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 Blast-induced ground vibration (PPV) evaluation for a safe blasting is a long-
established criterion used mainly by the empirical equations. However, the empirical 
equations are again considering a limited information. Therefore, using Machine 
Learning (ML) tools [Support Vector Machine (SVM) and Random Forest (RF)] can 
help in this context, and the same is applied in this work. A total of 73 blasts are 
monitored and recorded in this work. For the ML tools, the dataset is divided into the 
80-20 ratio for the training and testing purposes in order to evaluate the performance 
capacity of the models. The prediction accuracies by the SVM and RF models in 
predicting the PPV values are satisfactory (up to 9% accuracy). The results obtained 
show that the coefficient of determination (R2) for RF and SVM is 0.81 and 0.75, 
respectively. Compared to the existing linear regressions, this work recommends using 
a machine learning regression model for the PPV prediction. 
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1. Introduction 
Blasting is a damaging and irreversible operation 

by its very nature. However, due to its economics and 
adaptability, it is used in the open cast mines. 
Working professional’s primary concern during 
blasting for excavation is a disruption to the 
excavation's boundary, which results in noticeable 
changes to the rock's appearance in the form of 
cracking, fragmentation, slabbing, back-break, and 
over-break [1-4]. If the magnitude of the damage and 
its impact on the surrounding rock can be anticipated, 
the blast design can be adjusted to minimize the ore 
and waste dilution and instability problems by 
adjusting the reverent parameters. 

Ground vibrations, air blast, and fly-rock 
generation are the three main disruptions caused by 
blasting in the surface mines. Almost all of these 
issues cause severe damages to the buildings near the 
blasting zone, and, aside from that, they can lead to 
ongoing tension with the residents living near the 
activity site. As a result, a vibration control study in 

mines is required to predict the blast-induced ground 
vibration components, which is critical for mitigating 
the negative consequences. 

Many researchers' use of empirical equations is one 
of the most recognized and highly used methods and 
procedures for the vibration prediction. 

The engineers have been using the scaled distance 
regression analysis in order to predict PPV for 
decades because it is the simplest and least 
complicated tool. The scaled distance is a term based 
on the amount of energy released by explosives in air 
shock generation and seismic waves and the impact 
of distance on ground wave attenuation [5], [6]. The 
scaled distance is determined by multiplying the 
distance between the energy source and the measured 
points on the field by the maximum charge weight 
per delay. [7] stated that the effect of charge weight 
per delay on PPV was much more pronounced than a 
far distance (> 50 m). 
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Although the approach is well-accepted due to its 
ease of use, it is merely an empirical approach that 
does not consider the inevitable phenomenon of blast 
wave superimposition. Many attempts have been 

made to obtain the actual charge weight per delay, 
contributing to the superimposed waveforms 
resulting from production blasting. 

Table 1. Empirical equations for ground vibration prediction [1]. 
Sl. No. Researchers Year Predictor equation 

1 Langefors and kihlstrom 1958 Vmax = k(Q/D2/3)b/2 
2 Duvall and Petkof 1959 Vmax = k(D/Q1/2)-b 
3 Devine et al. 1963 Vmax = k(D/Q1/2)-b 
4 Ambraseys and Hendron 1968 Vmax = k(D/Q1/3)-b 
5 Nicholls et al. 1971 Vmax = k (Qa Db) 
6 Is 6922 1973 Vmax = k(D/Q2/3)b 
7 Just-Free 1980 Vmax = k(D/Q

1/3
) −be−αD/Q1/3

 
8 Ghose and Daemen 1983 Vmax = k(D/Q

1/2
) −be−αD 

9 Ghose and Daemen 1983 Vmax = k(D/Q
1/3

) −be−αD 
10 Gupta et al. 1987 Vmax = k(D/Q

1/2
) ne(αXD/Q) 

