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A METRIC-LIKE TOPOLOGY ON BL-ALGEBRAS

S. M. A. KHATAMI

Abstract. This paper is devoted to introduce a topology on
BL-algebras, makes them semitopological algebras. For any BL-
algebra L = (L,∧,∨, ∗,↣, 0, 1), the introduced topology is defined
by a distance-like function between elements of L which is defined
by a ↔ b = (a ↣ b)∗ (b ↣ a). We will show that when the contin-
uous scale [0, 1] is endowed to be a BL-algebra, then this topology
admits some of the most important properties of the metric topol-
ogy. Finally, we will show that this topology can be examined by
a similar topology on dual of BL-algebras as well.

1. Introduction

Triangular norms and triangular conorms, shortly t-norms and s-
norms, have been used in several areas of mathematics. Their origin
have been goes back to [10, 11]. One of the areas that t-norms and
s-norms have been appeared, is many-valued logics. Indeed, a t-norm
(s-norm) is a generalization for the interpretation of the conjunction
connective (disjunction connective) [7, 1].

Basic logic introduced by Hájek in the early of 1998 [6], is known
as the logic of continuous t-norms. The algebraic counterpart of a
propositional basic logic is a BL-algebra. MV-algebras, introduced by
Chang [5] to prove the completeness theorem for Łukasiewicz logic,
are special types of BL-algebras. A more general algebraic structure
originated in logics without contractions is residuated lattice. The
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oldest version of such structure appeared in classical logic is Boolean
algebra.

Algebraic structures are studied in algebraic and topological point
of view. Algebra studies the property of operations and algorithmic
computations of a space, while topology provide a framework for un-
derstanding its geometric properties. Besides introducing the concept
of BL-algebras [6], their algebraic and topological properties are of the
most interesting research areas.

Bozooei et.al in [12, 4] introduced the notion of topological BL-
algebras. In [3] they studied the metrizability of BL-algebras as well.
The aim of this article is to introduce a metric-like topology on BL-
algebras which makes them semitopological algebras in the sense of
[4].

One of the biggest obstacles of extending the results of classical logic
to basic logic is non-continuity of the interpretations of logical connec-
tives. Therefore, the mentioned topology on BL-algebras could be seen
as an applicable tool to extend the results of classical logic to Hájek
Basic logic.

Here, for any BL-algebra L = (L,∧,∨, ∗,↣, 0, 1), we define two
topologies T∗ and T∗ on L and L2 that all the operators of L becomes
continuous function with respect to these topologies. The construction
of T∗ is based on the ∗-balls Br(a) = {b : a ↔ b ≥ r} in which
a ↔ b = (a ↣ b) ∗ (b ↣ a) and so it seems like a metric topology.
We show that when the continuous scale [0, 1] is endowed to be a BL-
algebra, T∗ admits some of the most important properties of the metric
topology. This fact results in a simpler way for analysing T∗. Indeed,
we show that when [0, 1] is considered to be a BL-algebra, then T∗ could
be examined by a topology T⋆ on [0, 1] as a dual of a BL-algebra. The
studying of T⋆ on [0, 1] as a dual of a BL-algebra in the cases that T⋆
forms a metric topology, has been the subject of the author conference
paper [8].

The rest of the paper organized as follows: Section 2 presents a
summary of t-norms, s-norms and BL-algebras. Section 3 introduces a
topology T∗ on any BL-algebra L = (L,∧,∨, ∗,↣, 0, 1) which makes it
a semitopological algebra. Section 4 shows when [0, 1] is considered to
be a BL-algebra, T∗ admits some the important properties of the metric
topology. Finally, Section 5 defines a dual concept for BL-algebras and
examining T∗ on [0, 1] by a topology on its dual.
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2. Preliminaries

In many-valued logics, t-norms and s-norms sometimes play the role
of the interpretation of the conjunction and disjunction connective. Re-
call that a triangular norm, in shortly a t-norm, is a binary function T
from [0, 1]2 into [0, 1] which is associative, commutative, non-decreasing
on both arguments and T (1, x) = x for all x ∈ [0, 1] [9, Definition 1.1].
The concept of t-conorm or s-norm reversed the boundary condition of
the concept of t-norm. Thus an s-norm is an associative, commutative,
and non-decreasing function S from the unite square into the unite
interval satisfying for all x ∈ [0, 1] the boundary condition S(0, x) = x
[9, Definition 1.13].

Bellow, the most important t-norms and s-norms which are employed
in the most significant many-valued logics as conjunction and disjunc-
tion are listed in Table 1.

t-norm s-norm
TL(x, y) = max{0, x+ y − 1} SL(x, y) = min{1, x+ y}
TG(x, y) = min{x, y} SG(x, y) = max{x, y}
Tπ(x, y) = x.y Sπ(x, y) = x+ y − x.y

Table 1. Łukasiewicz , Gödel , and Product t-norm and s-norm

In 1998, Hájek introduced a many-valued logic called Basic logic
based on arbitrary continuous t-norms [6]. Indeed, Basic logic could be
seen as an extension of the Łukasiewicz , Gödel , and Product logic.

Assume that T is a continuous t-norm and RT is its residua which
is defined by

z ≤ RT (x, y) iff T (z, x) ≤ y (2.1)
for all x, y, z ∈ [0, 1]. If Prop is generated from a set of atomic propo-
sitions P by formal operations {&,→,⊥} and e0 : P → [0, 1] is a func-
tion, there is a unique extension e of e0, called an evaluation, satisfying
the following rules [6, Section 2.2]:

• e(⊥) = 0,
• e(φ&ψ) = T (e(φ), e(ψ)),
• e(φ→ ψ) = RT (e(φ), e(ψ)).

