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H-SETS AND APPLICATIONS ON H,-GROUPS
S. OSTADHADI-DEHKORDI*, T. VOUGIOUKLIS AND K. HILA

ABSTRACT. In this paper, the notion of H-sets on H,-groups is
introduced and some related properties are investigated and some
examples are given. In this regards, the concept of regular, strongly
regular relations and homomorphism of H-sets are adopted. Also,
the classical isomorphism theorems of groups are generalized to H-
sets on H,-groups. Finally, by using these concepts tensor product
on H,-groups is introduced and proved that the tensor product
exists and is unique up to isomorphism.

1. INTRODUCTION

The concept of hypergroup was introduced in 1934 by a French math-
ematician F. Marty [3], at the 8" Congress of Scandinavian Mathemati-
cians. He published some notes on hypergroups, using them in different
contexts such as algebraic functions, rational fractions and non com-
mutative groups. One of these hyperstructures is H,-structure[l, 2, 9]
which is the largest class of hyperstructures. This concept was intro-
duced by Vougiouklis in 1990 [9] at the fourth AHA congress. The
concept of an H,-structure is a generalization of the well-known alge-
braic hyperstructures such as hypergroup, hyperring, hypermodule and
so on. Also, some axioms concerning the hyperstructures are replaced
by their corresponding weak axioms [5, 7, 9, 6, 10, 11, 8].
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The fundamental relations are main tools to study hyperstructures
(B*,v*, € etc.), which are defined in H,-structures, as the smallest
equivalences so that the quotients would be ordinary structures. Mo-
tivation to introduce H,-structures:

(1) The quotient of a group with respect to an invariant subgroup
is a group.

(2) Marty construct, the quotient of a group with respect to any
subgroup is a hypergroup.

(3) The quotient of a group with respect to any partition (or equiv-
alently to any equivalence relation) is an H,-group.

The notion of a group acting on a set is one which links abstract
algebra to nearly branch of mathematics such as linear algebra, and
differential equation. Another application of group actions, the Sylow
Theorems, which are essential to the classification of groups. The mo-
tivation for such an investigation is to generalize the concept of group
acting on a set. We will introduce the notion of H-sets on H,-groups
that is a new hyperstructure and we investigate some property of this
hyperstructure. Also, by the concept H-set, we define tensor product
on H,-groups that is a non-additive classical construction such as ring
and module theory. Finally, we prove that tensor product exists and
is unique up to isomorphism.

2. H-SETS

In this section, we present some notions about the H,-groups and
new concept left(right)-set on H,-groups. Also, we construct quotient
left(right)-sets by regular(strongly) equivalence relation and isomor-
phism theorems.

Definition 2.1. Let H be a nonempty set and o: H x H — P*(H)
be a hyperoperation. Then, H is called a canonical H,-group, when
the following conditions hold:
(1) for every z,y,2 € H, zo(yoz)N(zoy)oz#,
(2) there exists e € H, called identity, such that x oe = eox = z,
(3) for every x € H there exists a unique element ' € H and is
called inverse such that e € (zoz') N (2" o z),
(4) z € x oy, implies that y € 2’ oz and z € zoy'.
A nonempty subset N of a canonical H,-hypergroup (H, o) is called
subcanonical H,-group if (N, o) is a canonical H,-group.
Let H be a canonical H,-group and N be a subcanonical H,-group
of H. Then, we define the equivalence relation = on H as follows:

hi = hy <= h; € hag + N.
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This relation is denoted by N* and H*(h) the equivalence class of the
element h.

Definition 2.2 ([2], p.187). Let H be a nonempty set and
o: Hx H — P*(H) be a hyperoperation on H. Then, the hy-
perstructure (H, o) is called H,-group if

(1) zo(yoz)N(zoy)oz#0,
(2) zoH=Hox=H,

where z,y,2 € H. An H,-group (H,o) is called commutative, when
xoy=youx, for every x and y of H.

Example 2.3. Let R be the set of real numbers and M, (R) be the
set of all n x n matrices. Then, M,(R) is an H,- group by following
hyperoperation:

(aij) ® (bij) = {(ray +rbi;) - v € [0, 1]}
We have,

(aij) © ((bij) @ (ci)) = {(rai; +rmbij + rmeijicijen = 7,m € [0, 1]},

((aij) @ ((big)) ® (ci) = {(tnay; + tnby + teij)i<ij<n : t,n € [0, 1]},
If r=t=0, then

(0i) € (aij) ® ((bi3) @ (ci5)) N ((az) & ((bis) ® (ci5)-
Also, we have the reproduction axiom.

