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A NOTE ON RELATIVE GENERALIZED
COHEN-MACAULAY MODULES

A. GHANBARI DOUST

ABSTRACT. Let a be a proper ideal of a ring R. A finitely gen-
erated R-module M is said to be a-relative generalized Cohen-
Macaulay if fo(M) = cd(a,M). In this note, we introduce a
suitable notion of length of a module to characterize the above
mentioned modules. Also certain syzygy modules over a relative
Cohen-Macaulay ring are studied.

1. INTRODUCTION

Throughout this note, R is a commutative Noetherian ring with
identity and a is a proper ideal of R.

Suppose, for a moment, that (R, m) is local and M is a finitely gener-
ated R-module of dimension d > 0. Then M is said to be a generalized
Cohen-Macaulay module if [ (H;(M)) < oofori=0,...,d—1, where
| denotes the length and H’ (M) is the i-th local cohomology module
of M with respect to m.

Clearly, the class of generalized Cohen-Macaulay modules contains
the class of Cohen-Macaulay modules. Indeed generalized Cohen-Mac-
aulay modules enjoy many interesting properties similar to the ones of
Cohen-Macaulay modules. As a generalization of the notion of Cohen-
Macaulay modules, relative Cohen-Macaulay modules were introduced
by Rahro Zargar and Zakeri in [11] and studied in [7], [3], [9], [L0]. It
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could be of interest to establish a theory of relative generalized Cohen-
Macaulay modules. Indeed this is done already in [1].

In this note, we continue the study of a-relative generalized Cohen-
Macaulay modules and a-relative Cohen-Macaulay modules. First,
we provide a characterization of relative generalized Cohen-Macaulay
modules in terms of a suitable notion of length of a module which will
be given in Section 2. Next, in Section 3, some properties of syzygy
modules of a finitely generated module are established. Finally, the
relative Cohen-Macaulayness of certain syzygy modules over a relative
Cohen-Macaulay ring are presented.

2. RELATIVE GENERALIZED COHEN-MACAULY MODULES

Definitions and Remark 2.1. Let M be a non-zero finitely generated
R-module and let a be an ideal of R.

(i) Cohomological dimension of M with respect to a is defined as
cd(a, M) :=sup{i € Z : H.(M) # 0}.

(i) If M # aM, then M is said to be a-relative Cohen-Macaulay,
a-RCM, if grade(a, M) = cd(a, M).
We say that M is mazimal a-RCM if M is a-RCM and
cd(a, M) = cd(a, R).
(iii) Following [!, Definition 9.1.3], the a-finiteness dimension of M,
(M), is defined by

f(M) =inf{i € N| H.(M) is not finitely generated}
(; inf{i € N| a ¢ Rad (Anng (HQ(M)))}) :

(The equality t holds by Faltings’ Local-global Principle Theorem
[0, Satz 1].)

(iv) If ¢ := cd(a, M) > 0, then by [3, Corollary 3.3(i)], the R-
module H,(M) is not finitely generated. So in this case, one
has fo(M) < cd(a, M).

Definition 2.2. Let a be an ideal of R and M be a finitely generated
R-module, we say that M is a-relative generalized Cohen-Macaulay if
cd(a, M) <0; or cd(a, M) = fo(M).

Definition 2.3. Let a be an ideal of R and M be an R-module. We
say that the length of M with respect to a is finite, if there is a chain
of submodules of M as
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such that M;/M; 4 is a homomorphic image of R/a foralli =1,... n.
Set

[(a, M) := inf{n € Ny| there is a chain of length n as in (*) }.

We call [(a, M), a-relative lenght of M. Clearly, {(a, M) is nonnegative
or +00.

Remark 2.4. Let [(a, M) = n, then there is a chain of submodules of
M as

such that M;/M; 4 is a homomorphic image of R/a foralli =1,... n.
Thus for i = 1,...,n, M;/M;_; is a finitely generated R-module. By
using the exact sequence

0— Mi—l — Mz — Mi/Mi—l — 0
for all i = 1,...,n, we see that if [(a, M) < oo then M is a finitely
generated R-module.
Lemma 2.5. Let L be a submodule of an R-module M. Then
(i) l(a, M) <l(a,L)+(a, M/L).
(ii) l(a, M/L) <l(a,M).

