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ON DERIVATIONS OF PSEUDO-BL ALGEBRA
S. RAHNAMA, S. M. ANVARIYEH*, S. MIRVAKILI AND B. DAVVAZ

ABSTRACT. Pseudo-BL algebras are a natural generalization of
BL-algebras and of pseudo-MV algebras. In this paper the no-
tions of five different types of derivations on a pseudo-BL algebra
as generalizations of derivations of a BL-algebra are introduced.
Moreover, as an extension of derivations of a pseudo-BL algebra,
the notions of (p,)-derivations are defined on these types. Fi-
nally, several related properties are discussed.

1. INTRODUCTION

The concept of a pseudo-BL algebra first introduced by A. Di Nola
et al. [0, 7] as a noncommutative extension of Héjek’s BL-algebra
[10] and as a generalization of an MV-algebra [5]. Hajek was the first
to propose a complete theory of BL-algebra as algebraic structures to
illustrate the completeness theorem of basic logic in 1998 [10]. MV-
algebras, which introduced by Chang [5], are contained in the class of
BL-algebras. In [0, 7, 23] the main properties of the pseudo-BL algebras
were discussed in detail. The most recognized classes of BL-algebras
are MV-algebras, Godel algebras and product algebras. More over
Georgescu and lorgules [9] were the first to study pseudo-MV algebras
as a noncommutative generalization of MV algebras. A pseudo-BL
algebra is a pseudo-MV algebra if and only if (z7)~ = (™)~ = z, for
all x.

The theory of derivations of algebraic structures appeared from the
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process of developing Galois theory and the theory of invariants and
is a very interesting and important field of many researchers. In 1957
the notion of derivations was first given in rings by E. C. Posner [15].
Subsequently, the concept of derivation has been studied on lattices

[16, 8, 4], BCl-algebras [11, 24, 13], MV-algebra [2, 3, 19, 20] and
lattice implication by Lee and Yong [12, 22]. In 2013 Torkzadeh et al.
applied the notion of derivations to BL-algebras [17]. Inspired by this,

several researchers have extended this notion in [21, 1, 14].

In this paper, five kinds of derivations of a pseudo-BL algebra are
introduced. These derivatons are defined as (®, V)-derivation, (&, ®)-
derivation, (©, ®)-derivation and two implicative derivation as (—, V)-
derivation and (~+, VV)-derivation on pseudo-BL algebras. We have gen-
eralized the notion of derivation on a pseudo-BL algebra A to (¢, )-
derivations on A by using two functions ¢ and i of A into itself.
These derivations are extended by introducing the notions of (¢, )-

—

derivations of type 1, 2, 3, (i, 1)-derivation, (¢, 1)-derivation and also
study some related properties.

2. PRELIMINARIES

In this section, we recall the concept of a pseudo-BL algebra and
then present some definitions and properties which we will need in the
next sections.

Definition 2.1. A pseudo-BL algebra is a structure (A, V, A\, ®, —, ~
,0,1) where A is a non-empty set, V, A, ®, —, ~» are binary operation
and 0,1 are constant satisfying:

(PBL-1) (A, V,A,0,1) is a bounded lattice;

(PBL-2) (A, ®,1) is a monoid,

(PBL3) z®@y <ziffz <y —ziff y <x~ 2

( JzAy=(z—=y)@r=a® (z~y);

(PBL-5) (z = y)V(y = x) = (z ~ y) V (y ~ x) = 1, for all
x,y € A.

In the sequal, we shall agree that the operations V, A, ® have priority
towards the operations —, ~~ . A pseudo-BL algebra (A, V, A, ®, —, ~
,0,1) is nontrivial if and only if 0 # 1. Let A be a pseudo-BL algebra.
We set 7 =2 — 0and 2~ = z ~ 0. For all z € A we define the
auxiliary operations ©,& and © as follows @y = 2~ = y,z 0y =
TRy, 20y =y~ Q.

Now we give some examples of pseudo-BL algebras.
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Example 2.2. [0, Example 2.21] Consider an arbitrary Fgroup (G, V, A,
+,—,0,1) and let u € G,u < 0. We put:

r@y=(x+y)Vu,xr —>y=y—z)V0x~y=(—z+y)A0.

Then it can be proved, A = ([u,0],V,A,®, —,~,0 =u,1 =0) is a
pseudo-BL algebra.

We recall that a lattice-ordered group (Fgroup) [0] is a structure
(G,V, N\, +, —,0) verifying the following:

(1) (G,+,—,0) is a group,

(2) (G,V, ) is a lattice,

(3) If < denotes the partial order on G induced by V, A, then for
all a,b,x € G,ifa<bthena+x<b+zxandx+a<x+b

Example 2.3. [18, Example 2.13] Let a,b, c,d € R. We put by defini-
tion
(a,b) < (e,d) < a<cor (a=candb<d).

For any u,v € R x R, we define the operations V and A as follows:

1
u Vv =max{u,v} and u Av = min{u, v}. LetA:{(é,b) ER*:b>

1
0} U{(a,b) € R?: 5 <a< 1,b e R}U{(1,b) € R? : b < 0}. For any
(a,b), (c,d) € A, we put:

(a,b) @ (c,d) = (1,0) (ac,be + d),

(a,b) — ( ) (C d_b) A (1,0)],
(a,b) ~ ( )v (c ad—bc> A (L),
(a,b)" = (a,b) = 04 = (a,b) — ( ) _ (

(

(a,0)~ = (a,0) ~ 04 = (a,b) ~ (%o) _

<

IS
~——
<

(52 ) raaon,
,0) v[(%;—j) A (1,0)].

1
Then it can be shown, (A, V, A, ®, —, ~>, (5, O) ,(1,0)) is a pseudo-BL
algebra.

Now we are able to make the connections of pseudo-BL algebra with
BL-algebras. At first glance pseudo-BL algebras appears to differ from
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BL-algebras in two major ways: commutativity of ® and the differ-
ence between — and ~». We shall say that a pseudo-BL algebra A is
commutative iff x ® y = y ® x, for any x,y € A.

