
Journal of Algebraic Systems
Vol. 10, No. 1, (2022), pp 1-29

A SURVEY ON THE FUSIBLE PROPERTY OF SKEW
PBW EXTENSIONS

S. HIGUERA AND A. REYES∗

Dedicated to the memory of Professor V. A. Artamonov

Abstract. We present several results that establish the fusible
and the regular left fusible properties of the family of noncom-
mutative rings known as skew Poincaré-Birkhoff-Witt extensions.
Our treatment is based on the recent works of Ghashghaei and
McGovern [13], and Koşan and Matczuk [31] concerning the left
fusibleness and the regular left fusibleness of skew polynomial rings
of automorphism type. Since the results formulated in this pa-
per can be applied to algebraic structures more general than skew
polynomial rings, our contribution to the theory of fusibleness is
to cover more families of rings of interest in branches as quantum
groups, noncommutative algebraic geometry and noncommutative
differential geometry. We provide illustrative examples of the ideas
developed here.

1. Introduction

For every topological space with certain restrictions, two non-trivial
algebraic structures can be associated: the ring of continuous bounded
functions with real values, and the ring of all continuous functions
with real values defined on the space. A first approach to these rings of
functions associated with topological spaces was presented by Gillman
and Jerison [15]. They studied the algebraic properties of the ring of
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continuous functions at real value C(X) and the ring of continuous
bounded functions to real value denoted as C∗(X), both rings defined
on an arbitrary topological space X, and showed that a space is com-
pletely regular and Hausdorff if the family of all zero sets forms a basis
for the closed subsets of a topology. This fact together with another
results allow to show that for the ring of continuous functions at real
value C(X), every zero-divisor element can be written as the sum of
a zero-divisor element and a non zero-divisor (also called regular) ele-
ment.

Since the sum of two zero-divisors need not be a zero-divisor, Faith
and Pillay [10], Theorem 1.12, characterized those commutative rings
for which the set of zero-divisors is an ideal. Now, as is well known,
if the set of left zero-divisors in a ring R is not a left ideal, then
there exists a left zero-divisor which can be expressed as the sum of
a left zero-divisor and a non-left zero-divisor in R. This fact moti-
vated Ghashghaei and McGovern [13] to investigate the class of rings
in which every element can be written as the sum of a left zero-divisor
and a non-left zero-divisor ([13], p. 1151). Rings with this type of
decomposition were defined by them in their paper as fusible rings. In
the case of the noncommutative rings of polynomial type introduced
by Ore [45], the skew polynomial rings or Ore extensions, they showed
that if R is a left fusible ring with an automorphism σ, then R[x;σ] (the
skew polynomial ring of automorphism type) is also left fusible ([13],
Proposition 2.9). Now, more recently, in 2019, Koşan and Matczuk [31]
defined a more general class of fusible rings, the regular fusible rings
(see Definition 2.6) that enriches this new theory, and proved that if
R is a regular left fusible ring with an automorphism σ, then R[x;σ]
is also regular left fusible. As a matter of fact, Koşan and Matczuk
answer two of the fourth questions asked by Ghashghaei and McGov-
ern [13], and established interesting results such as a characterization
of semiprime left Goldie rings in terms of this new class of fusible rings.

With the above results in mind and motivated for the recent devel-
opment of the theory about the fusible property for noncommutative
rings of polynomial type, our aim in this paper is to show that the
fusible and regular fusible properties hold in several families of rings
more general than skew polynomial rings of automorphism type. With
this objective, our point of view is based on some ideas developed in the
context of the skew PBW extensions (PBW denotes Poincaré-Birkhoff-
Witt). These noncommutative algebraic structures were introduced by
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Gallego and Lezama [12] as a natural generalization of PBW exten-
sions defined by Bell and Goodearl [5]. Since its introduction, ring and
homological properties of skew PBW extensions have been studied by
several authors (c.f., Artamonov [4], Hamidizadeh et al., [17], Hashemi
et al., [18], [19], [20], Lezama et al., [34], [36], [37], Louzari and Reyes
[39], Niño et al., [42] and [43]), and, in fact, a book that includes sev-
eral of the works carried out for these extensions have been published
recently, see Fajardo et al., [11]. In Sections 3 and 5, we will say some
words about the relation of skew PBW extensions with respect to skew
polynomial rings and its importance in the framework of noncommu-
tative rings having PBW bases.

The paper is organized as follows. In Section 2, we make a brief de-
scription of some facts about the fusible and regular fusible properties.
We also recall the key results about this property in the skew poly-
nomial rings setting with the aim of motivating the results we want
to generalize. Next, in Section 3, we consider some facts about skew
PBW extensions, and then we proceed in Section 4 to formulate suf-
ficient conditions to guarantee that these extensions are fusible (see
Theorems 4.1, 4.2, 4.3, and 4.4). Section 5 contains a detailed list
of examples of skew PBW extensions which are not skew polynomial
rings of automorphism type, so the fusibleness of these examples follow
from the above theorems. The results presented in this paper are new
in the theory and cover more families of rings, so that our work can
be considered as a contribution to the study of the fusible property of
algebraic structures.

Throughout this article, the word ring means an associative ring (not
necessarily commutative) with identity. The letters k and k denote a
commutative ring and a field, respectively. R and C denote, as usual,
the set of real and complex numbers, respectively. Recall that a reduced
ring is a ring without nonzero nilpotent elements, and in an Abelian
ring, every idempotent is central. Of course, reduced rings are Abelian.

2. Fusible and regular fusible rings

In this section, we present the notion of fusible ring introduced by
Ghashghaei and McGovern [13]. We recall some key facts about this
concept and present a more general and recent notion introduced by
Koşan and Matczuk [31], the regular fusible ring. For both notions, we
present different algebraic objects that illustrate them.
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For the next definition, following Ghashghaei and McGovern [13],
if b is an element of a ring R, Annl(b) = {a ∈ R | ab = 0} and
Annr(b) = {a ∈ R | ba = 0} denotes the left annihilator and the right
annihilator ideals of b ∈ R, respectively. If Annr(b) ̸= 0, then b is
called a left zero-divisor; in other case, b is a non-left zero-divisor. For
these authors, Zl(R) and Z∗

l (R) denote the set of left zero-divisors and
non-left zero-divisors of R, respectively.
Definition 2.1 ([13], Definition 2.1). Let R be a ring. We call a non-
zero element a ∈ R left fusible if it can be expressed as the sum of a
left zero-divisor and a non-left zero-divisor in R. R is said to be left
fusible if every non-zero element of R is left fusible. Right fusible rings
are defined analogously. A ring R which is both right and left fusible
is called fusible ring.

We present some examples of fusible rings. These are adapted from
[13], Remark 2.2. Consider R a ring.
Example 2.2. (i) Recall that r ∈ R is called a regular element

if r is not a zero-divisor. Thus, every regular element has a
trivial left fusible representation given by r = 0+ r; hence, this
element is left fusible. Analogously, it is right fusible. A ring
where every element is regular is known as a domain. In this
way, every domain is a fusible ring.

(ii) An element e ∈ R is said to be idempotent if e2 = e. Every
idempotent element has a left fusible representation given by
e = (1− e) + (2e− 1). Therefore, every Boolean ring (a ring R
is said to Boolean if a2 = a, for all a ∈ R) is a fusible ring.

(iii) A ring R is said to be special almost clean if each element a of
R can be decomposed as the sum of a regular element r ∈ R
and an idempotent e ∈ R with aR ∩ eR = 0 (see [1], p. 851).
Thus, it is clear that every special almost clean ring is a fusible
ring.

Remark 2.3. Some algebraic properties of the ring of continuous func-
tions at real value C(X,R) and the ring of continuous bounded func-
tions to real value denoted as C∗(X,R), both rings defined on an ar-
bitrary topological space X, were studied by Gillman and Jerison [15].
There, it was shown that for any topological space X, C(X,A) is a
fusible ring, where A is a subring of R (see [13], Theorem 4.3).

Next, we present a very interesting fact that relates the left fusible
property with the skew polynomial rings of automorphism type. Def-
inition and properties of these noncommutative rings can be found in
Goodearl and Warfield [16] or McConnell and Robson [40].
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Proposition 2.4 ([13], Proposition 2.9). If R is a left fusible ring and
σ is a ring automorphism of R, then R[x;σ] is a left fusible ring.