11 Pal Roy 1993 Vmax = n + k(D/Q
1/3

)
−1

 
12 CMRI 1993 Vmax = n + k(D/Q

1/2
)
−1

 
13 Rai and Singh 2004 Vmax = k R−b Qmax e−α 
14 Ramulu 2004 Vmax = V(2(Bd/Bo)1/2 -1) 
15 Rai et al. 2005 Vmax = 0.438D−1.52 
16 Nicholson 2005 Q max = k(vD2) b 
17 Kahriman et al. 2006 Vmax = 0.561D

−1.432
 

18 Ozer (sandstone) 2008 Vmax = 0.257D
−1.03

 
19 Ozer (shale) 2008 Vmax = 6.31D

−1.9
 

20 Ozer (limestone) 2008 Vmax = 3.02D
−1.69

 

21 Kumar et al. 2016 Vmax = ((0.3396 X 1.02GSI 
GSI1.13)0.642D1.463)/r 

where Vmax is the magnitude of ground vibration; Q is the maximum charge weight in 
any delay interval; D is the distance from blasting; K, a,and b are constants whose 
values depend on the condition of the site; Β is the slope of the best fit line of the Vmax 
versus scale distance; e-αD is the inelastic attenuation factor; α is the inelastic 
attenuation coefficient; n is the parameter related to the rock properties and geometrical 
discontinuities; V is the Vibration due to optimum burden; Bd is the deviated burden; 
Bo is the optimum burden; and GSI is the geological strength index. 

 
Due to the non-homogeneous nature of rocks, the 

geology of civil structures and the explosive blast 
design parameters are optimized by testing on the 
field. In addition, monitoring blast vibrations during 
the actual excavation helps to ensure a proper and 
safe operation and provide the necessary data to 
improve the blasting patterns if deemed necessary 
[8]. 

According to USBM [9], the empirical relationship 
between PPV and scaled distance (D) is as follows: 

ܸ = ି(ܦܵ)ܭ  (1) 

where V is the PPV (m/s); SD is the scaled 
distance, which is defined as the ratio of the distance 

from charge point, R (m), to the square root of charge 
mass, Q (kg), expressed in TNT net equivalent 
charge weight, i.e. SD = R/Q0.5; and k and b are site-
specific constants. 

In the recent years, the researchers have developed 
a variety of soft computing techniques and 
approaches in order to predict and provide solutions 
to reduce the adverse effects of blast-induced ground 
vibration in the surface mining methods including 
machine learning such as artificial neural networks 
[10]–[13], genetic algorithm, CART analysis, neural 
fuzzy technique [14]. The recent works on the 
prediction of blast-induced ground vibration by 
various AI techniques with their efficiency are as 
follows: 
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Table 2. Soft computing technique used by various research works for predicting ground vibration. 
Researchers Predictive model Input parameters R2 

(Kamali and Atai 2010) ANN MCPD, TCPR, D, ϕ, L, NH, Dt, Nd, 
SC R2 = 0.99 

(Kamali and Ataei, 2011) ANN MCPD, TCPR, D, ϕ, L, NH, Dt, Nd, 
SC R2 = 0.99 

(Mohamadnejad, Gholami, and Ataei 
2012) SVM, GRNN D, MCPD R2

SVM = 0.946 R2
GRNN 

= 0.92 
(Mohamad Ataei and Kamali, 2013) ANFIS D, MCPD R2 = 0.9897 
(Ghasemi, Ataei, and 
Hashemolhosseini 2013) FIS S, B, ST, D, MCPD, NH R2 = 0.9459 

(M. Ataei and Sereshki, 2017) GA D, MCPD R2 = 0.92 
(Armaghani et al. 2018) ICA MCPD, D R2 = 0.9458 
(Zhang et al. 2020) PSO-XGBoost PF, B, S, D, MCPD R2 = 0.968 
(Nguyen et al. 2020) HKM-ANN PF, B, S, D, MCPD R2 = 0.983 
(Bayat et al. 2020) ANN B, S, D, CPD R2 = 0.977 
(Chen et al. 2021) MFA-SVR MCPD, BS, E, Vp, ST, D R2 = 0.984 