It can be easily shown that a pseudo-BL algebra A is commutative
it 2 ~»y =2 — vy, for any x,y € A. This is equivalent with the
statement that — = ~~. Any commutative pseudo-BL algebra A is a
BL-algebra. Then we shall say that a pseudo-BL algebra is proper if it
is not commutative, i.e. if that is not a BL-algebra.

In Proposition 2.4, we present some elementary properties of this
concept.

Proposition 2.4. [23, 6, Proposition 2.2, Proposition 3.1, Proposi-
tion 3.9] In a pseudo-BL algebra A, for all z,y,z € A the following
properties hold:

() (z@y)—mz=2—>(y—2) and (yQx) ~ 2=2 ~ (y ~ 2);

2)z<yiffr >y=1liffe~y=1;

B)z<yimpliecszr®Rz<yRz, zQr <2y andx <z~ y,x <
Z=y;

4) zey<zy andxz®@y <z Ay,

(5) x < y implies z ~» v < z ~ vy, z = = < z — y, and also
Yy~zlx~z2,y =251 — 2

6)r—oy=x =T ANYy,Tz~~>y=x~TANY;

(Mavy=((z =y ~ YAy > 2)~z)=(r~y —
W) A ((y ) = 2);

8)rz@y=0iffr <y, e<y  ify®x=0;

9) z@z~=2"®z=0;

10)l—sz=1~z=2 ande > 1=x~1=1;

1)z =14ffz~=114ff z=0;

12) x <y impliesy~ <z~ and y~ < z7;

B)r—oy<y ~wz,x~y<y” —z~;

H) (r@y)" =z—=y, (2@y)” =y~ 2,

B)z(yVz)=(2y)V(eez), (yV2)0r=(y®z)V(:Qx);

16) 2@ (yAz)=(zy)N(z®z2), (zAyY)Rz=(z®2) A\ (y® z).

Definition 2.5. Let (A,V,A, ®,—,~>,0,1) be a pseudo-BL algebra
and F' a nonempty subset of A. Then F' is said to be a filter of A if it
satisfies

(1) If z,y € F, then z ®y € F}
(2) If x € Fand z <y, then y € F.

It is easy to see that for any filter F, 0 € F' and for every x € A we
have x € F if and only if 27~ € F.
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Definition 2.6. A pseudo-BL algebra A is called a pseudo-Gadel al-
gebraifforallz € Lz ®@ x = x.

Definition 2.7. Let A be a pseudo-BL algebra. Then, a function
f:A— Ais called isoton, if x <y implies that f(z) < f(y), for all
x,y € A.

Definition 2.8. Let X,Y be two pseudo-BL algebras. A map f :
X — Y is called a pseudo-BL homomorphism if for all z,y € X:

(1) fz@y) = f(z)© [(y);

(2) flz =y)=fx) = fy);
(3) [z ~y) = fx) ~ f(y);
(4) f(0) =0.

An element a € A is called complemented if there is an element b € A
such that a Vb =1, a Ab =0, and if the element b exists it is called
the complement of a. For any pseudo-BL algebra A, we shall denote
by B(A) the Boolean algebra of complemented elements in the lattice
of A and it is called the Boolean center of A. It has been proved in [7]
that B(A) ={r € A:z®x =z, = ()~ = (x7)~}. The elements of
B(A) are called Boolean elements of A. Clearly, 0,1 € B(A). Also, it
is straightforward that B(A) is a subalgebra of the pseudo-BL algebra.

Proposition 2.9. [7, Lemma 2.3] If A is a pseudo-BL algebra and
a,b € A such that a ® a = a, then

l)a®b=aANb=>bRa,

JaNa”=0=aAa,

)a~b=a—0b,

) a~ =a".

3. DERIVATIONS OF A PSEUDO-BL ALGEBRA

In this section, five different types of derivations on a pseudo-BL
algebra are introduced. The first three are referenced as type 1, 2
and 3 which are defined as (®, V)-derivation, (&, ®)-derivation and
(O, ®)-derivation, respectively. The remaining two are described as
implicative derivation, defined by (—, V) and (~», V) and we investigate
their properties.

Definition 3.1. Let (A,V,A,®,—,~,0,1) be a pseudo-BL algebra.
Then the map D : A — A is called
(1) a derivation of type 1, if D(z ® y) = (D(z) @ y) V (x @ D(y))
for all =,y € A;
(2) a derivation of type 2, if D(zx ©y) = (D(z) ©y) ® (xr © D(y))
for all =,y € A;
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(3) a derivation of type 3, if D(z © y) = (D(2)O y) ® (x © D(y))
for all z,y € A.

For a pseudo-BL algebra A, for convenience, we denote by D, Do
and D3 the derivations of types 1, 2 and 3, respectively.

Definition 3.2. Let (A,V,A, ®,—,~>,0,1) be a pseudo-BL algebra.
Then the map D : A — A is an implicative derivation and called
(4) a (=, V)-derivation if D(x — y) = (Dx — y) V (x — Dy) for
all z,y € A;
(5) a (~,V)-derivation if D(x ~ y) = (Dx ~> y) V (z ~» Dy) for
all z,y € A.

— e
The abbreviation D and D are used for (—, V)-derivation and (~
, V)-derivation in above definition.

Example 3.3. Let A be a pseudo-BL algebra. Consider 1(z) = 1, D(x)
= 0 and I(x) = z. It can be easily shown which of these functions

can be applied to these derivations considering conditions and give us
Tablel.

TABLE 1.

|
+ 1 4|9
+ 1 4|

The conditions which /(z) = « can be the types 2 and 3 derivations
are shown below.

Proposition 3.4. Let I be the identity function on pseudo-BL algebra
A. If A is a pseudo-Gddel algebra, then I is a derivation of types 2 and
3 on A.