The following example illustrates that the previous proposition need
not be true for any skew polynomial ring; besides, this shows that there
exist right fusible elements which are not left fusible.

Example 2.5 ([13], Example 2.10). Let R be a domain and σ be a ring
endomorphism of R which is not injective. Let r ∈ R which satisfies
σ(r) = 0, with r ̸= 0, so xr = σ(r)x = 0. The set of zero-divisors
of R[x, σ] is represented by the ideal ⟨x⟩. Since the set of left zero-
divisors of R[x;σ] is a left ideal, then R[x;σ] is not a left fusible ring.
By definition, it follows that x is a non-right zero-divisor element, and
hence x is a right fusible element but not a left fusible element.

The next definition presents the concept of regular left fusible ring.
This class of rings was introduced by Koşan and Matczuk [31], in order
to continue with the study of the fusible property of noncommutative
rings. Before presenting Definition 2.6, we have to say some words
about the notation.

Following Koşan and Matczuk [31], for a nonempty subset S ⊆ R,
lannR(S) stands for the left annihilator of S in R, that is,

lannR(S) = {b ∈ R | bS = 0}.
An element a ∈ R is a left zero-divisor if lannR(a) ̸= 0. The elements
which are not left zero-divisors are said to be left regular. With this
notation, the left zero-divisors considered by Koşan and Matczuk are
right zero-divisors in the meaning of Ghashghaei and McGovern [13],
so, in Definition 2.6, left fusible rings of Koşan and Matczuk are right
fusible rings in the language of Ghashghaei and McGovern.

Definition 2.6 ([31], Definition 2.1). A ring R is said to be regular
left fusible if for any non-zero element r ∈ R, there exists a regular
(i.e., left and right regular) element s ∈ R such that the element sr
is left fusible, i.e., sr = c + w, where c is a left zero-divisor and w is
left regular. Regular right fusible rings are defined analogously. A ring
which is both right and regular left fusible is called regular fusible ring.

Since every left regular element is left fusible, it is enough to observe
that for every non-zero left zero-divisor a, there exists a regular ele-
ment s in R such that the element sa has a left fusible representation.
Now, every left fusible ring is regular left fusible ring. If r = a+w is a
left fusible representation, in particular, it is a regular left fusible rep-
resentation taking s = 1. Nevertheless, the following example shows
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that the class of left fusible rings is strictly smaller than the class of
regular left fusible rings.

Example 2.7 ([31], Example 2.2). Consider the k-algebra R = k ⟨x, y⟩
subject to the relation x2 = 0. Cohn [8] showed that the set of all left
zero-divisors of R is equal to xR and hence, the sum of any two left
zero-divisors is a left zero-divisor. Thus R is not a left fusible ring.
Furthermore, y is a regular element of R and ry = 0+ry is a left fusible
decomposition of ry, for any non-zero element r ∈ R. Therefore, R is
a regular left fusible ring.

Now, we consider some important properties and results related to
regular left fusible rings. We also present an interesting relationship
of regular left fusible rings with Goldie’s theory. The following state-
ments are taken from [31]. Before, we present some definitions about
localization in ring theory.

Definition 2.8 ([16] or [40]). Let R be a ring.
(i) A multiplicative set in R is a subset S ⊆ R such that 1 ∈ S

and S is closed under multiplication. If S is a multiplicative set
in R, then S is a left Ore set if it satisfies that for all r1 ∈ R,
s1 ∈ R, there exist r2 ∈ R and s2 ∈ S such that r1s2 = s1r2
(this property is commonly known as the Ore’s condition). If S
is a left Ore set, then S−1R is called the left Ore localization of
R by S.

(ii) We recall that if S is the set of regular elements of R, then
Ql(R) is called the classical ring of left quotients of R: if d is
invertible in Ql(R), for every d ∈ S, each q ∈ Ql(R) can be
factored q = d−1a, for some d ∈ S and a ∈ R. Classical ring of
right quotients are defined similarly and it is denoted by Qr(R).

Proposition 2.9 ([31], Proposition 2.8). For R a ring, the following
assertions hold: (1) If R is left fusible, then so is S−1R. (2) If R is
regular left fusible, then Ql(R) is left fusible. (3) If S−1R is regular left
fusible, then R is regular left fusible.

From [31], Corollary 2.9, we know that if a ring R has left quotient
ring Ql(R), then R is regular left fusible if and only if Ql(R) is left
fusible if and only if Ql(R) is regular left fusible.

Two important concepts in the study of Goldie’s theory are related
to this new class of regular fusible rings. Let us recall some notions
of ring theory. If R is a ring, a left ideal I of R is essential, denoted
by I ≤e RR, if J ∩ I ̸= 0, for every nonzero left ideal J of R. The
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left singular ideal of R is Singl(R) := {b ∈ R | lannR(b) <e RR}. One
can check that Singl(R) is a two-sided ideal of R. R is said to be left
nonsingular if Singl(R) = 0. On the other hand, a ring R is said to
be unit-regular if for each b ∈ R, there exists a unit u ∈ R such that
bub = b. From Camillo and Khurana [7], Theorem 1, we know that
R is unit-regular if and only if every element b of R can be written as
b = e+ u such that bR ∩ eR = 0, where e is an idempotent and u is a
unit in R. This shows that every element in a unit-regular ring R can
be expressed as a left (right) zero-divisor and a unit. Some examples
of unit-regular rings are semisimple rings and strongly regular rings
including, of course, the commutative von Neumann regular rings.

Proposition 2.10 ([31], Lemma 2.6 and Proposition 2.13). For R a
ring, the following assertions hold: (1) If R is regular left fusible, then
R is left nonsingular. (2) If R is unit-regular, then R is regular left
fusible.

From the above propositions and Goldie’s theorem, a characteri-
zation of semiprime left Goldie rings in terms of regular left fusible
rings were presented by Koşan and Matczuk [31]. Before, recall that a
semiprime ring R is a ring in which the zero ideal is a semiprime ideal,
that is, the zero ideal is an intersection of prime ideals (a prime ideal
in a ring R is any proper ideal P of R such that, whenever I and J are
ideals of R with IJ ⊆ P , either I ⊆ P or J ⊆ P ). For more details
about semiprime rings, see Goodearl and Warfield [16] or McConnell
and Robson [40].

Proposition 2.11 ([31], Theorem 2.14). If R is a semiprime ring, then
R is left Goldie if and only if R is regular left fusible and has finite left
Goldie (uniform) dimension.

The next result generalizes Proposition 2.4, from left fusible rings to
regular left fusible rings.

Proposition 2.12 ([31], Proposition 2.20). If R is a regular left fusible
ring and σ is a ring automorphism of R, then R[x;σ] is regular left
fusible.

In the next section, we present the skew PBW extensions. We recall
some definitions and properties that are very useful to guarantee the
fusibleness of noncommutative rings more general than skew polyno-
mial rings of automorphism type.
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3. Skew PBW extensions

As we said in the Introduction, the skew PBW extensions were in-
troduced by Gallego and Lezama [12] with the aim of generalizing the
PBW extensions defined by Bell and Goodearl [5]. During the last
years, different authors have been shown that skew PBW extensions
include remarkable examples of algebraic structures of interest in sev-
eral branches of mathematics and theoretical physics. Briefly, we list
some of these examples (see [53], for a detailed reference of every fam-
ily of algebras): skew polynomial rings of injective type defined by Ore
[45], almost normalizing extensions defined by McConnell and Rob-
son [40], algebras of solvable type introduced by Kandri-Rody and
Weispfenning, diffusion algebras [25], 3-dimensional skew polynomial
algebras defined by Bell and Smith (cf. [55]), classes of algebras such
as some types of Auslander-Gorenstein rings, some Calabi-Yau and
skew Calabi-Yau algebras [52], and families of Artin-Schelter regular
algebras.

Definition 3.1 ([12], Definition 1). Let R and A be rings. We say that
A is a skew PBW extension (also known as σ-PBW extension) over R,
which is denoted by A := σ(R)⟨x1, . . . , xn⟩, if the following conditions
hold:

(i) R (the ring of coefficients) is a subring of A sharing the same
multiplicative identity element.