Proof. (1) Obviously, we may and do assume that ¢ := [(a, L) < oo and
k:=1(a,M/L) < co. Then there is a chain of submodules of L as

0=LyCL;C...CLi=1L

such that for all ¢ = 1,...,¢, L;/L;_1 is a homomorphic image of R/a.
Also, there is a chain of submodules of M/L as

L/L=NyCNy=M/LC...CNy=My/L=MJL

such that for alli = 1,... k, N;/N;_; is a homomorphic image of R/a.
Now, using the above two chains yield the chain

O0=LyCL1C..CLi=LCMC...CM=M

and hence [(a, M) < t+ k.
(1) Obviously, we may and do assume that n := [(a, M) < co. Then
there is a chain of submodules of M as

such that forall¢ =1,...,n, M;/M;_; is a homomorphic image of R/a.
Above chain yields the chain

Ml—i—Lg“.gMn—i—L:M

0C .
- L L L
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Since MMjfL is a homomorphic image of M;/M; 1, it follows that
% is a homomorphic image of R/a. Thus I(a, M /L) < n. O]

Lemma 2.6. Let a be an ideal of R and M be an R-module. Consider
the following statements:

(i) There ist € N such that a’M = 0.
(i) I(a, M) < oc.
(iii) Rad (a + Anng M) = Rad (Anng M).
Then (iii) <= (i) and (ii) = (i). Furthermore, if M s finitely
generated, then (i) = (i7).

Proof. (i) = (i) Let t = 1. If 0 # « € M, then ax = 0 and there is
an epimorphism

R/a — R/ Anng(z) = Rx.

Set My := Rx. Since a(M/M;) = 0, there is a submodule M,/M; of
M /M, and an epimorphism

R/Cl — MQ/Ml.
Proceeding in this way, we get the following chain of submodules of M
0=MyCM C...CM,C...

such that the map R/a — M;/M,_; is surjective for all i = 1,... n.
Since M is Noetherian, the above chain stops somewhere.

Let ¢t > 1 and assume that the result has been proved for ¢t — 1.
Since a~!'(aM) = 0 and a(M/aM) = 0, it follows from the inductive
hypothesis and Lemma 2.5(i) that I(a, M) < oc.

(11) = (i) Let l(a, M) = n. Then there is a chain of submodules of
M as

O:MIQM2ggMn71gMn:M7

such that foralli = 1,...,n, M;/M;_; is a homomorphic image of R/a.
Since M; is a homomorphic image of R/a, one has aM; = 0. Using
the epimorphism R/a — M;/M;_; we get

My

Moy ClMg—l—Ml
M, '

0=a(57) =27

Thus aM, € M;. So a®?M, = 0. continuing this way, yields that
a"M =a"M, = 0.
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(i) = (4i1) Since a'M = 0, we have a’ C Anng M. The following
display
Rad (Anng M) C Rad (a + Anng M)
= Rad (Rad(a) + Rad(Anng M))
= Rad (Rad(a") + Rad(Anng M))
= Rad (at + Anng M)
= Rad (Anng M),
shows that Rad (a + Anng M) = Rad (Anng M).
(171) = (i) It is clear. O
Corollary 2.7. Let L be a submodule of an R-module M. If
[(a, M) < oo, then l(a, L) < oo

Proof. Remark 2.4 yields that M is finitely generated.  Since
l(a, M) < oo, by Lemma 2.6, there is t € N such that a'M = 0.
Since L € M, we have a‘L = 0. So by Lemma 2.6, I(a, L) < occ. O

Theorem 2.8. Let a be an ideal of R and M be a finitely generated
R-module with ¢ := cd(a, M) > 0. Then the following are equivalent:

(1) M is a-relative generalized Cohen-Macaulay.
(i) I (a, Hy(M)) < oo for alli < c.
Proof. (i) = (i1) By assumption f,(M) = c. Hence
a C Rad (Anng (H,(M)))

for all i < ¢. So there is n € N such that a"H! (M) = 0 for all i < c.
By Lemma 2.6, [ (a, H;(M)) < oo for all i < ec.

(1) = (i) By Lemma 2.6, there is n € N such that a"H’(M) = 0
for all ¢ < ¢. Hence, fo(M) > c. As fo(M) < ¢, we deduce that
fo(M) = c. O
3. SPECIAL RELATIVE GENERALIZED COHEN-MACAULAY MODULES

Let

Fo:..F, 5 F,— ... — K5 B2 M50

be a free resolution of M and Q% (M) := ker¢; 1 be the i-th syzygy
module of M for all i € Nj.