Proof. Let x @ v = x for all x € L. Then I(z8vy) = (rSy) =
(zey)@(zoy) = (I(x)oy)@(xS1(y)). Thus, I is a derivation of type
2 on A. For all z € A, we have: [(2Qy) = (20y) = (2Qy) ® (2©@y) =
(I(z)Oy) ® (z©I(y)). Hence, I is a derivation of type 3 on A. O

Theorem 3.5. Let (A, V,\,®,—,~>,0,1) be a pseudo-BL algebra and
D; be a derivation of type 1 on A, 1 <1 < 3. Then for all 1 <i < 3,
we have

(1) D;(0)

i 0,
(2) Di(x)

D;(x) @ x then D;(z) <z, fori=2,3 and all x € A;
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< (Di(z))~ fori=2,3;
i(x7) < (D;(z))” and moreover x € B(A) implies that Dy(x) <

x
(5) Di(x) =1 implies that x= = 0, and for i = 2,3 and D;(z) =1
implies that x = 1.

Proof. (1) We have
Dy (0) = D1(0®0) = (D1(0) ® 0) v (0 Dy(0)) = 0.
Dy(0) = Dy(x©1) = (Da(x) ©1) ® (x © Dy(1)) = 0, for all z € A.
D3(0) = D3(0 ©0) = (D3(0) © 0) ® (0 © D3(0)) =
(2) We can write
= (D3(z) ©0) ® (z © D3(0))
=0"®RD3(z) 0" ®x=Ds(r)®x < x.
Also, we have
Dy(x) = Dy(z ©0) = (D2(z) ©0) @ (z © Dy(0))
=Dy(2) @0 ®2x®0” =Di(z) @z < x.
3, we have D;(z) < z, and so D;(z~) < 2z~ and
(D;(x))~. Hence, we conclude that D;(z~) < (D;(x))™.
' 3, we have D;(z) < z, and so D;(z7) < z~ and
(D;i(x))~. Thus, we obtain D;(x~) < (D;(x))~ and for
1 roposition 2.4, we have x~ ® xr = 0 and
0=D1(0)=Di(z” ®@z) = (D1(z7) @) V(z~ ® Dy(x)).

Hence, we obtain (D;(z7) ® x) = 0,(z~ ® Dy(x)) = 0. This
yields that Di(z7) < 27, 2= < (Dy(x))~. Thus Di(z7) <
(D1(z))~. Also, if x € B(A) then Di(x) <=z

(5) Dl()—lby() 1(z7) <ax™ < (Dy(x))” ,andsoa:*§1*:
0. This implies that = = 0. For ¢ = 2,3 we have D;(x) < z,
1 < x, and consequently = = 1.

on
>
"U
3

<
0.

O

Proposition 3.6. Let A be a pseudo-BL algebra. If D is an isotone
derivation of type 1 on A such that D(x) < x and D(z) = D(x)® D(z),
for all x € A, then for all z,y € A the following hold:

(1) D(:c) =D(1)®z =2 D(1);

(2) D(z®@y) = D(z) © D(y);

(3) D(z ©y) < D(x) © D(y), D(z © y) < D(x) © D(y);

(4) D(zVy) = D(z) Vv D(y);
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(5) D(x Ay) = D(x) A D(y);
(6) D(D(x)) = D(x);
(7) D(z ~»y) < D(z) ~ D(y), D(z = y) < D(x) = D(y).
Proof. (1) Suppose that z € A. We have D(z) = D(1 ® z) =
(D(1)®z)V (l® D(z)) also D(x) = D(x®1) = (D(z) ® 1) V
(x ® D(1)). Then D(1) ® x < D(x) and z @ D(1) < D(z) .
Since D(1) ® x < D(z) ® D(z) = D(x) < D(1) ® x. Therefore
D(z)=D(1)®z =z D(1).
(2) By (1), we have D(z®y) = D(1) @ (z ®@y) = D(1) @ D(1) ®
ry=2®D(1)®y® D(1) = D(r)® D(y).
(3) By (2) and Theorem 3.5 (4), we obtain D(z © y) = D(x) ®
D(y™) < D(z)® D(y)~ = D(x)© D(y). Similarly we can prove
D(z ©y) < D(z)OD(y).
It is proved in Theorem 3.5 (3) that D(z~) < (D(z))~. We have
D(zQy) = D(y~ @ x) = D(y™) ® D(x) < (D(y))” @ D(z) =
D(z)©D(y).
(3) The result follows from (2) and Theorem 3.5 (4).
(4) We use Proposition 2.4 (15) to get D(zVy) = D(1)® (xVy) =
(D(1) @) V(D) @y) = D(x) V D(y).
(5) By using Proposition 2.4 (16), the proof is similar to (4).
(6) By (1), D(D(x)) = D(1) @ D(z) = D(1 ® x) = D(z).
(7) By (2), (PBL-3) and (PBL-4), we have D(z) ® D(z ~> y) =
D(z ® (z ~y)) = D(z Ay) = D(z) A D(y) < D(y).
Thus D(x ~ y) < D(x) ~ D(y). Similarly we have D(x —
y) < D(x) = D(y). .

Example 3.7. Consider the pseudo-BL algebra A, defined in Example
2.3. We will show below that every derivation of type 3 on A should
be written in the form:

(1,0) it = # (1,0)
Dy(x) = {\2
(a,b) ifx=(1,0)
for any (a,b) € A
Consider A; := {(%,b) e R?:b > 0},A := {(a,b) € R?:
a < 1,b € R} and A3 := {(1,b) € R? : b < 0}, such that

UAZ,A NA;=0fori,je{1,2,3},i#]

1
2
A

In Table 2, we present the result of calculating the ™~ and x~ in
Al, A2 and A3
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Lotz € A @™ = (5,6) = (5,0) V [(1,~2b) A (1,0)] = (1, ~20),
o = (507 = (5,0 VI(1,~b) A (1,0)] = (1, )
Letwe Ay o = (a,h) = (5,0 V(5 )AL = (5 )
v = (@) = .0V (3 2 AL O] = (5 )
Let 7€ Ay, 2~ — (1) — (%,0) VIE )AL 0)] = (2, —b)
= (LD = (5.0 VG )AL = (5. 5)
TABLE 2.
A; x x” x™

o () (2)