(ii) there exist elements x1, . . . , xn ∈ A such that A is a left free
R-module, with basis

Mon(A) := {xα = xα1
1 · · ·xαn

n | α = (α1, . . . , αn) ∈ Nn},
and x01 · · ·x0n := 1 ∈ Mon(A).

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element
ci,r ∈ R \ {0} such that xir − ci,rxi ∈ R.

(iv) For any elements 1 ≤ i, j ≤ n, there exists an element
di,j ∈ R \ {0} such that

xjxi − di,jxixj ∈ R +Rx1 + · · ·+Rxn

(i.e., there exist elements r
(i,j)
0 , r

(i,j)
1 , . . . , r

(i,j)
n of R with

xjxi − di,jxixj = r
(i,j)
0 +

∑n
l=1 r

(i,j)
l xl).

Since Mon(A) is a left R-basis of A, the elements ci,r and di,j are
unique. Detailed examples of skew PBW extensions can be consulted
in [22], Section 3, and [54], Section 5.

The next proposition establishes the relationship between skew poly-
nomial rings [45] and skew PBW extensions.



FUSIBLE PROPERTY OF SKEW PBW EXTENSIONS 9

Proposition 3.2 ([12], Proposition 3). Let A = σ(R)⟨x1, . . . , xn⟩ be
a skew PBW extension. For each 1 ≤ i ≤ n, there exist an injective
endomorphism σi : R → R and a σi-derivation δi : R → R such that
xir = σi(r)xi + δi(r), for each r ∈ R. We write Σ := {σ1, . . . , σn}, and
∆ := {δ1, . . . , δn}.
Definition 3.3 ([12], Definition 4). Let A = σ(R)⟨x1, . . . , xn⟩ be a
skew PBW extension.

(i) A is called quasi-commutative if the conditions (iii) and (iv)
presented in the Definition 3.1 are replaced by the following:
(iii’) For every 1 ≤ i ≤ n and r ∈ R \ {0}, there exists
ci,r ∈ R \ {0} such that xir = ci,rxi. (iv’) For every 1 ≤ i, j ≤ n
there exists di,j ∈ R \ {0} such that xjxi = di,jxixj.

(ii) A is said to be bijective if σi is bijective, for each 1 ≤ i ≤ n,
and di,j is invertible for any 1 ≤ i < j ≤ n.

(iii) A is called of endomorphism type if δi = 0, for every i = 1, . . . , n.
If we also have that every element of Σ is a bijective function,
then A is said to be of automorphism type.

Remark 3.4. If A = σ(R)⟨x1, . . . , xn⟩ is a quasi-commutative skew
PBW extension over a ring R, then A is isomorphic to an iterated
Ore extension of endomorphism type ([38], Theorem 2.3). Neverthe-
less, skew PBW extensions of endomorphism type are more general
than iterated Ore extensions. With the aim of illustrating the differ-
ences between these structures, we consider the situations with two and
three indeterminates.

If we take the iterated Ore extension of endomorphism type given by
R[x;σx][y;σy], by definition (see [16] or [40]), for any element
r ∈ R, we have the following relations: xr = σx(r)x, yr = σy(r)y,
and yx = σy(x)y. On the other hand, if we have σ(R)⟨x, y⟩ a skew
PBW extension of endomorphism type over R, then for any r ∈ R, by
Definition 3.1, we have the relations xr = σ1(r)x, yr = σ2(r)y, and
yx = d1,2xy + r0 + r1x + r2y, for some elements d1,2, r0, r1 and r2 be-
long to R. When we compare the defining relations of both algebraic
structures, it is clear which one of them is more general.

Now, if we have the iterated Ore extension R[x;σx][y;σy][z;σz], then
for any r ∈ R, xr = σx(r)x, yr = σy(r)y, zr = σz(r)z, yx = σy(x)y,
zx = σz(x)z, zy = σz(y)z. On the other hand, for the skew PBW exten-
sion of automorphism type σ(R)⟨x, y, z⟩, we have the relations given by
xr = σ1(r)x, yr = σ2(r)y, zr = σ3(r)z, yx = d1,2xy+r0+r1x+r2y+r3z,
zx = d1,3xz+r

′
0+r

′
1x+r

′
2y+r

′
3z, and zy = d2,3yz+r

′′
0+r

′′
1x+r

′′
2y+r

′′
3z,

for some elements d1,2, d1,3, d2,3, r0, r′0, r′′0 , r1, r′1, r′′1 , r2, r′2, r′′2 , r3, r′3, r′′3 of
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R. As we can see, as the number of indeterminates increases, the dif-
ferences between both algebraic structures are more remarkable.

These differences between skew polynomial rings of automorphism
type and skew PBW extensions of automorphism type will be key in
our Theorems 4.1 and 4.2.

The following definition presents some facts about the way elements
are written in skew PBW extensions.
Definition 3.5 ([12], Section 3). Let A = σ(R)⟨x1, . . . , xn⟩ be a skew
PBW extension.

(i) Consider the families Σ and ∆ in Proposition 3.2. Throughout
the paper, for any element α = (α1, . . . , αn) ∈ Nn, we write
σα := σα1

1 ◦ · · · ◦ σαn
n , δα = δα1

1 ◦ · · · ◦ δαn
n , where ◦ denotes

composition, and |α| := α1+ · · ·+αn. If β = (β1, . . . , βn) ∈ Nn,
then α + β := (α1 + β1, . . . , αn + βn).

(ii) Let ⪰ be a total order defined on Mon(A). If xα ⪰ xβ but
xα ̸= xβ, we will write xα ≻ xβ. If f is a non-zero element of A,
then f can be expressed uniquely as f = a0+a1X1+· · ·+amXm,
with ai ∈ R, and Xm ≻ · · · ≻ X1 (eventually, we will use
expressions as f = a0 + a1Y1 + · · · + amYm, with ai ∈ R, and
Ym ≻ · · · ≻ Y1). With this notation, we define lm(f) := Xm,
the leading monomial of f ; lc(f) := am, the leading coefficient
of f ; lt(f) := amXm, the leading term of f ; exp(f) := exp(Xm),
the order of f . Note that deg(f) := max{deg(Xi)}mi=1. Finally,
if f = 0, then lm(0) := 0, lc(0) := 0, lt(0) := 0. We also
consider X ≻ 0 for any X ∈ Mon(A). Thus, we extend ⪰ to
Mon(A) ∪ {0}.

Following [12], Definition 11, if ⪰ is a total order on Mon(A),
we say that ⪰ is a monomial order on Mon(A) if the following
conditions hold:

• For every xβ, xα, xγ, xλ ∈ Mon(A), xβ ⪰ xα implies that
lm(xγxβxλ) ⪰ lm(xγxαxλ) (the total order is compatible
with multiplication).

• xα ⪰ 1, for every xα ∈ Mon(A).
• ⪰ is degree compatible, i.e., |β| ⪰ |α| ⇒ xβ ⪰ xα.

The next proposition is very useful when one need to make some
computations with elements of skew PBW extensions.
Proposition 3.6 ([12], Theorem 7). If A is a polynomial ring with
coefficients in R with respect to the set of indeterminates {x1, . . . , xn},
then A is a skew PBW extension of R if and only if the following
conditions hold:
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(1) for each xα ∈ Mon(A) and every 0 ̸= r ∈ R, there exist
unique elements rα := σα(r) ∈ R \ {0}, pα,r ∈ A, such that
xαr = rαx

α+pα,r, where pα,r = 0, or deg(pα,r) < |α| if pα,r ̸= 0.
If r is left invertible, so is rα.

(2) For each xα, xβ ∈ Mon(A), there exist unique elements cα,β ∈ R
and pα,β ∈ A such that xαxβ = cα,βx

α+β + pα,β, where cα,β is
left invertible, pα,β = 0, or deg(pα,β) < |α + β| if pα,β ̸= 0.

Next, we recall the Hilbert’s Basis theorem for skew PBW extensions.

Proposition 3.7 ([38], Corollary 2.4). (Hilbert Basis Theorem). If
A = σ(R)⟨x1, . . . , xn⟩ is a bijective skew PBW extension over a left
Noetherian ring R, then A is also a left Noetherian ring. Analogously
for the right case.