where E is the Young’s modulus; B is the burden; S is the spacing; MCPD is the maximum charge per delay; TCPR is 
the total charge per round; L is the hole length; NH is the number of holes; SC is the specific charge; Dt is the total 
delay time; Nd is the number of delay interval; ST is the stemming; D is the distance form the blast site; PF is the 
powder factor; BS is the burden to spacing ratio; ϕ is the direction of firing; CPD is the charge per delay; Vp is the p-
wave velocity; SVM is the support vector machine; GRNN is the general regression neural network; FIS is the fuzzy 
inference system; ANFIS is the adaptive neuro-fuzzy inference system; ICA is the imperialist competitive algorithm; 
PSO is the particle swarm optimization; XGBoost is the extreme gradient boosting; HKM is the K-means clustering 
algorithm; ANN is the artificial neural network; MFA is the modified firefly algorithm; and SVR is the support vector 
regression. 

 
2. Objective of study 

 Determine the values of site constants in the 
USBM equation in order to predict PPV, and 
accordingly, find the maximum charge per delay 
using the statistical regression analysis. 

 Use the machine learning algorithm of ‘random 
forest’ and ‘support vector regression’ in order to 
predict the peak particle velocity. 

 Make a comparative study statistical approach, 
random forest, and support vector regression in 
order to predict the peak particle velocity.  

3. Machine learning techniques-a brief overview 
Ensemble learning: An ensemble method is a 

technique that combines the predictions from several 
machine learning algorithms in order to make more 
accurate predictions than any individual model 
developed by a user. A model comprised of a number 
of models is called an ensemble learning method. 

Decision tree in machine learning: A decision 
tree can be used to describe the decisions and 
decision-making in a decision tree analysis. It 
employs an inverted tree-like model of decision-
making based on the statistical filters, as the name 
implies. Though it is most commonly used in data 

mining to develop a strategy to achieve a specific 
target, it is also widely used in machine learning, 
which will be the subject of this article. 

The resulting tree is inverted, with the root at the 
top. The text in bold in black in the image below 
(Figure 1) represents a condition/internal node based 
on which the tree is divided into branches. The 
decision/leaf is the end of the branch that can no 
longer be split; in our example, whether the plane 
passenger died or survived is expressed as red and 
green text, respectively. 

 
Figure 1. Decision tree (source: Internet). 

Problems with decision trees: The dataset on 
which the decision trees are trained is significant. If 
the training data is updated, the decision tree results 
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will be somewhat different, which will have an 
equivalent impact on the prediction. 

Also since the algorithm cannot be moved back 
after the split is made, the decision trees are 
challenging to train, and have a high chance of 
overfitting the dataset. They also appear to find the 
local optima. 

We use the random forest algorithm to fix these 
flaws in a decision tree model, which demonstrates 
the power of integrating several decision trees into a 
single model for a more accurate prediction. 

 

3.1. Random forest 
Random forest is a supervised machine learning 

algorithm that performs classification, and uses an 
ensemble learning model of predictions [26]. 
Random woods have trees that run parallel to each 
other. As a result, when constructing a model, there 
is no interaction between these trees. It works by 
training a large number of decision trees, and then 
calculating the class that is the mode of the classes 
(classification) or the mean prediction (regression) of 
the individual trees, as shown in Figure 2. 

 
Figure 2. Ensemble learning model of prediction (source: Internet). 

A random forest combines the result of multiple 
predictions, which aggregates many decision trees, 
with some helpful modifications: 
 The number of features that can be split at each 

node is limited to some percentage of the total 
(that is known as the hyperparameter). This 
ensures that the ensemble model does not rely too 
heavily on any single individual feature given to 
the model, and makes use of all the potentially 
predictive features. 

 When generating its splits, each tree draws a 
random sample from the original data set, adding 
a further element of randomness that 
prevents overfitting. 

3.2. Support vector regression 
Support Vector Regression (SVR) is a supervised 

machine learning technique that utilizes the idea of 
support vectors in a model [27]. SVR seeks to reduce 

the prediction error by determining the hyperplane 
and minimizing the range between the expected and 
the observed values, referred to as ‘tolerance.' 