Now, we calculate (a,b)O(c,d) = (¢,d)~ ® (a,b).
(c,d) € A1, (a,b)O(c,d) = (¢,d)~ ® (a,b) = (1,—d) ® (a,b)
= %,0) V (a,—ad +b).
(c,d) € Ay, (a,b)O(c,d) = (¢,d)~ & (a,b) = ic’ _—j) ® (a,b)

o
~ o

a —ad b
2¢’ 2¢ ’

(c,d) € A3, (a,b)O(c,d) = (¢,d)~ ® (a,b) ® (a,b)

I
NN N N N
o
~ N

N~ N~ N~ DN
||
ISH

VR
[\ !
‘I
N o
IsH
+
o>
~~_
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Let D3 : A — A be defined by Ds(a,b) = (x,y). We notice that

(1) Let (a,b) € A;. Dg(%,b) = (z,y) ® (1 1

) = OV
1
b) = (z,y). Then, z = 0,y = 2b. Hence (5,0) v (0,
(0,2b), which is a contradiction. Consequently, we have (x,y) =
1
=,0)=04.
(27 ) A ,
(2) Let (a,b) € As. D3(a,b) = (z,y)®(a,b) = (§,O)V(a:a,ya—|—b) =
1
(x,y). If (z,y) = (za,ya + b) and 5 <a< 1, then x = 0 and

(2,9) = (3,0) = 0.

(3) Let (a,b) € As. Dy(1,b) = (z,y) @ (1,b) = (%,0) V(e,y+b) =

1
(z,y). If b < 0, then D3(1,b) = (5,0) = 04 and if b = 0, then

D3(1,0) = (z,y) ® (1,0) = (x,y), for every (a,b) € A.
Diy(a,b) = {OA (a,0) # (1,0)
(z,9)  (a,b) = (1,0)

In Example 3.7, none of the functions is derivation of type 2. This
result will now be derived computationally. For D, since Dy(x) =
Dsy(z) ® x, we have

04 (z,y) #(1,0)
D2 (l’, y) = {

(a,0) (z,y)=(1,0)
1 b
Let Y = (é,n), 0<n< 5 and X = 1. Dy(160Y) = Do(Y™) =
1
Dy(1,—2n) = (5,0) =04.
On the other hand, we can write
(D(1)0Y)® (16 Dy(Y)) = (a,0) @Y~ ®@ 1@ (Dy(Y))~
=(a,b) @Y ®0~

— (a,b) ® (1, ~2n) = (%0) v (ayb— 2n).

If Dy(XOY) = (Dy(X)0Y)@(XEDy(Y)), then (a,b—2n) < (%,0),

which is impossible. Thus, the derivation condition does not hold for
Ds.
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Proposition 3.8. Let D be a derivation of type 1 on the pseudo-Gadel
algebra A. Then for every x,y € A the following hold :
(1) D(z) <z,
(2) If = < D(1), then D(x) =z, and D(D(z)) = D(x),
(3) If x > D(1), then D(1) < D(x),
(4) If x <y, then D(z) =z or D(y) < D(x).

Proof. (1) If x € A, then D(z) = D(z®@xz) = (D(z) @ ) V (z ®
D(z))=z® D(z) <=z

(2) If x < D(1), then D(z) = D(z®1) = D(z) V (z ® D(1)) =

(3) If z > D(1), then similar to the proof of (2), we obtain D(1)
D(x). Suppose that z > D(1). Then D(z) = D(z ® 1)
D(z) vV (x ® D(1)). By Proposition 2.9 we get that D(x) =
D(z)V (x AD(1)), and so D(x) = D(z) vV D(1). Therefore, we
deduce that D(1) < D(z).

(4) If © <y, then by (1) and Proposition 2.9, we have D(z) < z.
This yields that D(z) = D(z ®y) = (D(x ) y)V(r®D(y)) =
(D(z) Ny) V (z A D(y)) = D(x) V (x A D(y)). Now, we have
two cases: (i) If x < D(y), then D(x) = D(x) V x, therefore
D(x) = z. (ii) If D(y) < z, then D(z) = D(z) V D(y) and so
D(y) < D(x).

A S

OJ
Proposition 3.9. Let A be a pseudo-Gédel algebra. The map D

given by
a ifr>a
D(z) = d
r ifr<a

s a derivation of type 1 on A.

Proof. For x,y € A, we have four cases:
(1) If z,y < a, then D(z) =2,D(y) =y, z®@y < a,

Dz®y)=(D)@y) V(e D(y)=(rxy)V(@EZey =rxy.

(2) If ,y > a, then D(x) = D(y) = a, by Proposition 2.4 (4),
TRY>aQR®Y>a®a=a,

D(z®y) = (D(x)®y)V(z®@D(y)) = (a®y)V(z®@a) = (aAy)V(rxAa) = a.
(3) Ifx <aandy > a, then D(z) =z, D(y) = a, 2®a < zQy < a,
D(z®y)=(Dx)@y) V(@ D(y) =0y V(r®a) =10y
(4) If z > a and y < a, then D(z) =a,D(y) =y, @y < a,
D(x®y) = D)@y V(e Dy)=(a@y)V(rey) =r2y.
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O

Proposition 3.10. Let D be a derivation of type 3 on a pseudo-BL
algebra A. Then for all x,y € A, D(2@y) < D(x)©D(y).

Proof. We have
D(20y) = (D(x)0y) ® (xOD(y))
D(z)0y =y~ ® D(z)
D(y)~ ® D(z) = D(x)0D(y).

IN A

OJ

Theorem 3.11. Let D be an implicative derivation on pseudo-BL al-
gebra A. For all x,y € A the following conditions hold:

(1) D(l) =1 and D( ) =1;

(2) [f:r:<y thenD(mwy)—l andD(x—>y)—1,
(3) (I) = ZE\/Q( x) and then D( ) >

() =2V D(x) and then D( ) >

(4) (Dx)* < D(a~), (Dz)™ < D(a™);

Sl T

~

< D(x ~ y), y<D('£—>y)
(xwy):way,D(x%y)—x%Dy

Proof. (1) D(1) = D(1 ~ 1) = (D(1) ~ 1) V(1 ~ D(1) = 1, By
(PBL-5).
(2) By Proposition 2.4 (2), x < y implies that x ~y = 1,2 - y =
1 and by (1) it is done.