Finally, in this section, we recall that a filtered ring is a ring R with
a family F (R) = {Fn(R) | n ∈ Z} of additive subgroups of R, where
we have the ascending chain · · · ⊂ Fn−1(R) ⊂ Fn(R) ⊂ · · · such that
1 ∈ F0(R) and Fn(R)Fm(R) ⊆ Fn+mR, for all n,m ∈ Z. From a fil-
tered ring R, it is possible to construct its associated graded ring G(R)
taking G(R)n := Fn(R)/Fn−1(R) (see McConnell and Robson [40] for
more details).

The next result establishes that skew PBW extensions are filtered
rings and describes its associated graded ring.

Proposition 3.8 ([38], Theorem 2.2). If A = σ(R)⟨x1, . . . , xn⟩ is a
skew PBW extension over R, then A is a filtered ring with filtration
given by Fm(A) := R, if m = 0, and {f ∈ A | deg(f) ≤ m}, if
m ≥ 1. The corresponding graded ring G(A) is a quasi-commutative
skew PBW extension of R. Moreover, if A is bijective, then G(A) is a
quasi-commutative bijective skew PBW extension of R.

For the next section, we also need two results about localization of
these extensions.

Proposition 3.9 ([35], Lemma 2.6). Let A = σ(R)⟨x1, . . . , xn⟩ be a
skew PBW extension over R, and let S be the set of regular elements
of R such that σi(S) = S, for every 1 ≤ i ≤ n, where σi is considered
as in Proposition 3.2.

(1) If S−1R exists, then S−1A exists and it is a bijective skew
PBW extension of S−1R with S−1A = σ(S−1R) ⟨x′1, . . . , x′n⟩,
where x′i := xi

1
and the system of constants of S−1R is given by

c′i,j :=
ci,j
1

, c′i, r
s
:= σi(r)

σi(s)
, for all 1 ≤ i, j ≤ n.
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(2) If RS−1 exists, then AS−1 exists and it is a bijective skew
PBW extension of RS−1 with AS−1 = σ(RS−1) ⟨x′1, . . . , x′n⟩,
where x′′i := xi

1
and the system of constants of S−1R is given by

c′′i,j :=
ci,j
1

, c′′i, r
s
:= σi(r)

σi(s)
, for all 1 ≤ i, j ≤ n.

Proposition 3.10 ([35], Proposition 4.6). Let R be a ring such that any
left regular element is regular, and let S be the set of regular elements
of R such that S−1R exists. Then,

(1) Ql(R) exists if and only if Ql(S
−1R) exists. In such case, we

have that Ql(R) ∼= Ql(S
−1R).

(2) R is semiprime left Goldie if and only if S−1R is semiprime left
Goldie.

The right side version of the proposition holds.

Now, we proceed to formulate several results to guarantee the fusible-
ness of skew PBW extensions. The next section contains the original
results of the paper.

4. Fusible property in skew PBW extensions

We start with Theorem 4.1, which extends Proposition 2.4 formu-
lated for skew polynomial rings of automorphism type. As we saw in
Example 2.5, the fusibleness of skew polynomial ring does not hold in
general.

Theorem 4.1. If A = σ(R)⟨x1, . . . , xn⟩ is a skew PBW extension of
automorphism type over a left fusible ring R, then A is left fusible.

Proof. Suppose that R is a left fusible ring. Let
f = a0 + a1X1 + · · ·+ amXm

be a non-zero element of Zl(A), where X1 ≺ X2 ≺ · · · ≺ Xm and every
ai ̸= 0, for i = 1, . . . ,m (this can be realized by using Definition 3.5
(ii)). We will prove the assertion by considering two cases depending
of the value of the constant element a0: (i) a0 = 0 and (ii) a0 ̸= 0.

Case (i). Since R is left fusible, then there exist elements z1 ∈ Zl(R)
and z′1 ∈ Z∗

l (R) with a1 = z1 + z′1, whence
f = z1X1 + (z′1X1 + · · ·+ amXm).

The idea is to show that z1X1 ∈ Zl(A) and z′1X1+· · ·+amXm ∈ Z∗
l (A).

Having in mind that z1 ∈ Zl(R), there exists a non-zero element r of R
with z1r = 0. Since A is of automorphism type, there exists a non-zero
element s ∈ R with σα1(s) = r, where α1 = exp(X1), which implies
that z1X1s = z1σ

α1(s)X1 = z1rX1 = 0, that is, z1X1 ∈ Zl(A).
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Now, to prove that z′1X1 + · · ·+ amXm ∈ Z∗
l (A), if we suppose that

z′1X1+ · · ·+amXm ∈ Zl(A), then there exists a non-zero element b ∈ R
with (z′1X1 + · · ·+ amXm)b = 0, whence

z′1X1b+ · · ·+ amXmb = z′1σ
α1(b)X1 + · · ·+ amσ

αm(b)Xm = 0,

and since X1 ≺ · · · ≺ Xm, necessarily z′1σ
α1(b)X1 = 0, i.e.,

z′1σ
α1(b) = 0. By assumption, A is a skew PBW extension of auto-

morphism type, so σα1(b) is a non-zero element of R, which means
that z′1 belongs to Zl(R), which is false, since we saw that z′1 is an
element of Z∗

l (R).
Therefore, f is the sum of an element of Zl(A) and an element of

Z∗
l (A), which means that A is a left fusible ring.
Case (ii). Again, since R is left fusible, there exist elements

z0 ∈ Zl(R) and z′0 ∈ Z∗
l (R) with a0 = z0 + z′0, whence

f = z0 + (z′0 + a1X1 + · · ·+ amXm).

Once more again, the idea is to show that z′0 + a1X1 + · · · + amXm

belongs to Z∗
l (A). By contradiction, if this is not the case and

z′0 + a1X1 + · · ·+ amXm

is an element of Zl(A), then there exists a non-zero element b of R such
that (z′0 + a1X1 + · · ·+ amXm)b = 0. By using Proposition 3.6 (i), we
obtain
(z′0 + a1X1 + · · ·+ amXm)b = z′0b+ a1X1b+ · · ·+ amXmb

= z′0b+ a1σ
α1(b)X1 + · · ·+ amσ

αm(b)Xm.

Since A is of automorphism type, the only constant element appearing
in this expression is z′0b, so necessarily z′0b = 0, i.e., z′0 ∈ Zl(R). Of
course, this fact is a contradiction, and hence f is the sum of an element
of Zl(A) and an element of Z∗

l (A), whence A is a left fusible ring. □
With respect to regular left fusibleness of skew polynomial rings of

automorphism type, Proposition 2.12 establishes that if a ring R is
regular left fusible with an automorphism σ, then R[x;σ] is regular left
fusible. The natural generalization of this fact for skew PBW exten-
sions of automorphism type is presented in the next theorem; its proof
is similar to the presented for Theorem 4.1, if we remember that left
fusible for Ghashghaei and McGovern corresponds to right fusible for
Koşan and Matczuk.

Theorem 4.2. If A = σ(R)⟨x1, . . . , xn⟩ is a skew PBW extension of
automorphism type over a regular left fusible ring R, then A is regular
left fusible.
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Unfortunately, for the moment, we are unable to formulate an asser-
tion as Theorems 4.1 and 4.2 for general skew PBW extensions not only
of automorphism type (of course, this is the same situation with skew
polynomial rings where there are non-trivial derivations). However, if
we impose another ring-theoretic conditions for the ring of coefficients,
we can assert the fusibleness and regular fusibleness of a considerable
number of noncommutative rings (see Section 5). This is what we are
going to do in the Theorems 4.3 and 4.4.
Theorem 4.3. If A = σ(R)⟨x1, . . . , xn⟩ is a bijective skew PBW ex-
tension over a semiprime Noetherian ring R, then A is a regular left
fusible ring.
Proof. From Proposition 3.8, we know that

G(A) ∼= R[x1;σ1] · · · [xn;σn].
Since R is Noetherian and σi is bijective, for every 1 ≤ i ≤ n, G(A) is
a Noetherian ring ([16], Corollary 2.7). By Proposition 3.7, A is also
a left Noetherian ring, whence A is left Goldie. On the other hand,
as R is semiprime and left Noetherian, then G(A) is semiprime ([33],
Proposition 3.6), and hence A is also semiprime ([35], Proposition 4.7).
In this way, A is a left Goldie semiprime ring, so that Proposition 2.11
implies that A is regular left fusible. □