Unlike ordinary least square, which aims to 
minimize error and find the best fit, the SVR's goal is 
to reduce the coefficients—specifically, the l2-norm 
of the coefficient vector. Instead, the model's error is 
treated in the constraints function, where we set the 
absolute error to be less than or equal to a given 
value/margin, referred to as the maximum error 
(epsilon). In order to achieve the desired accuracy of 
our model, we can adjust the margins or epsilon. 

4. Research methodology and field study 
4.1. Mine details and data collection 

The mine is being worked by the mechanized 
drilling and blasting method with 6.0 to 9.0 m high 
benches and a bench angle close to 800 to 850.  
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Drilling: Crawler mounted DTH drills of 110 mm 
are being used to drill blast holes. The general dip of 
the formations is steep, dipping away from the face. 
Therefore, the holes are made close to vertical. 

Blasting was carried out using explosives, namely, 
Raj blast Super Emulsion Explosive (Make: Raj. 
Explosive and Chemical Ltd.) and NONEL (Orica 
make).  

A total of 73 blasting data was recorded using 
engineering seismographs, which provided us with 
peak particle velocity, frequency of the seismic 
waves, and air overpressure. 

A database was prepared with burden, spacing, 
hole depth, maximum charge per delay, distance 
from the blast, total charge per hole, and delays of 17 
ms between the holes in a row and 42 ms between the 
holes the rows with NONEL initiation system. 

 
Figure 3. Solution of linear SVR (source: Intel, 2012). 

 
Figure 4. A flow chart of the study. 
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Table 3. Statistical information of data collected. 
Sl. No. Variables Minimum Maximum 

1. Burden (m) 3.5 3.5 
2. Spacing (m) 4.0 4.5 
3. Hole depth (m) 7.0 8.5 
4. Charge per hole (kg) 26.0 48.3 
5. Charge per round (kg) 215 645 
6. Stemming length (m) 2.50 3.25 
7. Number of blast hole per round 9 20 
8. Powder Factor (Te/kg) 3.50 4.25 
9. Maximum charge per delay (kg) 28.4 200 

10. Distance (m) 50 450 
11. PPV (mm/s) 2 59.90 

 
5. Results and discussion 
5.1. Relationship between scale distance and PPV 

The ground vibration data for 73 blasts were 
recorded during blasting, and used to plot a curve 
between the scale distance and PPV, and shown in 
Figure 5. 
 From the above plot, the equation relating the 

peak particle velocity and the square root scaled 
distance using regression was obtained and 
given as: 

ܸ =  (ܦܵ)ܭ
(2) 

where K = 370.09 and n = -1.149 

 In order to design a safe blast, we are required 
to increase the value of site constant ‘k’ so that 

it covers every value lying above the previously 
obtained equation and gets a new equation at a 
95% confidence level.  

ܸ =  (ଽହܦܵ)ܭ
(3) 

where K = 723 and n = -1.149 

5.2. Random forest regression results 
73 blast data was collected during the study. 58 

data was used to prepare the model, and 15 data was 
used to predict PPV. Table 4 shows the result 
obtained from applying the random forest regression 
algorithm to the blasting data. 

 
Figure 5. Relation between scale distance and PPV 
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Table 4. Predicted PPV using random forest regression. 

S. No. Distance (m) MCD (kg) Scaled distance 
(m/kg^1/2) 

Actual PPV 
(mm/s) 

Predicted PPV 
(mm/s) 

1 150 57.6 19.764 5.970 6.630 
2 350 80 39.131 6.220 5.920 
3 125 51.1 17.486 8.000 9.780 
4 125 106 12.141 15.000 15.400 
5 60 28.4 11.259 21.160 23.320 
6 75 90 7.906 56.800 28.350 
7 75 40 11.859 22.000 19.550 
8 175 28.4 32.838 4.450 5.180 
9 250 40 39.528 6.670 7.450 

10 250 38 40.555 6.000 5.750 
11 150 120 13.693 14.700 12.390 
12 100 200 7.071 40.300 38.540 
13 120 90 12.649 40.300 36.870 
14 165 33.7 28.423 9.400 7.890 
15 110 52.8 15.138 13.000 13.990 

 

 
Figure 6. Predicted PPV vs. actual PPV using RF. 