Definition 2.4. Let (H,o) be an H,-group with identity and X be
a nonempty set. Then, we say that X is a left H-set, if there is a
hyperoperation p : H x X — P*(X) from H x X into P*(X) with
the properties:

(1) p(ha 0 ho, ) O puha, puho, ) # 0,
(2) z € ple, ),
where x € X and hy, ho € H and

p(hyohy, x) = U wu(t, ).

tehioha

Let e be a scalar identity of H and z = pu(e, z), for every x € X.
Then, we say that X is a left H-set with unit. An element h € H
is called scalar, when for every z € X, the set pu(h,z) has only one
element.
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Example 2.5. Let S be a nonempty set and { A, }.cx be a partition of
S, where (H,o) is an H,-group. Then, S is an H,-group by following
hyperoperation:
a ® b = U At,
texoy

where a € A, and b € A,. Also, H is a left S-set by following hyper-
operation:

pw:SxH — P*(H)

(a,h) — z® h.

Example 2.6. Let (H, o) be a canonical H,-group. Then, H is a H-set
as follows:
pw:HxH — P*(H)
(x,h) —sxzohox,
where 2’ is an inverse of z.

Example 2.7. Let (H,o) be an H,-group and p be a regular relation
on H. Then, H/p is a left H-set as follows:
pHxHfp — P*(H/p)
(h.p(x)) —> {plt) : t € hox}.
Example 2.8. Let (H,+) be a canonical H,-group and N be a sub
H,-group of H. Then, we define the relation = on H as follows:
r=y<= (z—y)NN #0.
This relation is equivalence on H. We define the equivalence class
x € H by N*(z). Hence H/N* = {N*(z) : x € H} is a left H-set by
following hypeoperation:
p:Hx H/N*— P*(H/N*)
(hy N*(z)) — {N*(t) : t € h+ z}.
In the same way, we can construct a right H-set. Also, we say that
X is an (Hy, Hs)-set, when it is a left Hj-set and a right Hs-set and

p2(pa (hy, @), ha) = pa(ha, (e, ha)),

where hy € Hy,hy € Hy and z € X.

If H be a commutative H,-group, then there is no distinction between
a left and right H-sets.

It is clear that the cartesian product X x Y of a left Hi-set X and
a right Ho-set Y is an (Hy, Hy)-set by the following hyperoperations:

ﬁl(hlv (:L‘,y)) = {<tvy) S :Ul(hlax)}v
Fo((2,y), ho) = {(z,) : t € pa(y, ho)}
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Definition 2.9. Let X and Y be left H-sets and ¢ : X — Y be a
map. Then, we say that ¢ is a morphism, when

QO(Ml(hJ I)) - MQ(hv 90(‘7:))7
where x € X and h € H.

Let p be an equivalence relation on X and A and B be nonempty
subset of X. Then, we define

(A,B)ep<= Yac AIbe B:(a,b)€p
and
Vbe B3Jae A:(a,b) €p.
Also,
(A,B) e p<= (a,b)€p, forallae A be B.

Definition 2.10. Let X be a left H-set and p be an equivalence rela-
tion on X. Then, we say that p is reqular on X, when

(z,y) € p= (u(h1, ), p(ha, 7)) €,
and is called strongly reqular, when
([E, y) cp= (M(hlax)7ﬂ’(h27x)) € ﬁ
By using a certain type of equivalence relations, we can construct

quotient left H-sets as follows:

Theorem 2.11. Let X be a left H-set and p be a regular relation on
X. Then, X/p is a left H-set by following hyperoperation:

fi(h, p(z)) = {p(t) : t € p(h, z)}.
and 7 : X — X/p is a morphism
Proof. Suppose that p(x;) = p(xs). Let (z1,23) € p and since p is
regular, we have (u(h,z1), u(h,z2)) € p. This implies that for every
t1 € u(h,xy), there exists to € p(h,xa) such that (¢;,t2) € p. Hence
ﬁ(hap(QJl)) c ﬁ<h7p<x2>> In the same way, ﬁ<h7p<x2)> - ﬁ(hvp(xl))
Thus, the hyperoperation defined on X/p is well-defined. Also,

fi(hy, fiha, p(x)) = B(ha, {p(t) - t € plho, 2)}) = U (b, p(t))

teu(he,v)