The algebraic counter part of a theory in Basic logic, forms an algebra,
called BL-algebra. Indeed, if for a theory Σ ⊆ Prop, we define

• [φ] = {ψ : T ⊢ φ↔ ψ},
• Lind(Σ) = {[φ] : φ ∈ Prop},
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• [φ] ≤ [ψ] iff Σ ⊢ (φ→ ψ),
• [⊤] = [⊥ → ⊥],
• [φ] ∗ [ψ] = [φ&ψ],
• [φ] ↣ [ψ] = [φ→ ψ],

then, (Lind(Σ),≤, ∗,↣, [⊥], [⊤]) forms a BL-algebra [6, Lemma 2.3.12].
Actually, we have the following definition for a BL-algebra.

Definition 2.1. [6, Deinition 2.3.3] A BL-algebra is an algebra L =
(L,∧,∨, ∗,↣, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following prop-
erties:
(BL1) (L,∧,∨, 0, 1) is a bounded lattice with the greatest element 1

and the smallest element 0,
(BL2) (L, ∗, 1) is an Abelian monoid,
(BL3) ↣ is the residua of ∗, i.e., c ≤ a ↣ b iff c ∗ a ≤ b for all

a, b, c ∈ L,
(BL4) a ∧ b = a ∗ (a↣ b) for all a, b ∈ L,
(BL5) (a↣ b) ∨ (b↣ a) = 1 for all a, b ∈ L.

For any continuous t-norm T and its residua RT ,
[0, 1]T = ([0, 1],min,max, T, RT , 0, 1)

forms a BL-algebra [6, Chapter 2]. Conversely, when the continuous
scale [0, 1] endowed to be a BL-algebra, the binary operator ∗ becomes
a continuous t-norm on [0, 1] [2]. The standard BL-algebra on the real
segment [0, 1] which is defined by the continuous t-norm ∗, is denoted
by [0, 1]∗.

The following fact, used several times in the outcome results of the
paper. Its proof can be found in [6, Chapter 2].

Lemma 2.2. Let L = (L,∧,∨, ∗,↣, 0, 1) be a BL-algebra. The fol-
lowing properties holds in L.

(B1) a ∗ b = b ∗ a and (a ∗ b) ∗ c = a ∗ (b ∗ c),
(B2) a ∗ (a↣ b) ≤ b and a ≤ b↣ (a ∗ b),
(B3) a ≤ b iff a↣ b = 1,
(B4) if a ≤ b then a ∗ c ≤ b ∗ c, c↣ a ≤ c↣ b, and a↣ c ≥ b↣ c,
(B5) a ∗ 0 = 0,
(B6) (a ∨ b) ∗ c = (a ∗ c) ∨ (b ∗ c),
(B7) a ∗ b ≤ a and a ≤ b↣ a,
(B8) a ∨ b =

(
(a↣ b) ↣ b

)
∧
(
(b↣ a) ↣ a

)
,

(B9) (a↣ b) ≤ (b↣ c) ↣ (a↣ c),
(B10) (a↣ b) ∗ (b↣ c) ≤ (a↣ c),
(B11) a↣ (b↣ c) = (a ∗ b) ↣ c,
(B12) a↣ (b↣ c) = b↣ (a↣ c),
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(B13) a↣ a = 1,
(B14) a↣ b ≤ (a ∗ c) ↣ (b ∗ c),
(B15) (a↣ b) ∗ (c↣ d) ≤ (a ∗ c) ↣ (b ∗ d).

3. A topology on BL-algebras makes them
semitopological algebras

In this section, a topology on arbitrary BL-algebras introduced which
makes them semitopological algebras.

From now on, we denote (a1, a2) shortly by a. The following crucial
definition is needed for Definition 3.3.
Definition 3.1. Let L = (L,∧,∨, ∗,↣, 0, 1) be a BL-algebra. An
element a ∈ L is called strongly less than 1, denoted by a≪ 1, whenever
for any b ∈ L, a ∨ b = 1 implies that b = 1. Furthermore, ↔ and ⇔
are operators on L and L2 which are defined respectively as follows:
a↔ b = (a↣ b) ∗ (b↣ a) , a ⇔ b = (a1 ↔ b1) ∗ (a2 ↔ b2). (3.1)
In the following lemma, some of the properties of the notions ≪, ↔,

and ⇔ are established.
Lemma 3.2. Let L = (L,∧,∨, ∗,↣, 0, 1) be a BL-algebra.

(L1) 0 ≪ 1.
(L2) For any a ∈ L, if a≪ 1, then a < 1.
(L3) For any a, b ∈ L, if b < a≪ 1, then b≪ 1,
(L4) For any a, b ∈ L, if a≪ 1 and b≪ 1, then a ∨ b≪ 1.
(L5) For any a, b ∈ L, a↣ b ≥ a↔ b,
(L6) Both of ↔ and ⇔ are symmetric.
(L7) For any a ∈ L and a ∈ L2, a↔ a = 1 and a ⇔ a = 1.
(L8) For any a, b, c ∈ L, (a↔ c) ∗ (c↔ b) ≤ a↔ b.
(L9) For any a,b, c ∈ L2, (a ⇔ c) ∗ (c ⇔ b) ≤ a ⇔ b.

(L10) For any a, b ∈ L, a↔ b = 1 iff a = b.
Proof.

L1) By (BL1), we know that 0 ∨ x = x for any x ∈ L. So, for any
x ∈ L, 0 ∨ x = 1 implies that x = 1. Therefore 0 ≪ 1.