Since every left Noetherian ring is a left Goldie, but not necessarily
the converse is true, the following result extends Theorem 4.3.
Theorem 4.4. If A = σ(R)⟨x1, . . . , xn⟩ is a bijective skew PBW ex-
tension over a semiprime left Goldie ring R, then A is a regular left
fusible ring.
Proof. Let S be the set of regular elements of R. By Goldie’s theorem,
we have that Ql(R) = S−1R exists and it is a left Artinian ring. Making
use of Proposition 3.9, it follows that S−1A exists and it is a bijective
extension of Ql(R), that is, S−1A = σ(Ql(R)) ⟨x1, . . . , xn⟩. Since Ql(R)
is left Artinian, we have that Ql(R) is left Noetherian, and so Proposi-
tion 3.7 implies that S−1A is left Noetherian, and thus also left Goldie.
On the other hand, having in mind that G(σ(Ql(R)) ⟨x1, . . . , xn⟩) is a
quasi-commutative extension of the semiprime left Goldie ring Ql(R),
then G(S−1A) is a semiprime ring, and so it follows that S−1A is
semiprime ([35], Proposition 4.7). Therefore, S−1A is semiprime left
Goldie, and Proposition 3.10 (ii) allows us to conclude that A is a
semiprime left Goldie ring. Finally, since A is a semiprime left Goldie
ring, we obtain that A is a regular left fusible ring as a consequence of
Proposition 2.11. □
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Remark 4.5. In [48], the second author considered the question about
Goldie dimension of skew PBW extensions. For example, we know that
for A = σ(R)⟨x1, . . . , xn⟩ a bijective skew PBW extension over R, (i)
if R is a right Noetherian domain, then the right Goldie dimension of
A is 1 ([48], Proposition 3.2). (ii) If R is a prime right Goldie ring,
then the right uniform dimension of A is less or equal than right uni-
form dimension of R ([48], Theorem 3.5). In this way, thinking about
Proposition 2.11, it is clear the importance of right regular fusibleness
of skew PBW extensions under the assumptions established in both re-
sults (i) and (ii). (iii) For M a nonsingular right R-module M , if either
R is a right Noetherian ring or M is a Noetherian module, then the
right uniform dimension of the R-module M is the same as the right
uniform dimension of the A-module M⊗RA. This result, together with
[13], Proposition 2.11, which states that every left fusible ring is right
nonsingular, allow us to conclude that when M = A is left fusible, then
the right uniform dimension of A as an R-module is the same as the
right uniform dimension of the A-module A.

Finally, in this section, another approach to the fusibleness of skew
PBW extensions can be done considering the ring-theoretic notion of
Rickart ring. The reason for this point of view is that some works have
been realized in this line of thinking for these extensions (see Hashemi
et al., [19], [20], and Reyes et al., [44], [47], [50] and [53]), and also
the following fact proved by Ghashghaei and McGovern [13], Corollary
2.15: if R is an Abelian ring which is a left (right) Rickart ring, then R
is fusible. In this way, if we guarantee that skew PBW extensions are
Abelian and Rickart rings, then the fusibleness property holds. Next,
we will say some words about this approach.

A ring R is a left p.p. (principally projective)-ring (also called left
Rickart ring) if any principal left ideal of R is projective. McGovern
[41], Proposition 16, showed that every commutative p.p.-ring is almost
clean. This result was considered by Akalan and Vas [1], Theorem 4.1,
who proved that for an Abelian ring R, R is a left p.p.-ring if and only
if R special almost clean. In this way, it is clear that, as we said above,
if R is an Abelian ring which is left (right) p.p.-ring, then R is fusible.

The next definition contains some ring-theoretic notions that allow
to guarantee that skew PBW extensions are Rickart and Abelian rings.
We want to say some words about the key notion in this definition: Ar-
mendariz ring.
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Briefly, a ring R is called Armendariz (the term was introduced by
Rege and Chhawchharia [46]) if for polynomials f(x) = a0+a1x+ · · ·+
anx

n, g(x) = b0 + b1x+ · · ·+ bmx
m of R[x] which satisfy f(x)g(x) = 0,

then aibj = 0, for every i, j. The importance of this notion lies in
its natural and useful role in understanding the relation between the
annihilators of the ring R and the annihilators of the polynomial ring
R[x]. For example, Armendariz [3], Lemma 1, showed that a reduced
ring always satisfies this condition. For skew polynomial rings, the
notion of Armendariz has been also studied by several authors, as we
can see in [2], [3], [23], [24], [30], [32], and [46].

Definition 4.6. Let A = σ(R)⟨x1, . . . , xn⟩ be a skew PBW extension.
(i) ([18], Definition 3.7 (2); [44], Definitions 3.4 and 3.5) We say

that R is a (Σ,∆)-Armendariz ring if for polynomials
f = a0 + a1X1 + · · ·+ amXm

and g = b0 + b1Y1 + · · ·+ btYt in A, the equality fg = 0 implies
aiXibjYj = 0, for every i, j. R is a (Σ,∆)-weak Armendariz
ring if for linear polynomials f = a0 + a1x1 + · · · + anxn and
g = b0 + b1x1 + · · · + bnxn in A, the equality fg = 0 implies
aixibjxj = 0, for every 1 ≤ i, j ≤ n.

(ii) ([50], Definitions 3.1 and 3.2) R is said to be a Σ-skew Armen-
dariz ring, if for elements f =

∑m
i=0 aiXi and g =

∑t
j=0 bjYj in

A, the equality fg = 0 implies aiσαi(bj) = 0, for all 0 ≤ i ≤ m
and 0 ≤ j ≤ t, where αi = exp(Xi). R is a weak Σ-skew Ar-
mendariz ring if for elements f =

∑n
i=0 aixi and g =

∑n
j=0 bjxj

in A (x0 := 1), the equality fg = 0 implies aiσi(bj) = 0, for all
0 ≤ i, j ≤ n (σ0 := idR).

(iii) ([53], Definitions 4.1 and 4.2) R is a skew-Armendariz ring if
for polynomials f = a0 + a1X1 + · · ·+ amXm and

g = b0 + b1Y1 + · · ·+ btYt
in A, fg = 0 implies a0bk = 0, for each 0 ≤ k ≤ t. R is a weak
skew-Armendariz ring if for linear polynomials

f = a0 + a1x1 + · · ·+ anxn,

and g = b0 + b1x1 + · · · + bnxn in A, fg = 0 implies a0bk = 0,
for every 0 ≤ k ≤ n.

Several relations and examples between above skew Armendariz no-
tions can be found in [53]. We will only remember some facts of interest
for the paper. This is the content of the following remark.

Remark 4.7. Let A = σ(R)⟨x1, . . . , xn⟩ be a skew PBW extension over
a ring R.
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(i) ([44], Theorems 3.13 and 4.2) If R is (Σ,∆)-Armendariz, then
A is an Abelian ring. Besides, R is a p.p.-ring if and only if A
is a p.p.-ring.

(ii) ([50], Corollary 3.10 and Theorem 5.3) If R is a weak Σ-skew
Armendariz ring, then A is Abelian. Besides, if A bijective,
then R is a Rickart ring if and only if A is a Rickart ring.

(iii) ([53], Proposition 4.10 and Theorem 5.6) If R is skew-
Armendariz, then A is Abelian. In the case that A is bijec-
tive, then R is a p.p.-ring if and only if A is a p.p.-ring.

From the above results mentioned in Remark 4.7, and the fact that
for an Abelian and left (right) Rickart ring one can assert its fusibleness,
then it is clear that for all Armendariz notions in Definition 4.6, the
skew PBW extensions satisfying all of them will be fusible rings.

5. Examples

The importance of our results is appreciated when we can apply
them to algebraic structures (in terms of generators and relations) more
general than those considered by Ghashghaei and McGovern [13] and
Koşan and Matczuk [31]. In this way, our aim in this section is to pro-
vide several examples of noncommutative rings which are skew PBW
extensions (not only of automorphism type) but not skew polynomial
rings of automorphism type. Of course, our list of examples is not ex-
haustive, so another algebraic structures can be found in papers such as
[22] or [38]. For all examples in this section, our Theorems 4.1, 4.2, 4.3,
and 4.4 can be illustrated considering that the skew PBW extensions
satisfy the conditions established in each one of them. Since domains
are fusible rings, if we consider these extensions over rings not nec-
essarily domains but fusible rings, then our results will become more
important. Below we say some words about this fact.