(3) Dz = D(1 ~ z) = (5(1) s 2)V (1 ~ Dz) = vaa:
(4) D(a™) = D(x ~ 0) = (D(x) = 0) V (z ~ D(0)) = (D)™
(@~ D(0)) > (Do)
(5) y < D~y < (D~ y) V (2~ Dy) = D(w ~ y).
(6) From (1), we obtain y < Dy, r < Dx. According to Propo-
sition2.4(5),xwy§x->5y and waygxw
y which gives B:p oy <X By.
Therefore B(x ~ oY) = (Bx ~s ) V(T By) =1~ By.
U

Theorem 3.12. Let D be an implicative derivation on the pseudo-BL
algebra A. For all x,y € A the following conditions hold:
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is a filter of A, then
(@) ~ (4)= Davu(y) < Da(z ~ y)= Da(Da(y)) and
(#) = (¥) = Dasa(y)) < Dol = y)= Da(Da(y)-
Proof. (1) In order to see this, it is enough to consider y = 0 in
Theorem 3.11 (5).
(2) For all z, z < 1. Hence 1 ~~ B(O)) <z~ B(O) then B(O) <

T~ B(O) = D(x™).
(3) We should prove the last inequality. By Theorem 3.11 and

Proposition 2.4, D(z) ~» D(y) < x ~» D(y).
(4) See the proof of Theorem 3.11 (6)

Y

(5) Applying (PBL-5) and (4) gives D(x ~> y) V B(y s ) = (1~

D) V (3~ D(a)) = (D(x) =) vy = Dix) = 1.
(6) If x € F then D(x) € D(F). Since x < D(z) then D(z) € F.
(7) We have z®a < aAx < a ~» x. Then (a ~ ) ~ y < (z®a) ~
y=a~(r~y)

~~ Y~
(=)
S— N N N

\]
1O Ui ol i oo s

Q

a

O

s
Lemma 3.13. Let D, D are implicative derivation on a pseudo-BL
algebra A. Then

~ ~ ~ — —
(1) If D is isotone, D(x) > D(0) V x. If D is isotone, D(x) >
—
D)V z.
(2) If D(z) = D(0) V x then D is isotone. If D(x) = D(0)V x then

D 1is isotone.

Proof. (1) For all z € A,z > 0. Therefore B(x) > B(O) and by
Theorem 3.11 (3), D(z) > D(0) V z.
(2) If x <y, then x vV D(0) <y V D(0). Hence D(z) < D(y).
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Theorem 3.14. Let D and D be implicative derivations on a pseudo-
BL algebm A. Then, D is an isotone demvatzon if and only sz(a:/\y)
D( )/\D( ) < D( )\/D( ) < D(x\/y) cmd D is an Zsotone derivation
if and only if D(x ANy) < D( ) A D(y) < D(x) Y D(y) < D(x V).

Proof. (=): We have z Ay < z,y <xVy. Then D(x ANy) < D(az) A
D(y) < D(z)V D(y) also D(z),D(y) < D(z V y) therefore

D(z) Vv D(y) < D(z Vy).
(<) : Suppose that z < y. Then, we obtain t Ay = x,zVy =y. The
remain is straightforward.

O

Proposition 3.15. Let Dy, Ds, ..., D, be (~,V)-derivations on the

pseudo-BL algebra A. Then D10 D20 e 0 Dn is a (~,V)-derivation
on A.

Proof. Dlo D20 ) Dn(:c ~yY) = Dlo Dgo .. 0 Dn,l(x ~ Dn(y)) =

Dyo D20 :0 Dys(& v+ D1 (Dn(y))) = Di(x ~» Da(Ds(...(Da(y)))))

=7 ~ Dlo Dgo .0 D, (y). O
%

Corollary 3.16. Let Dl,Dg, e Dy be (—,V)-derivations on the

— — =
pseudo-BL algebra A. Then Dyo Dyo ... o D, is a (—,V)-derivation
on A.

gorollary 3.17. 5"(33 v Y) =T 5”(3/) and 5”(95 =y =x —
D"(y).
Theorem 3. 18 Let A be a pseudo BL algebm a € A and suppose
that D and D are functions D A — A, D : A — A such that
Da(:p) =a~z, D, o(T) = a — x. Then the following conditions hold:
(1) If forallz € A,x®a = a®x then D; is (~, V)-derivation and
D; is (—, V)-derivation;

N
S
S ®
=)

re isotone;
— ~
,Di(x) are the identity function. In addition, Dy(z),
— —
, Do(x) and D,(z) are constant.

should prove: Da(x ~y) = (Da(x) ~ y) V(-

o
S
S
—~
—_

~— ~— ~— —
=
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(LHS:) We have 5a(xwy) =a~w (r~y)=@®a)wy=
Daga(y)-
(RHS:) We have

(Da(@) ~ 9) V (z ~ Dal(y)) = ((a

= ((a®x) ~ y) = Dagaly)-
Since a®x < a ~ x, it follows that (a ~» z) ~» y < (a®x) ~> y.
(2) If z <y, then a~z < a~y.
(3) It is straightforward.
O
Corollary 3.19. Let A be a pseudo-BL algebm a € A and suppose
that Da,Da are functwns D A — A, D : A — A such that

Da(x) =a~ T, D. «(x) = a — x. Then the following conditions hold:

(1) Da(Dy(2)) = Dysal2) = Dyal) = Dily ~» 2).

(2) lza( ) < ]cha<c Wb) C( )~ D c(b) = Dc/\a(b)'
(3) Da(h) ® Dy () < Do (0¥ V), D (b A V).

(4) Day(a2) ® Day(as) @ .. @ Do,y (an) < Doy (@)
(5) Dalt) < Dy~ (a”)

(6) Da(b™) = Dy(a”)

(7) Dalb) < Desalc )

4. (p,1))-DERIVATIONS ON PSEUDO-BL ALGEBRAS

In this section, we have generalized the notion of derivation on a
pseudo-BL algebra A to (¢, ¢)-derivations on A by using two functions
¢ and ¢ of A into itself. These derivations are extended by introduc-

ing the notions of (¢, 1)-derivations of type 1, 2, 3, (¢, ¢)-derivation,
—

(i, 10)-derivation and also investigate some related properties.