L2) On the contrary, if a = 1 then for x ̸= 1, a ∨ x = 1, which is in
contradiction with a≪ 1.

L3) For an arbitrary x ∈ L, assume that b ∨ x = 1. Since b < a,
b ∨ x ≤ a ∨ x. So, a ∨ x = 1 which together with a≪ 1 implies
that x = 1. Thus b≪ 1.

L4) For an arbitrary x ∈ L, assume that (a ∨ b) ∨ x = 1. Thus,
a ∨ (b ∨ x) = 1. Therefore, b ∨ x = 1. Hence, x = 1 that is
a ∨ b≪ 1.
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L5, L6, and L7) Follows respectively from (B7), (B1), and (B13).
L8) By (B10) for any a, b, c ∈ L, (a ↣ c) ∗ (c ↣ b) ≤ (a ↣ b).

Similarly, (b ↣ c) ∗ (c ↣ a) ≤ (b ↣ a). Now using (B4) twice
together with (B1) implies (L8).
a↔ b = (a↣ b) ∗ (b↣ a)

≥
(
(a↣ c) ∗ (c↣ b)

)
∗ (b↣ a)

≥
(
(a↣ c) ∗ (c↣ b)

)
∗
(
(b↣ c) ∗ (c↣ a)

)
=

(
(a↣ c) ∗ (c↣ a)

)
∗
(
(b↣ c) ∗ (c↣ b)

)
= (a↔ c) ∗ (b↔ c)

L9) Follows immediately from (L8) together with (B1).
a ⇔ b = (a1 ↔ b1) ∗ (a2 ↔ b2)

≥
(
(a1 ↔ c1) ∗ (c1 ↔ b1)

)
∗
(
(a2 ↔ c2) ∗ (c2 ↔ b2)

)
=

(
(a1 ↔ c1) ∗ (a2 ↔ c2)

)
∗
(
(c1 ↔ b1) ∗ (c2 ↔ b2)

)
= (a ⇔ c) ∗ (c ⇔ b).

L10) One direction is obvious from (L7). For the other direction, if
a↔ b = 1, then (a↣ b) ∗ (b↣ a) = 1. So, by (L5) a↣ b = 1
and b ↣ a = 1. Now, by (B3) b ≤ a and a ≤ b which implies
that a = b.

□
Now, the expected topology on BL-algebras which makes them topo-

logical algebras is as follows.

Definition 3.3. Let L = (L,∧,∨, ∗,↣, 0, 1) be a BL-algebra. For any
elements a, r ∈ L that r ≪ 1, the ∗-ball around a of radius r is the set

Br(a) = {b ∈ L : a↔ b > r}.
Similarly the ∗-ball around a ∈ L2 of radius r ≪ 1 is the set

Br(a) = {b ∈ L2 : a ⇔ b > r}.
A subset G of L is called an ∗-open set if for every a ∈ G there exists
a radius r ≪ 1 such that Br(a) ⊆ G. ∗-open subsets of L2 defined
similarly.

Remark 3.4. By (L7), a ∈ Br(a) and similarly a ∈ Br(a). Moreover, if
r ≥ s then Br(a) ⊆ Bs(a) and Br(a) ⊆ Bs(a).

Theorem 3.5. With the notations in Definition 3.3, the family of all
∗-open subsets of L form a topology on L denoted by T∗, called the ”open
ball topology”. Similarly T∗ = {A : A is an ∗ -open subset of L2} is a
topology on L2.
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Proof. Obviously ∅, L ∈ T∗. Assume that A,B ∈ T∗. If a ∈ A∩B, then
since A and B are ∗-open sets, there exist rA ≪ 1 and rB ≪ 1 such that
BrA(a) ⊆ A and BrB(a) ⊆ B. By (L4), r = rA ∨ rB ≪ 1. Since r ≥ rA,
Remark 3.4 implies that Br(a) ⊆ BrA(a). Similarly, Br(a) ⊆ BrB(a).
Thus Br(a) ⊆ BrA(a) ∩ BrB(a) ⊆ A ∩ B. Hence, A ∩ B is an ∗-open
set.

Now, let {Gi}i∈I be a family of ∗-open sets and G = ∪i∈IGi. If G is
empty there is noting to prove. Assume that G ̸= ∅ and a ∈ G. So,
there is i ∈ I such that a ∈ Gi. Since Gi is an ∗-open set, there exists
r ≪ 1 such that Br(a) ⊆ Gi ⊆ G. Thus G is an ∗-open set.

The second part will be proved by a similar argument. □
The following examples describe the introduced topology on BL-

algebras more precisely.

Example 3.6. Let L = [0, 1], a ∗ b = max{0, a + b − 1} which is the
Łukasiewicz t-norm. Then, by residuation relation 2.1 one can verify
that a↣ b = min{1, 1+ b−a} [6, Theorem 2.1.8]. To calculate a↔ b,
if a ≤ b then b− a ≥ 0 and therefore a↣ b = 1 and b↣ a = 1+ a− b
and therefore a ↔ b = 1 ∗ (1 + a − b) = 1 + a − b. Similarly, if b ≤ a,
then a ↔ b = 1 + b − a. Consequently, we have a ↔ b = 1 − |a − b|.
In addition, [0, 1] is a linearly ordered BL-algebra and therefore a≪ b
and a < b have the same meaning. So, for any a ∈ [0, 1] and r < 1,

Br(a) = {b : a↔ b > r}
= {b ∈ [0, 1] : 1− |a− b| > r}
= {b ∈ [0, 1] : |a− b| < 1− r}
= (a− (1− r), a+ (1− r)) ∩ [0, 1]

= (a− (1− r), a+ (1− r)) .