About the family of Weyl algebras An(k), in the literature it is com-
mon to find several characterizations of these algebras as rings of dif-
ferential operators. Surely, the most beautiful and excellent treatment
about Weyl algebras is presented by Coutinho [9]. Briefly, the nth
Weyl algebra An(k) over k is the k-algebra generated by the 2n inde-
terminates x1, . . . , xn, y1, . . . , yn where

xjxi = xixj, yjyi = yiyj, 1 ≤ i < j ≤ n,

yjxi = xiyj + δij, δij is the Kronecker delta, 1 ≤ i, j ≤ n.

From the relations defining the Weyl algebras, it follows that these
cannot be expressed as skew polynomial rings of automorphism type
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(since the algebra is simple) but skew polynomial rings with non-trivial
derivations. Of course, all these algebras are examples of skew PBW
extensions over k, that is, An(k) ∼= σ(k)⟨x1, . . . , xn, y1, . . . , yn⟩ ([38],
Section 3.1). In this way, if we change k by a left fusible or regular left
fusible R, then the fusibleness of An(R) will be hold.

Different deformations of Weyl algebras have been introduced in the
literature. We recall some of them.

Following Goodearl and Warfield [16], p. 36, for an element
q ∈ k \ {0}, Aq

1(k) denotes the k-algebra presented by two generators
x and y and one relation xy − qyx = 1, which is known as a quantized
Weyl algebra over k. Note that Aq

1(k) = A1(k) = k[y][x; d/dy], when
q = 1. If q ̸= 1, then Aq

1(k) = k[y][x;σ, δ], where σ is the k-algebra
automorphism given by σ(f(y)) = f(qy), and δ is the q-difference op-
erator (also known as Eulerian derivative)

δ(f(y)) =
f(qy)− f(y)

qy − y
=
α(f)− f

α(y)− y
,

as it is mentioned in [16], Exercise 2N, so this algebra is not a skew
polynomial ring of automorphism type. By a direct computation, we
can prove that Aq

1(k) ∼= σ(k)⟨x, y⟩, and since k is trivially satisfies the
assumptions in our Theorems 4.1 and 4.2, 4.3, and 4.4, then Aq

1(k) is
left fusible and regular left fusible. Again, if we change k by a left
fusible or regular left fusible R, then we will obtain the fusibleness of
An(R).

A generalization of Aq
1(k) is given by the additive analogue of the

Weyl algebra Aq(q1, . . . , qn). For non-zero elements q1, . . . , qn ∈ k, this
algebra is generated by the indeterminates x1, . . . , xn and y1, . . . , yn
satisfying the relations xjxi = xixj, yjyi = yiyj, for every 1 ≤ i, j ≤ n,
yixj = xjyi, for all i ̸= j, and yixi = qixiyi+1, for 1 ≤ i ≤ n. It is clear
from these definitions that these algebras are not skew polynomial rings
of automorphism type. In [38], Section 3.5, it was shown that these
algebras are skew PBW extensions over k. The left fusibleness and
regular left fusibleness of Aq(q1, . . . , qn) is clear. If we change k by a
left fusible or regular left fusible R, then the fusibleness of An(R) will
be hold.
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Another deformation of Weyl algebras was introduced by Giaquinto
and Zhang [14] with the aim of studying the Jordan Hecke symme-
try as a quantization of the usual second Weyl algebra. By defini-
tion, the The quantum Weyl algebra A2(Ja,b) is the k-algebra generated
by the variables x1, x2, ∂1, ∂2, with relations (depending on parameters
a, b ∈ k)
x1x2 = x2x1 + ax21, ∂2∂1 = ∂1∂2 + b∂22
∂1x1 = 1 + x1∂1 + ax1∂2, ∂1x2 = −ax1∂1 − abx1∂2 + x2∂1 + bx2∂2

∂2x1 = x1∂2, ∂2x2 = 1− bx1∂2 + x2∂2.

Note that if a = b = 0, then A2(J0,0) is precisely the second Weyl al-
gebra A2(k). From the defining relations, one can see that this algebra
is not a skew polynomial ring of automorphism type but a skew PBW
extension over the commutative polynomial ring k[x1, ∂2] ([49], Exam-
ple 2(i)). Once more again, if we change k by a left fusible or regular
left fusible ring R, then the fusibleness of A2(Ja,b) will be guaranteed.

With respect to the universal enveloping algebras of finite-
dimensional Lie algebras, we recall briefly their definition over fields. If
g is a finite dimensional Lie algebra over k with basis {x1, . . . , xn}, then
the universal enveloping algebra of g, denoted by U(g), is the algebra
generated by x1, . . . , xn subject to the relations xir − rxi = 0 ∈ k, for
every element r ∈ k, and xixj − xjxi = [xi, xj] ∈ g, where

[xi, xj] ⊆ k+ kx1 + · · ·+ kxn,
for all 1 ≤ i, j ≤ n. Since these enveloping algebras are PBW ex-
tensions over k in the sense of Bell and Goodearl [5] (note that these
authors presented another examples of enveloping rings related to en-
veloping universal algebras), all of them are skew PBW extensions also
over the field k ([38], Section 3.1). As is well-known, in general, these
algebras are not skew polynomial rings even including non-zero trivial
derivations. In this way, their left fusibleness and regular left fusible-
ness can be deduced from Theorems 4.1, 4.2, 4.3, and 4.4. The same
result will be obtained if we change k by a left fusible or regular left
fusible ring.

Of course, some enveloping algebras can be expressed as skew poly-
nomial rings; however, in these rings the derivations are non-trivial.
Let us see an example of this situation.

Following Goodearl and Warfield, [16], p. 40, the standard basis for
the Lie algebra sl(k) is labelled {e, f, h}, where [e, f ] = h, [h, e] = 2e,



20 HIGUERA AND REYES

and [h, f ] = −2f. In this way, the enveloping algebra U(sl2(k)) is
the k-algebra presented by three generators e, f, h and three relations
ef − fe = h, he− eh = 2e, and hf − fh = −2f . If R is the subalgebra
of U(sl2(k)) generated by e and h, then

R = k[e][h; δ1] = k[h][e;σ1],
where k[e] and k[h] are commutative polynomial rings, δ1 denotes the
derivation 2e(d/de) on k[e], and σ1 is the k-algebra automorphism of
k[h] with σ1(h) = h− 2. Thus,

U(sl2(k)) = k[e][h; δ1][f ;σ2, δ2] = k[h][e;σ1][f ;σ2, δ2],
where σ2(e) = e, σ2(h) = h + 2, δ2(e) = −h, and δ2(h) = 0 ([16],
Exercise 2S). Hence, it is clear that the left fusibleness and regular left
fusibleness of U(sl2(k)) does not follow from Ghashghaei and McGov-
ern [13], Proposition 2.9, and Koşan and Matczuk [31], Proposition
2.20. However, since U(sl2(k)) ∼= σ(k)⟨e, f, h⟩, by our four theorems
above, both properties about fusibleness hold for this algebra. The
same situation if we take this ring over a left fusible or regular left
fusible ring.

Some deformations of universal enveloping algebras (also known as
quantum groups) can be considered as skew PBW extensions. Let us
see two examples.

Let g be a finite dimensional Lie algebra over k with basis x1, . . . , xn
and U(g) its enveloping algebra. The homogenized enveloping algebra
of g is A(g) := T (g ⊕ kz)/ ⟨R⟩, where T (g ⊕ kz) denotes the tensor
algebra, z is a new indeterminate, and R is spanned by the union of sets
{z ⊗ x− x⊗ z | x ∈ g} and {x⊗ y − y ⊗ x− [x, y]⊗ z | x, y ∈ g}. The
algebra A(g) is a skew PBW extension over k[z], whence A(g) is left
fusible and regular left fusible.