Definition 4.1. Let (A, V,A,®,—,~,0,1) be a pseudo-BL algebra.

Then for all z,y € A the map D : A — A is called

(1) a (¢,v)-derivation of type 1, if D(z ® y) = (D(z) @ v(y)) V
(¥ () @ D(y));
(2) a (p,¥)-derivation of type 2, if D(z ©y) = (D(x) © p(y)) ®

() © D(y));
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(3) a (¢, )-derivation of type 3, if D(z© y) = (D(2)© ¢(y)) ®
(¥(2)© D(y)).

If a pseudo-BL algebra A is BL-algebra, then every derivation of type
3 on A coincides with derivation of type 2 on A.

Definition 4.2. Let (A,V,A,®,—,~,0,1) be a pseudo-BL algebra.
Then the map D : A — A is a (¢, ¥)-implicative derivation and called

(4) a (gp??ﬁ)-derivation if D(x = y) = (Dx — ¢(y)) V(¢ (x) = Dy)
for all z,y € A;

(5) a (@, )-derivation it D(x ~ y) = (Dz ~ ¢(y)) V (¥(z) ~ Dy)
for all z,y € A.

Theorem 4.3. Let A be a pseudo-BL algebra and D be a (p,1)-
derivation of type 1 on A. Then the following conditions hold

(1) D(0) = 0;

(2) If <y then D(z) < o(y)™ and () < D(y™)";

(3) D(z) < @)™, (x) < D(x™)~ and moreover x € B(A) im-

plies that D(z) < p(z);

(4) D(z) = (D(1) ® (x)) V D(x);

(5) D(z~) < D(x)~;

(6) D(z™) < p(a7).

Proof. (1) Since ¢ and v are homomorphisms, it follows that D(0) =
D(0®0) = (D(0) ® ¢(0)) V (¢(0) ® D(0)). Consequently, we
obtain D(0) = 0.

(2) Suppose that x < y. Then, we get z ® y~ = 0, and so 0 =
D(0) = D(z®y™) = (D(x)@p(y™)V (6(x) @ D(y~)). Hence, we
obtain D(z) @ p(y~) = ¢ (z) @ D(y~) = 0. Now, by Proposition
2.4, we have D(z) < o(y)~~,¢(z) < D(y™)~.

(3) Take z =y in (2).

(4) Let x € A. We have D(z) = D(1®z) = (D(1) ® ( )V
(¥(1) ® D(zx)). By (As) v is homomorphism, ¥ (1) = 1, D(z) =
(D(1) @ p(x)) v D(x).

(5) By (3) and Proposition 2.4, D(z) < ¢(z)~~, D(z~) < p(z)~~~
and so p(z)™™ < D(x)~. Hence D(z™) § ( ).

(6) For every x € A, we have D(z™) < p(x)~~ o)™ = p(x™).

Theorem 4.4. Let D be a (p,)-derivation of typel on A and assume
that D(1) = 1. Then the following conditions hold:

(1) o(x) < D(x) and ¥(x) < D(zx) for all x € A.
(2) D(B(A)) = ¢(B(A)).
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(3) D is an isotone on A.

Proof. (1) Let D(1) = 1. Then, by Theorem 4.3, for all z € A we

have p(z) = D(1) ® p(z) < D(z). Similarly we can conclude
b(x) < D(x).

(2) Let x € B(A). From Theorem 4.3 we have D(z) < ¢(z) and
by (1), we get that D(B(A)) = ¢p(B(A)).

(3) Let x < y. By (PBL-4) and (1), we get D(z) = D(y A z) =
D(y® (y~ ) = (Dy) @ oy ~ )V (¥(y) ® D(y ~ z)) <
D(y) V(y) = D(y).

O

Theorem 4.5. Let D be a (p,)-derivation of type 1 on the pseudo-BL
algebra A. If D(z Vy) = D(z) V D(y) or D(z Ay) = D(x) A D(y) for
all x,y € A, then D is an isotone on A.

Proof. Let z,y € Aand x <y. Then D(x) < D(x)VD(y) = D(zVy) =
D(y) or D(z) = D(z ANy) = D(z) A D(y) < D(y). This shows that
D(z) < D(y). A

Theorem 4.6. Let D be a (p,1))-derivation of type 1 on the pseudo-BL
algebra A. Then for all x,y € A we have

(1) D(z ®y) < D(x) Vv D(y).

(2) KerD = {x € A: D(x) = 0} is closed under ®.

Proof. (1) By Definition 4.1 and Proposition 2.4, we have D(zx ®
y) = (D(z) @ p(y)) vV (b(z) @ D(y)) < D(z) v D(y).
(2) Suppose that z and y are arbitrary elements in A. Then D(x) =
D(y) = 0. From (1) we have D(z®y) < D(z)VD(y) = 0v0 = 0.
So, we obtain D(x ® y) = 0. This yields that x ® y € KerA.
O

Lemma 4.7. If D is a (¢, )-derivation of type 1 on the Boolean center
B(A) then D is a lattice (@, )-derivation.

Proof. Let x,y € B(A). Since ¢, 1) are homomorphisms, it follows that
D(z ANy) = Dz ®y) = (D(x) ® ¢(y)) V ((z) @ D(y)) = (D(x) A
py) Vv (¥(x) A D(y)). -

Theorem 4.8. Let D be a (p,v)-derivation of type 1 on pseudo-BL
algebra A and assume that A = B(A). Then for all z,y € A the
following hold:
(1) Ify < x and D(x) = p(x) then D(y) = ¢(y).
(2) Let Fizp(A) = {x € A: D(x) = p(x)}. If D is a homomor-
phism, then Fizp(x) is an ideal of A.
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(3) If v € Fizp(A) and D(1) = 1 then x™~ € Fizp(A).
(4) D(1) =1 if and only if Fizp(A) = A.