For example B0.5(a) = (a− 0.5, a+0.5) and B0.2(a) = (a− 0.8, a+0.8)
and B0.7(a) = (a−0.3, a+0.3). Verily, the ∗-ball Br(a) in T∗ is the open
ball around a of radius 1 − r in the Euclidean topology and therefore
T∗ is equivalent to the Euclidean topology on [0, 1].

Example 3.7. Let L = {0, a, b, c, 1}. Define ∗ and ↣ on L as follows.

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

↣ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1
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Obviously, L is a BL-algebra. The Hasse diagram of L will be illus-
trated in Figure 1.

1

a b
c

0

Figure 1. Hasse diagram of L

So, an easy argument leads to the following table for ↔.
↔ 0 a b c 1
0 1 0 0 0 0
a 0 1 c b a
b 0 c 1 a b
c 0 b a 1 c
1 0 a b c 1

By the Hasse diagram of L, R = {r : r ≪ 1} = {0, c}. All ∗-balls of
T∗, i.e. Br(x) = {y : x↔ y > r}r∈R,x∈L, are as follows:

Br(0) = {0} ∀r ∈ R B0(x) = {a, b, c, 1} ∀x > 0
Bc(a) = {a, c, 1} Bc(b) = {b, c, 1}
Bc(c) = {a, b, c} Bc(1) = {a, b, 1}

So, T∗ = {∅, {0}, {a, b, c, 1}, {0, a, b, c, 1}}. Note that by definition of
∗-open sets, an ∗-ball is not necessarily an ∗-open set.

Above examples showed that the introduced topology on BL-algebras
is not trivial. Indeed, this topology is obtained from the distance be-
tween elements of a BL-algebra with respect to the ↔.

In Section 5, we will show the open ball topology on BL-algebras
could be described more explicitly by a kind of duality between alge-
bras. The topological equivalence of T∗ and the Euclidean topology in
Example 3.9 could be explained by this duality as well.

Besides (BL4) and (B8), the following theorem indicates that for
any BL-algebra L = (L,∧,∨, ∗,↣, 0, 1), all the operators of L are
continuous functions with respect to the introduced topologies T∗ and
T∗ on L and L2.
Theorem 3.8. If L = (L,∧,∨, ∗,↣, 0, 1) is a BL-algebra and T∗ and
T∗ are the same as in Theorem 3.5, then the mappings ∗ : (L2,T∗) →
(L, T∗) and ↣: (L2,T∗) → (L, T∗) would be continuous functions.
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Proof. Consider an ∗-open set A ∈ T∗. We must verify that the inverse
images of A, ∗−1(A) and ↣−1 (A) are ∗-open subsets of L2.

Firstly, consider a point a ∈ ∗−1(A), that is a1 ∗ a2 ∈ A. Since A is
an ∗-open set, there exists r ≪ 1 such that Br(a1 ∗a2) ⊆ A. To finalize
the first part of proof, we will show that Br(a) ⊆ ∗−1(A). Consider an
element b ∈ Br(a). So, a ⇔ b > r, that is

(a1 ↔ b1) ∗ (a2 ↔ b2) > r. (3.2)
In addition since by (B15) we have

(a1 ∗ a2) ↣ (b1 ∗ b2) ≥ (a1 ↣ b1) ∗ (a2 ↣ b2)

and
(b1 ∗ b2) ↣ (a1 ∗ a2) ≥ (b1 ↣ a1) ∗ (b2 ↣ a2),

so, applying (B4) twice and then using (B1) and 3.2 we get
(a1 ∗ a2) ↔ (b1 ∗ b2)
=

(
(a1 ∗ a2) ↣ (b1 ∗ b2)

)
∗
(
(b1 ∗ b2) ↣ (a1 ∗ a2)

)
≥

(
(a1 ↣ b1) ∗ (a2 ↣ b2)

)
∗
(
(b1 ∗ b2) ↣ (a1 ∗ a2)

)
≥

(
(a1 ↣ b1) ∗ (a2 ↣ b2)

)
∗
(
(b1 ↣ a1) ∗ (b2 ↣ a2)

)
=

(
(a1 ↣ b1) ∗ (b1 ↣ a1)

)
∗
(
(a2 ↣ b2) ∗ (b2 ↣ a2)

)
= (a1 ↔ b1) ∗ (a2 ↔ b2)

> r.

Thus b1 ∗ b2 ∈ Br(a1 ∗ a2) ⊆ A. Hence b ∈ ∗−1(A), completes the first
part of the proof.

Secondly, to prove that ↣−1 (A) is an ∗-open subset of L2, consider
a point a ∈↣−1 (A). So a1 ↣ a2 ∈ A. Since A is an ∗-open set, there
exists r ≪ 1 that Br(a1 ↣ a2) ⊆ A. To prove that ↣−1 (A) is ∗-open,
we investigate that Br(a) ⊆↣−1 (A). To this end, if b ∈ Br(a), then

a ⇔ b > r. (3.3)
By (B9) a1 ↣ b1 ≤ (b1 ↣ b2) ↣ (a1 ↣ b2) and by (BL3)

(a1 ↣ b1) ∗ (b1 ↣ b2) ≤ (a1 ↣ b2). (3.4)
Again by (B9) a1 ↣ b2 ≤ (b2 ↣ a2) ↣ (a1 ↣ a2) and therefore by 3.4

(a1 ↣ b1) ∗ (b1 ↣ b2) ≤ (b2 ↣ a2) ↣ (a1 ↣ a2).
Now applying (BL3) we have(

(a1 ↣ b1) ∗ (b1 ↣ b2)
)
∗ (b2 ↣ a2) ≤ (a1 ↣ a2)

which besides (B1) leads to
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(a1 ↣ b1) ∗ (b2 ↣ a2)

)
∗ (b1 ↣ b2) ≤ (a1 ↣ a2).