From [16], p. 41, for k an arbitrary field, if q is an element of k
with q ̸= ±1, the quantized enveloping algebra of sl2(k) correspond-
ing to the choice of q is the k-algebra Uq(sl2(k)) presented by the
generators E,F,K,K−1 and the relations KK−1 = K−1K = 1,
EF − FE = K−K−1

q−q−1 , KE = q2EK, and KF = q−2FK. From [16],
Exercise 2T, we know that Uq(sl2(k)) can be expressed as an iterated
skew polynomial ring of the form k[E][K±1;σ1][F ;σ2, δ2] ([16], Exercise
2T), so this algebra is not of automorphism type. As it was observed
in [38] p. 1216, Uq(sl2(k)) = σ(k[K,K−1])⟨E,F ⟩, so our theorems
above guarantee that Uq(sl2(k)) is left fusible and regular left fusible.
Of course, if we take a regular left fusible R, since R[K,K−1] is also
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regular left fusible ([31], Proposition 2.20), our results guarantee that
Uq(sl2(k)) will be regular left fusible.

Next, we present another examples of quantum algebras which are
not skew polynomial rings of automorphism type but skew PBW ex-
tensions satisfying the conditions imposed in Theorems 4.1, 4.2, 4.3,
and 4.4.

The Jordan Algebra introduced by Jordan [29] is the free k-algebra
J defined by J := k{x, y}/⟨yx− xy− y2⟩. It is immediate to see that
this algebra is not a skew polynomial ring of automorphism type but
an easy computation shows that J ∼= σ(k[y])⟨x⟩. In this way, J is not
a skew PBW extension of automorphism type, so our Theorems 4.1
and 4.2 cannot be applied. Nevertheless, since the commutative poly-
nomial ring k[y] satisfies the conditions imposed in Theorems 4.3 and
4.4, both results guarantee that J is left fusible and regular left fusible.

By definition, the q-Heisenberg algebra is the k-algebra hn(q) gener-
ated over k by xi, yi, zi, for 1 ≤ i ≤ n, subject to the relations

xixj = xjxi, yiyj = yjyi, zjzi = zizj, 1 ≤ i < j ≤ n,

xizi − qzixi = ziyi − qyizi = xiyi − q−1yixi + zi = 0, 1 ≤ i ≤ n,

xiyj = yjxi, xizj = zjxi, yizj = zjyi, i ̸= j,

Again, it is clear that is neither a skew polynomial ring of automor-
phism type and a skew PBW extension of automorphism type, so left
fusible and regular left fusible properties for hn(q) follow from Theo-
rems 4.3 and 4.4, since hn(q) ∼= σ(k)⟨x1, . . . , xn⟩ ([54], Section 5.3).

Given any q ∈ k \ {0}, for every field k, the corresponding quantized
coordinate ring of M2(k) is the k-algebra Oq(M2(k)) presented by four
generators x11, x12, x21, and x22 and the six relations

x11x12 = qx12x11, x12x22 = qx22x12, x11x21 = qx21x11,
x21x22 = qx22x21, x12x21 = x21x12,

and x11x22 − x22x11 = (q − q−1)x12x21. This algebra, also known as
the coordinate ring of quantum 2 × 2 matrices over k, or the 2 × 2
quantum matrix algebra over k, can be expressed as the skew polyno-
mial ring k[x11][x12;σ12][x21;σ21][x22;σ22, δ22] ([16], Exercise 2V). Since
Oq(M2(k)) is a skew PBW extension over k[x12],

Oq(M2(k)) = σ(k[x12])⟨x11, x21, x22⟩
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([38], p. 1216), then the left fusible and regular left fusible properties
of Oq(M2(k)) are guaranteed.

Following Yamane [56], if q is a complex number such that q8 ̸= 1,
the complex algebra R′ generated by e12, e13, e23, f12, f13, f23, k1, k2, l1, l2
subject to the relations
e13e12 = q−2e12e13, f13f12 = q−2f12f13,

e23e12 = q2e12e23 − qe13, f23f12 = q2f12f23 − qf13,

e23e13 = q−2e13e23, f23f13 = q−2f13f23,

e12f12 = f12e12 +
k21 − l21
q2 − q−2

, e12k1 = q−2k1e12, k1f12 = q−2f12k1,

e12f13 = f13e12 + qf23k
2
1, e12k2 = qk2e12, k2f12 = qf12k2,

e12f23 = f23e12, e13k1 = q−1k1e13, k1f13 = q−1f13k1,

e13f12 = f12e13 − q−1l21e23, e13k2 = q−1k2e13, k2f13 = q−1f13k2,

e13f13 = f13e13 −
k21k

2
2 − l21l

2
2

q2 − q−2
, e23k1 = qk1e23, k1f23 = qf23k1,

e13f23 = f23e13 + qk22e12, e23k2 = q−2k2e23, k2f23 = q−2f23k2,

e23f12 = f12e23, e12l1 = q2l1e12, l1f12 = q2f12l1,

e23f13 = f13e23 − q−1f12l
2
2, e12l2 = q−1l2e12, l2f12 = q−1f12l2,

e23f23 = f23e23 +
k22 − l22
q2 − q−2

, e13l1 = ql1e13, l1f13 = qf13l1,

e13l2 = ql2e13, l2f13 = qf13l2, e23l1 = q−1l1e23,

l1f23 = q−1f23l1, e23l2 = q2l2e23, l2f23 = q2f23l2,

l1k1 = k1l1, l2k1 = k1l2, k2k1 = k1k2,

l1k2 = k2l1, l2k2 = k2l2, l2l1 = l1l2,

is very important in the definition of the quantized enveloping algebra
of sl3(C). From [38], Section 3.5, A is a skew PBW extension over the
commutative polynomial ring C[l1, l2, k1, k2], so left fusible and regular
left fusible properties hold for R′. The same results are obtained if we
change C by a left fusible and regular left fusible, respectively.

Another family of rings which includes the universal enveloping alge-
bra U(sl(2,k)), the Dispin algebra U(osp(1, 2)) and the Woronowicz’s
algebra Wν(sl(2, k)), is called the family of 3-dimensional skew polyno-
mial algebras. These algebras were introduced by Bell and Smith and
are very important in noncommutative algebraic geometry, see [55].
Next, we present its definition and classification.
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Definition 5.1 ([55], Definition C4.3). A 3-dimensional skew polyno-
mial algebra A is a k-algebra generated by the variables x, y, z restricted
to relations yz−αzy = λ, zx− βxz = µ, and xy− γyx = ν, such that

(i) λ, µ, ν ∈ k+ kx+ ky + kz, and α, β, γ ∈ k \ {0};
(ii) Standard monomials {xiyjzl | i, j, l ≥ 0} are a k-basis of the

algebra.

From Definition 5.1, it is clear that these algebras are skew PBW
extensions over the field k, that is, A ∼= σ(k)⟨x, y, z⟩ (see [22], Section
3.1.2 or [54], Section 5.2 for more details).

Proposition 5.2 ([55], Theorem C.4.3.1). If A is a 3-dimensional skew
polynomial algebra, then A is one of the following algebras:

(1) if |{α, β, γ}| = 3, then A is defined by the relations
yz − αzy = 0, zx− βxz = 0, xy − γyx = 0.

(2) if |{α, β, γ}| = 2 and β ̸= α = γ = 1, then A is one of the
following algebras:
(i) yz − zy = z, zx− βxz = y, xy − yx = x;
(ii) yz − zy = z, zx− βxz = b, xy − yx = x;
(iii) yz − zy = 0, zx− βxz = y, xy − yx = 0;
(iv) yz − zy = 0, zx− βxz = b, xy − yx = 0;
(v) yz − zy = az, zx− βxz = 0, xy − yx = x;
(vi) yz − zy = z, zx− βxz = 0, xy − yx = 0,
where a, b are any elements of k. All nonzero values of b give
isomorphic algebras.

(3) If |{α, β, γ}| = 2 and β ̸= α = γ ̸= 1, then A is one of the
following algebras:
(i) yz − αzy = 0, zx− βxz = y + b, xy − αyx = 0;
(ii) yz − αzy = 0, zx− βxz = b, xy − αyx = 0.
In this case, b is an arbitrary element of k. Again, any nonzero
values of b give isomorphic algebras.

(4) If α = β = γ ̸= 1, then A is the algebra defined by the relations
yz−αzy = a1x+b1, zx−αxz = a2y+b2, xy−αyx = a3z+b3. If
ai = 0 (i = 1, 2, 3), then all nonzero values of bi give isomorphic
algebras.