Proof. This has already been proved in [1] Theorem 4.6. O

Theorem 4.9. Let D : A — A be defined by D(x) = p(x) @ a for all
a € B(A) and x € A such that ¢ is a homomorphism on A. Then the
following conditions hold:
(1) D is a p-derivation of type 1 on A.
(2) D is an isotone on A.
(3) D(zVy) = D(x)V D(y) and D(z ANy) = D(z) A D(y) for every
x,y € A.

Proof. (1) From (PBL-2) and Proposition 2.4 we get
Dizey)=plrey)®@a=(p(r@y)Veray)©a

= (plz®y)®@a)V(p(r®y) ®a)
= (p(@) © p(y) ©® a) V (p(2)¢(y) @ a)
= (p(z) ® a®¢(y)) v (p(z) @ D(y))
= (D(x) @ ¢(y)) V (p(r) @ D(y)).

) ®
(2) Let x <y. Then D(z) = p(z)®a=D(xAy) =p(z A Ny)@a =
(gp(tx) ®a) A (p(y) ®a) = D(z) AN D(y) < D(y). Hence D is an
(3) We have D(s v y) = ¢la V) @ a = (¢(z) V p(y) © a) =
D(z) Vv D(y). Similarly, we obtain D(x Ay) = D(z) A D(y). -

Theorem 4.10. Let D be a p-derivation of type 1 on A and assume that

D(1) € B(A). Then the following are equivalent for all x,y € B(A):

) D is an isotone;

v) < D(1);

) = p(x) © D(1);

z Ay) = D(x) A D(y);

rVy) = D(x)V D(y);

r®y)=D(zr)® D(y).

Proof. (1 = 2) For all z € A we always have x < 1. Since D is
isotone then D(z) < D(1).

(
(
(
(
(

(2 = 3) Suppose that D(z) < D(1). By Theorem 4.3 D(z) < () and
also by Definition 4.1, we have D(z) = D(z ® 1) = (D(z) ®
©(1)) V (¢(x) ® D(1)). Therefore p(z) @ D(1) < D(z) < @(z) A
D(1) = ¢(z) ® D(1) That proves D(x) = ¢(z) @ D(1).

(3=1) Let z < y. Then D(x) = ¢(z) ® D(1) < ¢(y) ® D(1) = D(y).
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(3 = 4) Setting a = D(1) in Theorem 4.9 yields the assertion.
(4=1) ,(5 = 1) Follows from Theorem 4.5.
(3=06) Forall z,y € A (Let z,y € A) D(x ® y) (x
%P(( )) (())) (D1)®D(1)) = (p(r)@D(1)@(p(y)©D(1)) =
(6 = 2) We have g(m) = D(x®1) = D(x) ® D(1) < D(1). Hence
D(z) < D(1).

The remainder of this section will be devoted to the derivation of
types 2, 3 and the following is about (¢, )-implicative derivation. In
some similar theorems about types 2 or 3 we prove theorem for type
3 and for type 2 can be proved in much the same way. Similarly for
implicative derivation we only prove theorem for (~-,V)-derivation.

Theorem 4.11. Let A be a pseudo-BL algebra and D be a (p,1))-
derivation of type 2 or 8 on A. Then for all x € A the following
conditions hold:

(1) D(0) = 0;

(2) D(x) = D(x) @ (x);

(3) D(x) < ¢(x);

(4) If D(x) = 1 then p(x) =

(5) For type 3, D(z™) = D(l)@gp(x)@D(xN) and D(z™) < p(z™)A
(D(zx))~. Also for type 2, D(xz~) = (D(1) © p(z)) © D(z) and
so D(xz7) < (D(x))".

Proof. (1) Let x € A. Then D(0) = D(00z) = (D(0)Op(z)) ®

(¥(0)©D(z) = (p(z))~ @ D(0)) ® 0 = 0.
(2) We have z = z©0, by Definition (4.1), D(z) = D(z© 0) =

gf()(f)@)@(o)) ® (¢ (x)©D(0)) = (D(x)C0) ® (¢(2)00) = D(z) ®
(3) By (2) and Proposition 2.4 D(z) = D(x) @ ¥(z) < (z).
(4) If D(x) =1 then ¢(z) > 1 this gives ¥(x) = 1.
(5) For every x € A, D(z~) = D(10z) = (D(1)Op(z)) @ (¥(1)
©D(z)) = (¢(x))~ ® D(1) @ (D(x))~ < (D(x))~ A p(x™). .
Theorem 4.12. Let A be a pseudo-BL algebra and D be a (p,1))-
derivation of type i on A, i={1,2} . If v € B(A) then for i=2; D(z) =
(D () #(2)) & D(a~) and D(z) < @(x). Ify € B(A) then D(x A
y) < D(x) © (D(y~). Moreover for i=3; D(x) = (p(z) ® (1))®
Eggxggwand D(z) < ¢(x) also if y € B(A) then D(x ANy) < D(y) ®
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Proof. We prove the theorem for ¢+ = 3, and for ¢ = 2 is similar.
Let © € B(A). Then, we can write

D(z) = D(10z7) = (D(1)@p(z7)) @ (p(1)OD(z7))
= (D(M)O(p(z))”) @ (D(z7))~
= (p(z))"" @ D(1) @ (D(
= ¢(r) @ D(1) @ (D(z7))~

T

)
< p(x).
0

Corollary 4.13. Let D be either a p-derivation of type 2 or 3 on the
pseudo-BL algebra A. Then for all x € A, D(x) = D(x) ® ¢(x) and
consequently D(z) < ¢(z).