Again (BL3) implies that
(b1 ↣ b2) ↣ (a1 ↣ a2) ≥ (a1 ↣ b1) ∗ (b2 ↣ a2). (3.5)

Analogously
(a1 ↣ a2) ↣ (b1 ↣ b2) ≥ (b1 ↣ a1) ∗ (a2 ↣ b2). (3.6)

Now, applying 3.5, 3.6, and (B4) we see that
(a1 ↣ a2) ↔ (b1 ↣ b2)

=
(
(a1 ↣ a2) ↣ (b1 ↣ b2)

)
∗
(
(b1 ↣ b2) ↣ (a1 ↣ a2)

)
≥

(
(b1 ↣ a1) ∗ (a2 ↣ b2)

)
∗
(
(b1 ↣ b2) ↣ (a1 ↣ a2)

)
≥

(
(b1 ↣ a1) ∗ (a2 ↣ b2)

)
∗
(
(a1 ↣ b1) ∗ (b2 ↣ a2)

)
=

(
(b1 ↣ a1) ∗ (a1 ↣ b1)

)
∗
(
(a2 ↣ b2) ∗ (b2 ↣ a2)

)
= (a1 ↔ b1) ∗ (a2 ↔ b2)

= a ⇔ b.

Therefore, 3.3 implies that (a1 ↣ a2) ↔ (b1 ↣ b2) > r which means
that is (b1 ↣ b2) ∈ Br(a1 ↣ a2) ⊆ A. Hence b ∈↣−1 (A). □

Although the continuous scale [0, 1]∗ = ([0, 1],∧,∨, ∗,↣, 0, 1) en-
dowed to be a BL-algebra and consequently ∗ becomes a continuous
t-norm, all the operators of [0, 1]∗ are not necessarily continuous with
respect to the usual topology on [0, 1]. However, Theorem 3.8 shows
that the introduced topologies T∗ and T∗ makes all the operators of
any BL-algebra continuous.
Example 3.9. Let L = [0, 1]. Consider the Gödel t-norm on [0, 1],
that is a ∗ b = min{a, b}. The residuation relation 2.1 implies that

a↣ b =

{
1 a ≤ b
b a > b

[6, Theorem 2.1.8]. An easy argument shows that
in spite of the continuity of ∗ with respect to the Euclidean topology on
[0, 1] and [0, 1]2, the function ↣ is not a continuous function. However,
Theorem 3.8 shows that both ∗ and ↣ are continuous functions with
respect to the topologies T∗ and T∗ on [0, 1] and [0, 1]2.

Now, for any BL-algebra L = (L,∧,∨, ∗,↣, 0, 1), we are going to
show that the introduced topology T∗ makes L a semitopological BL-
algebra.

Recall from [12] and [4] that a semitopological algebra is an algebra
L = (L, ∗) of type (2) together with a topology τ on L such that for
all δ ∈ L the maps ∗δl : (L, τ) → (L, τ) and ∗δr : (L, τ) → (L, τ) defined
respectively by ∗δl (x) = δ∗x and ∗δr(x) = x∗δ are continuous functions.
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Definition 3.10. Let L = (L,∧,∨, ∗,↣, 0, 1) be a BL-algebra. If
there exists a topology τ on L such that for any □ ∈ {∧,∨, ∗,↣} and
any δ ∈ L the maps □δ

l : (L, τ) → (L, τ) and □δ
r : (L, τ) → (L, τ)

defined respectively by □δ
l (x) = δ□x and □δ

r(x) = x□δ are continuous
functions, then (L, τ) is called a semitopological BL-algebra.

Theorem 3.11. If L = (L,∧,∨, ∗,↣, 0, 1) is a BL-algebra and T∗
is the same as in Theorem 3.5, then (L, T∗) forms a semitopological
BL-algebra.

Proof. Besides (BL4) and (B8) it’s enough to clarify that for any δ ∈ L
the mappings ∗δl ,∗δr, ↣δ

l , and ↣δ
r are continuous functions. We only

do the proof for ∗δl and others will be proved in a similar way.
Let A ∈ T∗. We must prove that (∗δl )−1(A) ∈ T∗. So, assume that

a ∈ (∗δl )−1(A) that is ∗δl (a) ∈ A. Hence δ ∗ a ∈ A. Since A is an
∗-open set, there exists r ≪ 1 such that Br(δ ∗ a) ⊆ A. We claim that
Br(a) ⊆ (∗δl )−1(A) which implies that (∗δl )−1(A) is an ∗-open set and
fulfills the proof. To this end, consider an arbitrary element b ∈ Br(a)
that is a↔ b > r. Now, (B15) implies that

(δ ∗ b) ↔ (δ ∗ a) = (δ ∗ b) ↣ (δ ∗ a)
)
∗
(
(δ ∗ a) ↣ (δ ∗ b)

)
≥

(
(δ ↣ δ) ∗ (b↣ a)

)
∗
(
(δ ↣ δ) ∗ (a↣ b)

)
=

(
1 ∗ (b↣ a)

)
∗
(
1 ∗ (a↣ b)

)
= (b↣ a) ∗ (a↣ b)

= a↔ b

> r.