(5) If α = β = γ = 1, then A is isomorphic to one of the following
algebras:
(i) yz − zy = x, zx− xz = y, xy − yx = z;
(ii) yz − zy = 0, zx− xz = 0, xy − yx = z;
(iii) yz − zy = 0, zx− xz = 0, xy − yx = b;
(iv) yz − zy = −y, zx− xz = x+ y, xy − yx = 0;
(v) yz − zy = az, zx− xz = z, xy − yx = 0;
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Parameters a, b ∈ k are arbitrary, and all nonzero values of b
generate isomorphic algebras.

As we said before, every 3-dimensional skew polynomial algebra is
a skew PBW extension. Nevertheless, some of these algebras cannot
be expressed as skew polynomial rings even in the case of non-trivial
derivations. One of the possible illustrative examples of this fact can
be the Dispin algebra U(osp(1, 2)), which is the enveloping algebra of
the Lie superalgebra osp(1, 2) ([55], Definition C4.1). By definition,
Dispin algebra is generated by the indeterminates x, y, z over a field k
satisfying the relations yz − zy = z, zx + xz = y and xy − yx = x
(the algebra (b)(i) above with β = −1). Even without knowing exactly
if the algebra is of the derivation type or not, the left fusibleness and
regular left fusibleness of this algebra is guaranteed by Theorems 4.1
and 4.2. The same results are obtained if we change k by a left fusible
or regular left fusible ring.

Related to skew polynomial rings, Jordan [27] introduced a subclass
of these rings which he defined as ambiskew polynomial rings. Different
levels of generality of the construction of ambiskew polynomial rings
have been considered by Jordan in his papers (see Jordan and Wells
[28] for a detailed description). However, from its definition we can
see that ambiskew rings are skew polynomial rings of mixed type, and
hence it is not possible to apply directly the results of Ghashghaei and
McGovern [13], and Koşan and Matczuk [31]. From relations defin-
ing ambiskew polynomial rings, we can check that these rings are skew
PBW extensions. In this way, if we consider ambiskew polynomial rings
defined over a semiprime left Goldie ring, then Theorem 4.4 guarantees
the regular left fusible property of these rings.

Different algebraic structures of remarkable importance in theoreti-
cal physics can be also expressed as skew PBW extensions. We present
four of them.

The Lie-deformed Heisenberg is the free C-algebra defined by the
commutation relations

qj(1 + iλjk)pk − pk(1− iλjk)qj = iℏδjk
[qj, qk] = [pj, pk] = 0, j, k = 1, 2, 3,

where qj, pj are the position and momentum operators, and
λjk = λkδjk, with λk real parameters. If λjk = 0 one recovers the
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usual Heisenberg algebra. An easy computation shows that this alge-
bra is a skew PBW extension over C.

With the aim of obtaining bosonic representations of the Drinfield-
Jimbo quantum algebras, Hayashi [21] considered the A−

q algebra by
using the free algebra U. Following Berger [6], Example 2.7.7, this k-
algebra U is generated by the indeterminates ω1, . . . , ωn, ψ1, . . . , ψn,
and ψ∗

1, . . . , ψ
∗
n, subject to the relations

ψjψi − ψiψj = ψ∗
jψ

∗
i − ψ∗

i ψ
∗
j = ωjωi − ωiωj = ψ∗

jψi − ψiψ
∗
j = 0, 1 ≤ i < j ≤ n,

ωjψi − q−δijψiωj = ψ∗
jωi − q−δijωiψ

∗
j = 0, 1 ≤ i, j ≤ n,

ψ∗
i ψi − q2ψiψ

∗
i = − q2ω2

i , 1 ≤ i ≤ n.

From [51], Section 3, we have that this algebra is a skew PBW exten-
sion over the commutative polynomial ring k[ω1, . . . , ωn], so left fusible-
ness and regular left fusibleness are properties of this algebra.

The Non-Hermitian realization of a Lie deformed defined by Jannus-
sis et al., [26] is an important example of a non-canonical Heisenberg
algebra considering the case of non-Hermitian (i.e., ℏ = 1) operators
Aj, Bk, where the following relations are satisfied:

Aj(1 + iλjk)Bk −Bk(1− iλjk)Aj = iδjk

[Aj, Bk] = 0 (j ̸= k)

[Aj, Ak] = [Bj, Bk] = 0,

and,
A+

j (1 + iλjk)B
+
k −B+

k (1− iλjk)A
+
j = iδjk

[A+
j , B

+
k ] = 0 (j ̸= k),

[A+
j , A

+
k ] = [B+

j , B
+
k ] = 0, (5.1)

with Aj ̸= A+
j , Bk ̸= B+

k (j, k = 1, 2, 3). If the operators Aj, Bk

are in the form Aj = fj(Nj + 1)aj, Bk = a+k fk(Nk + 1), where aj, a+j
are leader operators of the usual Heisenberg-Weyl algebra, with Nj the
corresponding number operator (Nj = a+j aj, ⟨Nj | nj⟩ = ⟨nj|nj⟩), and
the structure functions fj(Nj + 1) complex, then it is showed that Aj

and Bk are given by

Aj =

√
i

1 + iλj

(
[(1− iλj)/(1 + iλj)]

Nj+1 − 1

(1− iλj)/(1 + iλj)− 1

1

Nj + 1

) 1
2

aj

Bk =

√
i

1 + iλk
a+k

(
[(1− iλk)/(1 + iλk)]

Nk+1 − 1

(1− iλk)/(1 + iλk)− 1

1

Nk + 1

) 1
2

.
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As one can show by some computations, this algebra is a skew PBW
extension over C where the operators Aj and Bk are the indeterminates
(see [51], Section 3, for a detailed description of the algorithms to show
this fact).

Diffusion algebras arose in physics as a possible way to understand
a large class of 1-dimensional stochastic process, see [25]. A diffu-
sion algebra A with parameters aij ∈ C \ {0}, 1 ≤ i, j ≤ n is an
algebra over C generated by variables x1, . . . , xn subject to relations
aijxixj − bijxjxi = rjxi − rixj, whenever i < j, bij, ri ∈ C, for all i < j,
such that the indeterminates x’s form a C-basis of the algebra A. In
the applications to physics, the parameters aij are strictly positive re-
als, and the parameters bij are positive reals as they are unnormalised
measures of probability. As we can see, these algebras are not skew
polynomial rings over C[x1, . . . , xn] but are skew PBW extensions over
this ring (see [54], Section 5.3) satisfying the conditions imposed in
theorems above, so we can assert their left fusibleness and regular left
fusibleness. The same results are obtained if we change C by a left
fusible and regular left fusible, respectively.
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A SURVEY ON THE FUSIBLE PROPERTY OF SKEW PBW EXTENSIONS

S. HIGUERA AND A. REYES

اریب PBW توسیع های گداختی خاصیت بر مروری

ریز٢ و هیگورا١

کلمبیا کلمبیا، ملی دانشگاه علوم، دانشکده ریاضی، ١,٢گروه

ناجابه جایی حلقه های از خانواده ای منظم چپ گداختی و گداختی خواص با مرتبط نتایج برخی مقاله این در
مک گاورن و قشقایی اخیر نتایج پایه بر نتایج این کرد. خواهیم بیان را اریب PBW توسیع های به موسوم
حلقه های منظم چپ گداختی و چپ گداختی خاصیت با ارتباط در [٣١] ماتزوک و کوشان و ،[١٣]
بسیار جبری ساختارهای برای مقاله این در شده ارائه نتایج که آن جایی از می باشند. اریب چندجمله ای
این در شده ارائه نتایج لذا گیرد، قرار استفاده مورد می تواند نیز اریب چندجمله ای حلقه های از کلی تری
گروه های در استفاده مورد حلقه های از زیادی خانواده  ی می باشند، گداختی خواص با ارتباط در که مقاله
در مثال هایی می دهد. پوشش را ناجابه جایی دیفرانسیل هندسه و ناجابه جایی جبری هندسه کوانتوم،

شد. خواهد ارائه نیز شده داده تعمیم ایده های با ارتباط

اریب. PBW توسیع اریب، چندجمله ای های حلقه گداختی، خاصیت کلیدی: کلمات
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