Theorem 4.14. Let D be a (p,1))-derivations of type 2 or 3 on the
pseudo-BL algebra A. Then the following hold:

(1) Fortype 2, D(x)ov(y) < ¥ (x)OD(y) and for type 3, D(x)0¥(y)
< (x)0D(y);

(2) For type 2, D(x©y) < D(x) & D(y) and for type 3, D(zQy) <
D(z) @ (D(y))~-

Proof. (1) From Theorem 4.11 we have D(y) < ¢(y) and D(z
¥ (x). Then by Proposition 2.4, suppose that (¢(y))™~ < (D(
and so (¢¥(y))~®@D(z) < (D(y))~ @y (x). Consequently, D(z
U(y) < ¢(z)OD(y).
(2) Suppose that z,y € A. We have D(2Oy) = (D(2)Op(y)) (¢ (x)

®
OD(y)) = (p(y™)@D(2))@ ((D(y))~ @y (x)) < D(x) @(D(y ))D

) <
Y))”~
)©

Theorem 4.15. Let D be a (p,)-derivations of type 2 or 3 on the
pseudo-BL algebra A. Then the following hold:

(1) D is an isotone (p,)-derivation on B(A).
(2) If D(x Ny) = D(x) A D(y) or D(zVy) = D(x)V D(y) then D
is an isotone on A.

Proof. (1) Let x,y € B(A), x <y and suppose that D is of type 3.
Then, we can write

D(z) = D(z Ay) = D(z®@y) = D(yOz")
= (D(y)Op(z7)) @ (¢(y)O©D(z7))
= ((p(z7))” ® D(y)) @ (¢(y)OD(x)) < D(y).

This yields that D is an isotone.
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(2) If z <y, then z Ay = x, which implies that D(z) = D(x Ay) =
D(x) A D(y) < D(y).

0

Proposition 4.16. Let D be a p-derivation of type 2 or 3 on the

pseudo-BL algebra A and ¢ be a monomorphism. Then for every x €
Fizp(A)={z € A: D(z) = p(2)}, r®@x = x.

Proof. Let x € Fixp(A). From Theorem 4.11 (2), D(z) = D(z) @ ¢(x).

We have ¢(x) = p(z) ® ¢(x). Since ¢ is monomorphism, it follows

that p(z) = ¢(x ® z). Therefore, we conclude that x = z ® x. O

Theorem 4.17. Let D : A — A be defined by D(z) = ¢(x) & a for
all x,a € A such that ¢ is a homomorphism on the pseudo-BL algebra
A and D(A) C B(A). Then D is a p-derivation of type 3.

Proof. Suppose that z,y € A. Since D(z) < p(x), by Proposition 2.9,
it follows that

(D(7)Op(y)) @ (p(x)©D(y)) = (¢(y

(y)
= (p(y)” @ D(y)™) @ (D(z) @ p(z))
= (p(y) V D(y))” @ (D(x) A ¢(x))
= p(y”) ® p(z) ®a = (z0y) ® a

Theorem 4.18. Let D : A — A be defined by D(z) = a ® ¢(x) for
all x,a € A such that ¢ is a homomorphism on the pseudo-BL algebra
A and D(A) C B(A). Then D is a p-derivation of type 2.

Proof. Similar to the proof of Theorem 4.17. OJ

Theorem 4.19. Let D be a p-derivation of type 2 or 3 on pseudo-BL
algebra A. Then for all x,y € B(A) the following hold:

(1) D is an isotone p-derivation.

(2) D(x) = D(1) @ p().

(3) D(z Ay) = D(x) A D(y) and D(zVy) = D(x) V D(y).

(4) If D(1) = D(1) @ D(1) then D(z @ y) = D(x) ® D(y).

Proof. (1) The result follows from Theorem 4.15.

(2) Let z € B(A). By Theorem 4.11 (6), ¢(x)~ < D(x)~. Hence,
we obtain
D(z) = D(10z7) = (D(1)Op(z7)) @ (p(1)OD(27))

= (p(z7))" @ D)) © D(z7)~ = D(1) @ [(p(z7))” A D(z7)7]
= D) @px)™ = D(1) © ¢(x).
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For type 2 can be proved in much the same way.
(3) Combining (2) and Proposition 2.4 gives D(zAy) = D(1)®@p(zA
y) = D(1) @ (e(z) Ap(y) = (D(1) @ p(x)) A (D(1) @ ¢(y)) =
D(z) A D(y).
(4) Let 2,y € A, D(z ®y) = D(1) @ p(z®@y) = (D(1) ® D(1)) ®

(p(z) @ p(y)) = (D) @p(x)) @ (D(1) ©¢(y)) = D()®D(yé

Theorem 4.20. Let D be an implicative (p,1)-derivation on pseudo-
BL algebra A. For all x,y € A the following hold

~ ~ ~ s

Proof. (1) D(1) = D(1 ~ 1) = (D(1) ~» @(1))V ((1) ~ D(1) = L.

(2) 'Eh result follows fronl (1). B

(3) D(z) = D(1 ~ ) = (D(1) ~ ¢(1)) V(¢ (1) ~ D(1)) = p(z) v
D(x).

(4) D(x™) = D(x ~ 0) = (D(x) ~ p(0))V($(z) ~ D(0)) = (Dl‘)DN'

Theorem 4.21. Let D be an implicative @-derivation on pseudo-BL
algebra A. For all x,y € A the following conditions hold:

(2) ~ 9(y) < (@) ~ D(y) and D(x) — () < p(x) -

tﬁen B(az‘) =(x)7;
(3) D'z ~ y) = ¢"(z) ~ D"(y) and D'z = y) = ¢"(x) =
D"( ); . R
(4) D(O) < D( ~) and D(0) < D(z™);
(5) B(a:wy)\/ﬁ(ywa:) =1 andB(x—)y)\/B(yﬁx)zl.
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Proof. N (1) By Theorem 4.20 ¢(x) < B(x), oly) < B(y) then
D(x) ~ oly) < @(z) ~ p(y) and p(z) ~ @(y) < p(z) ~
D(y). Then D(x) ~ ¢(y) < ¢(x) ~ D(y).

~y oy

(2) D( h yf) - (D(@) ~ ¢(y)) V (p(x) ~ D(y)). By (1), the
(3) It results direcﬂ}'f from (2).

~

(4) D(0) < p(x) ~ D(0) = D(z™).

(5) By (1) and (PBL-5), (D(x) ~ ¢() V (o(y) ~ D(z)) = 1
which is the desired conclusion.
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