= U p(t1)
tE,u,(hQ,.Z‘),tl el"(hl 7t)

= U »st)

t1€p(ha,p(h2,x))
By a similar argument, we have

ihioha,p(x) = |J  plt).

t1 E;L(hl OhQ,:l?)
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Also, pu(hy, p(he, ) N p(hy © he, ) # (), implies that

i, filhs, p(@)) O iy © ha, p()) # 0.
Also,
pl) € file, pla) = {plt) : t € ple,x)}.
Therefore, X/p is a left H-set. Also,
w(ulh,2)) = {p(t) : t € p(h2)} = filt, p(a))
= u(t, m(x)).
Hence, 7 is a morphism and this completes the proof. O

Theorem 2.12. Let X and Y be left H-sets and ¢ : X — Y be a
morphism. Then, the relation

kero = {(x1,22) € X x X : p(x1) = p(22)},

is a reqular relation on X and there is a monomorphism
o X/kerp — Y such that imp = imy and  om™ = @, where
m: X — X/kery is a natural map.
Proof. Suppose that (z1,x2) € keryp. Hence ¢(x1) = ¢(x2). This
implies that for every h € H,

p(p(h, x1)) = p(h, o(x1)) = plh, o(22)) = e(u(h, x2)),
and for every t; € p(h,x,), there exists to € p(h,z2) such that
©(t1) = @(ta). Also, for every to € u(h,xs) there exists t; € u(h,xq)
such that (ti,t3) € keryp. Thus, the relation kery is regular. Let
us denote kerp by k. We define ¢ : X/kerp — Y defined by
P(k(x)) = (), where x € X. Then, ¢ is both well-defined and
one to one, since

k(r1) = k(z2) <= (21,72) € k <= ¢(71) = p(2).
Also, for every x € X and h € H,

P(uh, k(z)) = ({k(t) - t € plh,x)}) = {e(t) - t € u(h,x)}

Hence ¢ is a morphism. Clearly, im(p) = imp and pom = ¢. O

Let X be a left H-set, o; and o5 be regular relations on X such that
01 C 03. Then, there is a morphism « from X /oy onto X /o9 such that
a o m = T, where mp : X — X /oy and 7 : X — X /0y are natural
morphisms. The morphism « given by

aloy(z)) = o9(x), © € X,
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and the regular relation kera on X/oy given by
kera = {(o1(a),o1(b)) : (a,b) € 03}.
We write kera by oy /0.

Theorem 2.13. Let X be a left H-set, o1, oo be reqular relations such
that oy C 09. Then, o1/04 is a reqular relation on X/oy and

(X/o2)/(01/02) = (X/01).
Proof. The proof is straightforward. O

Definition 2.14. Let X be a left H-set on a canonical H,-group H.
Then, X is called invertible, when

v € pulhy) = yepl, o),
where z,y € X.

Let X be an invertible left H-set. Then, we define an equivalence
relation ~ on X as follows:

r~y<= dheH:xepulh,y).

The equivalence class © € X is called orbital and denoted by orb(z).
Hence X =,y orb(z) and when X is a finite set | X| = > _ orb(x)|.
Also, the stabilizer x € X is defined as follows:

stab(z) ={g € H : g € p(g,z)}.

Example 2.15. Let X be a left H-set and p be a strongly regular
relation on X. Then, X/p is a H-set as follows:

fiiHxX/p — P*(X/p)
(hopl)) — {pt) : ¢ € ulh,2)},

where p(z) € X/p and h € H. Since p is a strongly regular relation,
| ik, p(x)) = 1. Hence,

orb(p(x)) = {p(t) : t € p(h,x), h € H},
stab(p(z)) = {h € H : p(x) = fi(h, p(x))}.

Proposition 2.16. Let X be a left H-set on canonical H,-group H and
p be a strongly reqular relation on X . Then, stab(p(z)) is a H,-subgroup
of H.