Lemma 3.1. Let M be a finitely R-module, n a positive integer and
QL(M) the n-th syzygy of M. Then

grade(a, Q% (M)) > min{n, grade(a, R)}.
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Proof. We do induction on n. If n = 0, it is trivial. If n = 1, consider
the exact sequence

0— Qp(M) — Fy = M — 0.
By [2, Proposition 1.2.9],

grade(a, Q5(M)) > min{grade(a, Fy), grade(a, M) + 1}
> min{grade(a, R),0+ 1}.

Next, assume that the result has been proved for n — 1. Consider the
exact sequence

0— Qp(M) = F,_1 — QpY(M) — 0.
By [2, Proposition 1.2.9] and induction hypothesis, one has

grade(a, Q%(M)) > min{grade(a, F,,_;), grade(a, Q% ' (M)) + 1}
> min{grade(a, R), min{grade(a, R),n — 1} + 1}.

Casel: If grade(a, R) > n — 1, then
min{grade(a, R), min{grade(a, R),n — 1} + 1} = min{grade(a, R),n}.
Case 2: If grade(a, R) < n — 1, then

min{grade(a, R), min{grade(a, R),n — 1} + 1} = grade(a, R)
= min{grade(a, R),n}.

This completes the inductive step. O

Let a be an ideal of R and M, N be two finitely generated R-
modules such that Suppy N C Suppyp M. Then, by [5, Theorem 2.2],
cd(a, N) < cd(a,M). In particular if Suppy N = Suppyp M, then
cd(a, N) = cd(a, M). In the rest of the paper, we shall use this several
times without any further comment.

Lemma 3.2. Let R be an a-RCM ring with cd(a, R) = ¢ and M be a
finitely generated R-module. Then for every i > ¢, either
QL(M) = aQip(M) or Q% (M) is mazimal a-RCM.

Proof. Let i > ¢ and assume that Q% (M) # aQ%(M). Then,

grade(a, Q% (M)) < cd(a, Qn(M)).
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By Lemma 3.1,
grade(a, Q% (M))
> min{i, grade(a, R)}
= cd(a, R)
> cd(a, Q2 (M)
> grade(a, Q%5 (M)).
Thus cd(a, R) = cd(a, Q4 (M)) = grade(a, Qs (M)). O
Remark 3.3. Let N be an a-RCM R-module and M a finitely gener-
ated R-module. If M # aM and Suppp M C Suppyp N, then
grade(a, M) < grade(a, N).
Proof. One has
grade(a, M) < cd(a, M) < cd(a, N) = grade(a, N).
O

Proposition 3.4. Let a be a proper ideal of R and M be a non-zero
finitely generated R-module. If r = grade(a, M) < grade(a, R) = s,
then grade(a, Q%(M)) = r+i for all 0 < i < s —r. In particular,
pdp M > grade(a, R) — grade(a, M).
Proof. The exact sequence 0 — Q' (M) — F, — QL(M) — 0
implies the following exact sequences:
R . R .
0— Ethl;l(_’ Q%(M)) — EXtﬁ%(_7 QEH(M»a (1)
a a
and

R . R .
0 — Extgl(g,%(M)) — Extg%(?ggl(M)) —0 (j<s).

2
We use induction on 7. If ¢ = 0, the claim is trivial becat(lsg
O%(M) = M. Assume that 0 < i+ 1 < s —r and the result has
been proved fori. If j < r+¢+4+1 < s, then j — 1 < r+ 1, and so
by the induction hypothesis, Extfé_l(%, Q(M)) = 0. Thus the exact
sequence (2) implies that Extfé(% QH(M)) = 0.

Now, we prove that Extl,™ " (£ QF(M)) £0. If r+i+1<s, by
the induction hypothesis Ext},™ (£, Q% (M)) # 0. So the exact sequence
(2) implies that Ext;/ (£, Q7' (M)) # 0. If r+i+1 = s, then by the
induction hypothesis Extz" (£, Q% (M)) = Ext%’l(%f, QL(M)) # 0. So
the exact sequence (1) implies that Exty,™ (£, Q% (M)) # 0. Hence
grade(a, Qi (M) =r +i+ 1. O
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Corollary 3.5. Let M be a non-zero finitely generated R-module. If
M is a-torsion, then grade(a, Q% (M)) =i for all 0 < i < grade(a, R).
In particular, pdy M > grade(a, R).