So δ ∗ b ∈ Br(δ ∗a) ⊆ A means that ∗δl (b) ∈ A. Therefore b ∈ (∗δl )−1(A)
which completes the proof. □

4. Some properties of the open ball topology on [0, 1]

Example 3.7 shows that the ∗-balls are not necessarily ∗-open set.
Furthermore, it shows that T∗ does not admit the weakest separation
axiom T0. However, when the continuous scale [0, 1] endowed to be a
BL-algebra, we will show that T∗ admits some nice properties.

First of all, the following theorem shows that when [0, 1] is endowed
to be a BL-algebra, then like metric spaces, ∗-balls are ∗-open set.

Theorem 4.1. If [0, 1]∗ = ([0, 1],min,max, ∗,↣, 0, 1) is a BL-algebra,
then, ∗-balls are ∗-open set.

Proof. Note that since [0, 1] is linearly ordered, ≪ and < have the same
meaning. For any ∗-ball Br(a) and any b ∈ Br(a), we must find ϵ < 1
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such that Bϵ(b) ⊆ Br(a). To this end, let ϵ = (a ↔ b) ↣ r. Since
b ∈ Br(a), a↔ b > r and therefore (B3) implies that

ϵ = (a↔ b) ↣ r < 1.
Now, if c ∈ Bϵ(b) then b ↔ c > ϵ that is b ↔ c > (a ↔ b) ↣ r. Thus,
(BL3) implies that (b ↔ c) ∗ (a ↔ b) > r. Consequently by (L8) and
(B1) we get

a↔ c ≥ (a↔ b) ∗ (b↔ c) = (b↔ c) ∗ (a↔ b) > r

which means that c ∈ Br(a). Hence Bϵ(b) ⊆ Br(a) which entails that
Br(a) is an ∗-open set. □

Now, we want to examine the most famous separation axiom for T∗
on [0, 1] such as a BL-algebra.

Theorem 4.2. If [0, 1]∗ = ([0, 1],min,max, ∗,↣, 0, 1) is a BL-algebra,
then, T∗ would be a Hausdorff topology on [0, 1].

Proof. Since [0, 1]∗ is a BL-algebra, so ∗ is a continuous t-norm on
[0, 1] (with respect to the usual topology on [0, 1]). Now, if a, b are two
distinct element of [0, 1], then there exists r < 1 that

a↔ b < r ∗ r. (4.1)
Indeed, otherwise a ↔ b ≥ r ∗ r for any r < 1, which together with
the fact that ∗ is a continuous t-norm, implies that a ↔ b = 1 and
therefore by (L10) a = b, a contradiction. To complete the proof, we
show that Br(a) ∩ Br(b) = ∅. Indeed, if c ∈ Br(a) ∩ Br(b), then (L8)
and 4.1 leads to the following contradiction.

a↔ b ≥ (a↔ c) ∗ (c↔ b) ≥ r ∗ r > a↔ b.
□

5. Describing the open ball topology by means of duality

In this section, following our conference article [8], we show that if
one consider a dual notion of BL-algebras, then the open ball topology
could be described by a metric-like topology.

Firstly, consider the following dual notion for BL-algebras.

Definition 5.1. An SL-algebra, is an algebra L = (L, .∧, .∨, ⋆, .→, 0, 1)
of type (2, 2, 2, 2, 0, 0) that satisfies the following conditions.
(SL1) (L, .∧, .∨, 0, 1) is a bounded lattice with the greatest element 1

and the smallest element 0. Note that here, a ≤ b iff a .∨ b = a.
So, a .∨ b = inf{a, b} and a .∧ b = sup{a, b}.

(SL2) (L, ⋆, 0) is an Abelian monoid,
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(SL3) .→ is the residua of ⋆, i.e., a ≥ b .→ c iff a ⋆ b ≥ c for all
a, b, c ∈ L,

(SL4) a .∧ b = a ⋆ (a .→ b) for all a, b ∈ L,
(SL5) (a .→ b) .∨ (b .→ a) = 0 for all a, b ∈ L.

Note that (SL3) implies that b .→ c = inf{a : a ⋆ b ≥ c}.

Example 5.2. If S is a continuous s-norm, and the residua of S is
defined by RS(a, b) = inf{c : S(c, a) ≥ b}, then

[0, 1]S = ([0, 1],max,min, S, RS, 0, 1)

forms an SL-algebra.

When [0, 1]⋆ = ([0, 1], .∧, .∨, ⋆, .→, 0, 1) is endowed to be an SL-algebra,
then ⋆ becomes a continuous s-norm, .→ would be the residua of ⋆ and
therefore .∧ and .∨ becomes the maximum and minimum functions,
respectively [2, dual form of Proposition 3].

The following theorem is an obvious consequence of duality between
BL-algebras and SL-algebras which follows from Proposition 2.2.

Theorem 5.3. Let L = (L, .∧, .∨, ⋆, .→, 0, 1) be an SL-algebra. The
following properties hold in L.