 The R2 value for the predicted PPV and actual 
PPV is 0.81. 

 The results obtained from the algorithm are 
highly correlated with a correlation coefficient 
of 0.901.  

5.3. Support vector regression results 
73 blast data was collected during the study. 58 

data was used to prepare the model, and 15 data was 
used to predict PPV. Table 5 shows the results 
obtained by applying the support vector regression 
algorithm to the blasting data. 
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Table 5. Predicted PPV using support vector regression. 

Sl. No. Distance (m) MCD (kg) Scaled distance 
(m/kg^0.5) 

Actual PPV 
(mm/s) 

Predicted PPV 
(mm/s) 

1 150 57.6 19.764 5.99 11.70 
2 350 80 39.131 6.23 5.16 
3 125 51.1 17.486 8.00 13.46 
4 125 106 12.141 15.03 20.49 
5 60 28.4 11.259 21.12 22.65 
6 75 90 7.906 56.83 34.12 
7 75 40 11.859 21.98 21.33 
8 175 28.4 32.838 4.44 6.36 
9 250 40 39.528 6.69 5.10 

10 250 38 40.555 5.99 4.95 
11 150 120 13.693 14.73 17.81 
12 100 200 7.071 40.45 38.86 
13 120 90 12.649 40.45 19.69 
14 165 33.7 28.423 9.39 7.54 
15 110 52.8 15.138 12.94 14.88 

 

 
Figure 7. Predicted PPV vs. actual PPV using support vector regression. 

 The R2 value for the predicted PPV and actual 
PPV is 0.75. 

 The results obtained from the algorithm are 
highly correlated with a correlation coefficient 
of 0.86.  

6. Conclusions 
From the results of this work, the following 

conclusions can be drawn: 

 The statistical approach for predicting the peak 
particle velocity provides sufficient 
information to design a blast considering 
maximum charge per delay, reducing the 
ground vibration. However, in this method, it 
is not easy to include all the input parameters, 
and therefore, the accuracy in the prediction of 
PPV is very less. 

 When the ML tools like random forest 
regression model and support vector machine 
regression were used, it was found that the 
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random forest regression model had a better 
prediction capability than the support vector 
machine regression.  
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  چکیده:

حال،  نی. با اردیگیمورد استفاده قرار م یاست که عمدتا توسط معادلات تجرب یمیقد اریمع کی من،یانفجار ا کی يبرا )PPV(از انفجار  یناش نیارتعاش زم یابیارز
 یو جنگل تصادف )SVM( نیماش بانیبردار پشت( )ML( نیماش يریادگی ياستفاده از ابزارها ن،ی. بنابرارندیگیرا در نظر م ياطلاعات محدود یمعادلات تجرب

(RF) ( يابزارها يکار نظارت و ثبت شده است. برا نیانفجار در ا 73کار اعمال شده است. در مجموع  نیامر در ا نیکمک کند، و هم نهیزم نیدر ا تواندیم ML ،
 RFو  SVM يمدل ها ینیب شیشده است. دقت پ میتقس شیآزما واهداف آموزش  يبرا 80-20عملکرد مدلها به نسبت  تیظرف یابیها به منظور ارزمجموعه داده

 81/0 بیبه ترت SVMو  RF يبرا )R2( نییتع بیکه ضر دهدیبدست آمده نشان م جیدرصد دقت). نتا 9از  شیبخش است (ب تیرضا PPV ریمقاد ینیبشیدر پ
 .کندیم هیتوص PPV ینیب شیپ يرا برا ML ونیاز مدل رگرس هپژوهش استفاد نیموجود، ا یخط يهاونیرگرس ریبا سا سهیاست. در مقا 75/0و 

  .بانیبردار پشت ونی، رگرسیجنگل تصادف ونی، رگرسسرعت ذراتحد نهایت ، نی، ارتعاش زمیمعادله تجرب کلمات کلیدي:
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