Proof. Note that 0 = grade(a, M) < grade(a, R), so the claim follows
by Proposition 3.4. 0J

Theorem 3.6. Let R be an a-RCM ring and M an a-torsion R-module.
Assume that ¢ := cd(a, R) > 0 and

Fo:...>Ff—>F—>M-—>0

be a free resolution of M, then
(i) For every i < ¢, one has
L M (ifi=j
Hon) = 3 T
0 (ifi#J)
(ii) For every 1 < j <c—1, the sequence
0 = Hy(Qp(M)) = Hy(Fj1) — Hy(Qg (M) = 0
is exact. Also the sequence
0 — M — Hy(Qp(M)) = Hy(Feey) — Hy(QR (M) = 0

18 exact.

(iii) for every 1 < j < c—1 the sequences
0 — H(Q(M)) > H(Fy1) = . > H(Ey) = 0
and
0—-M— H,(Q3(M)) - H.(F.—1) — ... = H,(Fy) = 0
are exact.

Proof. (i) Let i < c. Note that since R is a-RCM, H.(F};) = 0 for all
j S No.

We use induction on j. For j = 0, the claim is trivial. Now, Let
j = 1. The exact sequence

0— Qp(M)— Fy—M—=0
implies exact sequences
0 —» Y (Qh(M)) — H(Fy) =
0 =Hy(Fy) — Ho(M) — Hy(Qp(M)) — Hy(Fp) =0

and
0 =H; (M) — H,(Qx(M)) — H(Fo) =0
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for all 1 < i < ¢. The above exact sequences show that
Hy (Qp(M)) = Hy(M) = M

and for all 1 < i < ¢, H,(QL(M)) = 0.
Let 5 > 1 and the result has been proved for j — 1. The exact
sequence

0— (M) = Fj_y — Q5 (M) =0
implies the exact sequence
0= Hy ' (Ej1) — Hy H(Qp (M) — Hy(QR(M)) — H(Fj-1) = 0.

Hence H:-1(Q} (M) = H!(Q}(M)). The result follows by induction
hypothesis.
(77) The exact sequence

0— QL(M) — Fj_y — Q' (M) =0
implies the exact sequence
H Q1 (M) — HE(Q},(M)) — HE(Fj)
— Hy(Q) (M) — HT (Q},(M)).

By (i), HH(Q} (M) = 0 = HSPY(Q); ' (M) which yields the asser-
tion.
The last assertion follows by applying the functor H’(—) on the exact
sequence
0— Q%(M) = F.1 — Q5 (M) — 0.
(i) It follows by (ii). O

Corollary 3.7. Let R be an a-RCM ring with ¢ := cd(a, R) > 0, and
M a non-zero finitely generated a-torsion R-module. Then for every
i >0, either QR(M) = aQn(M) or cd(a, QL(M)) = c.

Proof. We may and do assume that Q% (M) # aQ%(M). If i > ¢, then
by Lemma 3.2, Q% (M) is maximal a-RCM and so the assertion follows
in this case. Therefore we may assume that 0 <1 < c.

By Theorem 3.6, H/ (Q%(M)) is finitely generated for j < c. So
¢ < fo(QL(M)). By Lemma 3.1 and Definitions and Remark 2.1, we
have

¢ < fa (Vp(M)) < cd (a,QR(M)) <c
Hence cd (a, Q% (M)) = c. O

It is clear that every a-RCM module is a-relative generalized Cohen-
Macaulay. But the converse is not true.
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Example 3.8. Let R be an a-RCM ring with ¢ := cd(a, R) > 0 and
M a non-zero finitely generated a-torsion R-module. Then

QL(M), Q3(M), ..., Q5 (M)
are not a-RCM but they are a-relative generalized Cohen-Macaulay.

Proof. Let 1 < i < ¢. By Corollary 3.5, grade (a, Q% (M)) = i and by
Corollary 3.7 cd (a,Q%(M)) = c¢. So QL(M) is not a-RCM. But by
Theorem 3.6, ¢ < fo (Q%(M)) < cd(a, Q%(M)) < c. Hence Qp(M) is
a-relative generalized Cohen-Macaulay. 0
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