of vertices {fn}
of Γ(CC(X)) such that

f(x) = lim fn(x) a.e. on (X,A, µ).

Proof. Let f be a vertex of Γ(M(X,A, µ)), |f | ≤ 1 and µ(coZf ) < ∞.
Using Lusin Theorem [21, Theorem 2.24], for every n ∈ N, there exists
fn ∈ CC(X) such that

µ(En = {x : f(x) ̸= fn(x)}) < 2−n.
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We claim that every x ∈ X lies in at most finitely many of the sets En.
Let g := Σ∞

n=1χEn and
K := {x ∈ X : x lies in infinitely many En}.

It is easy to check that x ∈ K if and only if g(x) = ∞. Now we have∫
X

gdµ =

∫
X

Σ∞
n=1χEndµ = Σ∞

n=1

∫
X

χEndµ =
∞∑
n=1

µ(En) ≤
∞∑
n=1

2−n = 1.

This implies that g ∈ L1(X,A, µ) and so µ(K) = 0. Thus for every
x ∈ X and all large enough n, f(x) = fn(x) and hence

f(x) = lim fn(x) a.e. on (X,A, µ).

Now, we claim that {fn} has a subsequence of the vertices of
Γ(CC(X)). If for infinitely many n ∈ N, µ(coZfn) = 0, then there
exists a sequence {nk} ⊆ N such that for every k ∈ N, µ(coZfnk

) = 0
and f(x) = lim fnk

(x) a.e. on (X,A, µ). According to the assumptions
and measure properties, for every n ∈ N,

µ(coZf ) ≤ µ(coZfnk
) + µ(En) ≤ 2−n.

This means that µ(coZf ) = 0, which is a contradiction. Now suppose
that for infinitely many n ∈ N, µ(Zfn) = 0. Then there exists a subse-
quence {fnk

} of {fn} such that for every k ∈ N, µ(Zfnk
) = 0. Therefore

for every k ∈ N, fnk
is unit a.e. on (X,A, µ) and µ(Zf\Enk

) = 0. As
a consequence of the assumptions, for every k ∈ N,

µ(Zf ) ≤ µ(Enk
) ≤ 2−nk .

This implies that µ(Zf ) = 0, which is a contradiction. Therefore with-
out considering the elements of {fn} which their cozero sets are not in
Mµ, there exists a subsequence {fnk

} of {fn} such that all members
are in Γ(CC(X)). □

In order to establish a relation between continuity and the edges of
Γ(M(X,A, µ)), we need the following definition.

Definition 4.2. A measurable function f ∈ M(X,A, µ) is called
ϵ-continuous if

µ({x ∈ X : f is not continuous at x}) < ϵ.

Now, we find a relationship between the edges of the graph
Γ(M(X,A, µ)) and the edges of Γ(CC(X)).

Theorem 4.3. Let f, g ∈ Γ(M(X,A, µ)), |f | ≤ 1, |g| ≤ 1 and
∑∞

n=1 ϵn
be a convergence series in real line R. Then f is adjacent to g if and
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only if there exist two sequences {fn} and {gn} in Γ(CC(X)) such that
the following statements hold:

(1) For every n ∈ N, fn and gn are ϵn-continuous.
(2) {fn} and {gn} pointwise convergence to f and g, respectively.
(3) {fn} and {gn} are the parts of a complete bipartite graph.

Proof. Using Lusin Theorem [21, Theorem 2.24], for every n ∈ N, there
exists hn ∈ CC(X) such that

µ(En = {x : f(x) ̸= hn(x)}) < ϵn.

As the proof of Theorem 4.1, since
∑∞

n=1 ϵn < ∞, f(x) = limhn(x) a.e.
on (X,A, µ). For each n ∈ N, we define

fn(x) :=

{
hn(x) x ∈ Ec

n,
0 x ∈ En.

It is easy to check that fn is ϵn-continuous function and
µ(Zfn) ≥ µ(Zhn) ̸= 0, for every n ∈ N. If for infinitely many n ∈ N,
µ(coZfn) = 0, then there exists {nk} ⊆ N such that µ(coZfnk

) = 0
and {fnk

} pointwise converges to f , for every k ∈ N. This means that
µ(coZf ) = 0, which is a contradiction. Therefore we can assume that
fn ∈ Γ(CC(X)), for every n ∈ N. On the other hand, for ever n ∈ N,

µ({x : f(x) ̸= fn(x)}) ≤ µ(En) < ϵn.

This means that f(x) = lim fn(x) a.e. on (X,A, µ). If for m,n ∈ N,
fn is adjacent to fm, then

µ(coZf ) ≤ µ(En) + µ(Em) ≤ ϵn + ϵm.

Now if for infinitely many m,n ∈ N, fm is adjacent to fn, µ(coZf ) = 0,
which is a contradiction. Therefore without considering the elements
of {fn} which they are adjacent, there exists a subsequence of {fn}
such that fn is not adjacent to fm, for every m,n ∈ N. Similarly, there
exists a sequence of ϵ-continuous functions {gn} in Γ(CC(X)) such that
{gn} pointwise convergence to g and gn is not adjacent to gm, for every
m,n ∈ N. By the definition of {fn} and {gn}, coZfn ⊆ coZf and
coZgn ⊆ coZg, for every n ∈ N. Now since f is adjacent to g, for every
m,n ∈ N, fn is adjacent to gm. Therefore {fn} and {gn} are the parts
of a bipartite graph.

Conversely, assume that {fn} and {gn} are two sequences in
Γ(CC(X)) such that the conditions (1), (2) and (3) are true. Now sup-
pose that µ(coZfk ∩ coZg) ̸= 0, for k ∈ N. Since for every m,n ∈ N, fn
and gm are adjacent, {gn} pointwise convergence to g(1−χcoZfk

∩coZg),
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which is a contradiction. This means that for every n ∈ N, fn is adja-
cent to g. Similarly, for every n ∈ N, gn is adjacent to f . Therefore by
the assumptions, f is adjacent to g. □

Remark 4.4. According to Theorems 4.1 and 4.3, in some cases, for the
study of Γ(M(X,A, µ)), we can use the behavior of the members of
Γ(CC(X)) and ε-continuous functions. The question that arises is that
how can we characterize the features of the graph Γ(M(X,A, µ)) by
the continuous functions?
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H. HEJAZIPOUR AND A. R. NAGHIPOUR

اندازه ها با پذیر اندازه توابع حلقه های صفر علیه مقسوم گراف

پور٢ نقی علیرضا و پور١ حجازی همایون

ایران شهرکرد، شهرکرد، دانشگاه ریاضی، علوم ١,٢دانشکده

باشد. µ اندازه با (X,A) پذیر اندازه فضای روی پذیر انداره توابع حلقه M(X,A, µ) کنیم فرض
می شود داده نمایش Γ(M(X,A, µ)) با که M(X,A, µ) صفر علیه مقسوم گراف مقاله این در
و M(X,A, µ) حلقه ای خواص ،Γ(M(X,A, µ)) گرافی خواص بین ارتباط می کنیم. مطالعه را
بررسی را Γ(M(X,A, µ)) پیوستگی خواص نهایت در می دهیم. ارایه را (X,A, µ) اندازه ای خواص

کنیم. می

دور، پیوسته، تابع صفر، علیه مقسوم گراف اندازه، فضای پذیر، اندازه توابع حلقه های کلیدی: کلمات
شونده. مثلثی ابر گراف شونده، مثلثی گراف
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