(S1) a ⋆ b = b ⋆ a and (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c),
(S2) a ⋆ (a .→ b) ≥ b and a ≥ b .→ (a ⋆ b),
(S3) a ≥ b iff a .→ b = 0,
(S4) if a ≥ b then a ⋆ c ≥ b ⋆ c, c .→ a ≥ c .→ b, and a .→ c ≤ b .→ c,
(S5) a ⋆ 1 = 1,
(S6) (a .∨ b) ⋆ c = (a ⋆ c) .∨ (b ⋆ c),
(S7) a ⋆ b ≥ a and a ≥ b .→ a,
(S8) a .∨ b =

(
(a .→ b) .→ b

)
.∧
(
(b .→ a) .→ a

)
,

(S9) (a .→ b) ≥ (b .→ c) .→ (a .→ c),
(S10) (a .→ b) ⋆ (b .→ c) ≥ (a .→ c),
(S11) a .→ (b .→ c) = (a ⋆ b) .→ c,
(S12) a .→ (b .→ c) = b .→ (a .→ c),
(S13) a .→ a = 0,
(S14) a .→ b ≥ (a ⋆ c) .→ (b ⋆ c),
(S15) (a .→ b) ⋆ (c .→ d) ≥ (a ⋆ c) .→ (b ⋆ d),

The key point that we interested in dual of BL-algebras, is that when
[0, 1]⋆ = ([0, 1],max,min, ⋆, .→, 0, 1) is endowed to be an SL-algebra,
then in most cases the dual of the notion ↔ forms a metric.

Example 5.4. Let L = [0, 1], a ⋆ b = min{0, a + b} which is the
Łukasiewicz s-norm, and .→ be the residua of ⋆. For a, b ∈ [0, 1]

• if a ≥ b then by (S4) and (SL2) for any c ∈ [0, 1],
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c ⋆ a ≥ c ⋆ b ≥ 0 ⋆ b = b

and therefore
a .→ b = inf{c : c ⋆ a ≥ b} = inf{c : c ∈ [0, 1]} = 0,

• if a < b then c ⋆ a ≥ b iff c+ a ≥ b iff c ≥ b− a and therefore
a .→ b = inf{c : c ⋆ a ≥ b} = inf{c : c ≥ b− a} = b− a.

Thus

a .→ b =

{
0 a ≥ b

b− a a < b
.

Now , if a ≥ b then a .→ b = 0, b .→ a = a− b, and so we have
(a .→ b) ⋆ (b .→ a) = min{1, 0 + a− b} = a− b.

Similarly if a ≤ b then (a .→ b) ⋆ (b .→ a) = b− a. Thus,
(a .→ b) ⋆ (b .→ a) = |a− b|

which is the Euclidean metric on [0, 1].

Example 5.5. Let L = [0, 1], a ⋆ b = max{a, b} which is the Gödel s-
norm, and .→ be the residua of ⋆. An argument such as the one in
Example 5.4 shows that

a .→ b =

{
0 a ≥ b
b a < b

and

(a .→ b) ⋆ (b .→ a) =

{
0 a = b

max{a, b} a ̸= b
.

Again, note that (a .→ b) ⋆ (b .→ a) is a metric on [0, 1].

Certainly we have the following fact.

Theorem 5.6. Assume that L = (L, .∧, .∨, ⋆, .→, 0, 1) is an SL-algebra.
Suppose that the mappings d⋆ : L× L→ L is defined by

d⋆(a, b) = (a .→ b) ⋆ (b .→ a).
Then,

(1) ∀a, b, d⋆(a, b) = 0 iff a = b,
(2) ∀a, b, d⋆(a, b) = d⋆(b, a),
(3) ∀a, b, c, d⋆(a, b) ≤ d⋆(a, c) ⋆ d⋆(c, b),
(4) if L = [0, 1] and for any a, b ∈ [0, 1], a ⋆ b ≤ SL(a, b), then d⋆ is

a metric on [0, 1].

Proof. 1) Follows as like as (L10) from (S13), (S7), and (S3).
2) Follows as like as (L6) from (S1).
3) Follows as like as (L8) from (S10) and (S4).
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4) If a ⋆ b ≤ SL(a, b) holds for any a, b ∈ [0, 1], then (3) implies that
d⋆(a, b) ≤ d⋆(a, c) ⋆ d⋆(c, b) ≤ d⋆(a, c) + d⋆(c, b), for any a, b, c ∈ [0, 1],
means that d⋆ is a metric on [0, 1]. □

A similar argument such as Theorem 5.6 holds for the dual notion
of ⇔ which is denoted by d⋆.
Theorem 5.7. Assume that L = (L, .∧, .∨, ⋆, .→, 0, 1) is an SL-algebra
and define the mappings d⋆ : L

2 × L2 → L by
d⋆(a,b) = d⋆(a1, b1) ⋆ d⋆(a2, b2).

Then,
(1) ∀a,b, d⋆(a,b) = 0 iff a = b,
(2) ∀a,b, d⋆(a,b) = d⋆(b, a),
(3) ∀a,b, c, d⋆(a,b) ≤ d⋆(a, c) ⋆ d⋆(b, c),
(4) If L = [0, 1] and for any a, b ∈ [0, 1], a ⋆ b ≤ SL(a, b), then d⋆

is a metric on [0, 1]2.
Proof. Similar to the proof of Theorem 5.6. □

Now, for any SL-algebra L = (L, .∧, .∨, ⋆, .→, 0, 1), the metric-like
topologies on L and L2 could be constructed as the one introduced
for BL-algebras in Theorem 3.5 which made all the operators of L
continuous.
Theorem 5.8. Let L = (L, .∧, .∨, ⋆, .→, 0, 1) be an SL-algebra. For an
element a ∈ L, write a≫ 0 whenever for any b ∈ L, a .∨ b = 0 implies
that b = 0. For any a ∈ L and a ∈ L2 and r ≫ 0, suppose that
Nr(a) = {b ∈ L : d⋆(a, b) < r} and Nr(a) = {b ∈ L2 : d⋆(a,b) < r}.
Then

T⋆ =
{
G : G ⊆ L and ∀a ∈ G,∃r ≫ 0 such that

(
Nr(a) ⊆ G

)}
and

T⋆ =
{
G : G ⊆ L2 and ∀a ∈ G,∃r ≫ 0 such that

(
Nr(a) ⊆ G

)}
form topologies on L and L2, respectively. Furthermore, the mappings
⋆ : (L2,T⋆) → (L, T⋆) and .→: (L2,T⋆) → (L, T⋆) are continuous
functions.
Proof. Similar to the proof of Theorems 3.5 and 3.8 with dual notions.

□
Now, for any continuous t-norm ∗, if ⋆ is defined by

a ⋆ b = 1−
(
(1− a) ∗ (1− b)

)
,

then ∗ and ⋆ are called dual and one can examine the open ball topology
on the BL-algebra [0, 1]∗ = ([0, 1],min,max, ∗,↣, 0, 1) by the metric-
like topology on [0, 1]⋆ = ([0, 1],max,min, ⋆, .→, 0, 1).
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Example 5.9. We know that dual of a ∗L b = max{1, a + b − 1} is
a ⋆L b = min{1, a+ b}. So, the open ball topology on the BL-algebra

[0, 1]tL = ([0, 1],min,max, ∗L,↣L, 0, 1)

can be examined with the metric topology on the SL-algebra
[0, 1]sL = ([0, 1],max,min, ⋆L,

.→L, 0, 1).
In this special case, the open ball topology on [0, 1]tL (Example 3.9) and
the metric topology on [0, 1]sL (Example 5.4) are equivalent. Indeed,
replacing any element b with 1 − b in the ⋆-balls of ([0, 1]sL, T⋆) gives
an ∗-ball in ([0, 1]tL, T∗). For example N0.1(0.7) = (0.6, 0.8) corresponds
to B0.1(0.3) = (0.2, 0.4), N0.3(0.1) = [0, 0.4) corresponds to B0.3(0.9) =
(0.6, 1], and so forth.

Example 5.10. Let a ∗G b = max{a, b} that is the Gödel t-norm. We

know that ↣G=

{
1 a ≤ b
b a > b

[6, Chapter2]. An argument such as the
one in Example 5.5, shows that

(a↣G b) ∗G (b↣G a) =

{
1 a = b
min{a, b} a ̸= b

.

Therefore, there are two kinds of ∗-balls:
r ≤ a) : Br(a) = {b : (a↣G b) ⋆G (b↣G a) ≥ r} = [r, 1],
r > a) : Br(a) = {b : (a↣G b) ⋆G (b↣G a) ≥ r} = {a}.
Note that the only singleton in [0, 1]tG which is not an ∗-ball is {1}. So,
T∗ is a little coarser than the discreet topology on [0, 1].

On the other hand, if a ⋆G b = min{a, b} which is the Gödel s-norm,
Example 5.5 shows that

(a .→G b) ⋆G (b .→G a) =

{
0 a = b

max{a, b} a ̸= b
.

So, the ⋆-balls of the T⋆ topology on [0, 1]sG are as follows:
r < a) : Nr(a) = {b : (a .→G b) ⋆G (b .→G a) ≤ r} = {a},
r ≥ a) : Nr(a) = {b : (a .→G b) ⋆G (b .→G a) ≤ r} = [0, r].
In this case, the only singleton in [0, 1]sG which is not an ⋆-ball is {0}.

So, in this case, T∗ and T⋆ are not equivalent but we could examine
each of them by another. For example,

• since for any a > 0 the singleton {a} is open in T⋆, by replacing
a with 1−a we get that for any a < 1 the singleton {a} is open
in T∗,

• since for any r > 0 the set [0, r] is open in T⋆, by replacing any
element b with 1− b we know that for any r < 1 the set [r, 1] is
open in T∗,
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• since { 1
n
}n∈N∪{0} is a compact subset of ([0, 1], T⋆), so replacing

any element b with 1− b leads to the fact that {1− 1
n
}n∈N∪{1}

is a compact subset of ([0, 1], T∗).

Final remarks

In this paper we introduced a topology on BL-algebras that makes
them semitopological algebras. One of the advantages of this topol-
ogy, is the study of model theoretic properties of Basic logic. In
Łukasiewicz logic the continuity of the interpretation of logical con-
nectives make it possible to extend some of the results of model theory
of classical logic to Łukasiewicz logic. However in Basic logic, this study
did not developed as like as the Łukasiewicz logic and the introduced
topology maybe smoothed the future way of this study. Finally, an-
other possible research that maybe facilitated by the introduced topol-
ogy, is the study of stone topology for BL-algebras.
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BL-جبرها روی متر مشابه توپولوژیِ یک

خاتمی امین محمد سید

ایران بیرجند، بیرجند، صنعتی دانشگاه کامپیوتر، علوم گروه

توپولوژیک جبرهای به را آن ها که است BL-جبرها روی توپولوژی یک معرفی مقاله این اصلی هدف
ضابطه با که تابعی آن گاه باشد، BL-جبر یک L = (L,∧,∨, ∗,↣, ٠, ١) اگر می کند. تبدیل
آن کمک به ما و است متر یک مشابه می شود تعریف L روی a ↔ b = (a ↣ b) ∗ (b ↣ a)
یک عنوان به [٠, ١] واحد بسته بازه که حالتی در می دهیم نشان می کنیم. تعریف L روی توپولوژی یک
برقرار توپولوژی این در متریک توپولوژی  خواص مهمترین از بعضی آن گاه شود، گرفته نظر در BL-جبر
نیز BL-جبرها دوگان روی توپولوژی یک با می توان را توپولوژی این که می دهیم نشان نهایت در است.
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