Proof. Suppose that hy, hy € stab(p(x)). Hence, p(x) = p(h, p(x))
and p(z) = f(he, p(z)). This implies that

filh o ha, pl(a)) N filh, filha, pl)) # 0.
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Thus,

fi(hy © ha, p(x)) = fi(hy, i(he, p(x)) = (hy, p(2)) = p(x).
Then, for every h € hy o hy, ji(h, p(z)) = p(x) and hy o hy C stab(p(x)).
Also, we can see stab(p(x)) is closed with respect to the inverse. O

Theorem 2.17. Let X be a left H-set on commutative canonical H,-
group (H,+) and p be a strongly reqular relation on X. Then,

| orb(p(z)) |=[ H/S™ |,
where S = stab(p(x)).
Proof. Suppose that ¢ : H/S* — orb(p(z)) defined by
p(5™(h)) = (h, p(x)).
Let S*(hy) = S*(ha). Then, hy € hy + s, for some s € stab(p(z)) and
fi(hy, p(x))) C ilhs + 5, p(x)) = pi(he, i(s, p(x)) = fi(he, p(x)).

Hence fi(hy,p(x))) = j(he,p(z)) and ¢ is well-defined.  Also,
©(S*(h1)) = ¢(S*(ha)), implies that
p(x) =10, p(x)) € f(hy = b, pla)) - = pi(=ha, i(ha, p())

Hence, for some s € hy — hy such that p(x) = pu(s,p(z)). Thus,
s € stab( (x)) and S*(hy) = S*(hy) and the map ¢ is one to one. [

Corollary 2.18. Let X be a left H-set and p be a strongly regular
relation on X such that | H/S* | is finite. Then, the order H/S* divide

| X/p|.
Definition 2.19 ([2], p. 188). Let (Hi,0) and (Has,*) be H,-groups.
Then, a map ¢ : Hy — Hj is called a strong homomorphism, when

p(x10x2) = p(a1) * p(22),
for every x1,x9 € Hy. An injective and onto strong homomorphism is
called an isomorphism.

Definition 2.20. Let X; and X5 be left H; and Hs-sets, respectively,
¢ : Hi — Hs be an isomorphism and A : X; — X, be a bijective
morphism. Then, we say that X; and X, are equivalent when,

Apa(hr,21)) = pa(e(h1), A1), A (pa(he, 22)) = p (e~ (ha), A" (22)),
where hy € Hi,hy € Hy and a1 € X1, 29 € X5. We write X; ~ Xo,
when X; and X, are equivalent. When X; and X, are (Hy, Hs)-sets,

we say that X; and X, are equivalent, if X; and X, are equivalent as
left Hq-set and right Hs-set.
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Proposition 2.21. Let X; and Xy be equivalent left H,- and Hy-sets
and 1 € Xq. Then,

stab(xy) ~ stab(A(x1)).
Proof. The proof is straightforward.

3. TENSOR PRODUCT

In this section by left(right) H-sets we introduce a new type of su-
perstructures that will be called tensor product.

Definition 3.1. Let X, Y and Z be (Hl, HQ)—, (HQ, Hg)— and (Hl, H3)—
sets, respectively. Then, a map ¢ : X XY — Z is called bimap, if for
every ¢ € X, y € Y and hy of Hy,

(p(, ha),y) = p(, pa(he, y)).

Definition 3.2. Let X, Y and T be (Hl, HQ)—, (HQ, Hg)— and (Hl, H3)—
sets, respectively, and ¢ : X XY — T be a bimap. Then, a pair (T, 1))
is called tensor product of X and Y over H,, if for every (Hi, H3)-set
C and every bimap # : X x Y — (' there exists a unique bimap

B:T — C such that fo) = B.

Let X and Y be (Hy, Hy) and (H,, Hs)-sets, respectively. Then, we
define the relation p on X x Y as follows:
p={((t1,t2), (t3,ta)) : t1 = pa(ts, ho) ta = pa(ha, t2)},
where hy is a scalar element of H,. The relation p is reflexive and
symmetric. Let p* be transitive closure of p and we denote a typical

element p*(z,y) of X ® Y by x ® y. For any two nonempty subsets A
of X and B of Y, we define

A@B= ) aob.
acAbeB
We note that by definition of p for every scalar element hy € H,
pi(z,he) @y = x @ pa(ha, y).

Proposition 3.3. Let X andY be (Hy, Hy)- and (Hy, H3)-sets, respec-
tively. Then, x1 ® y1 = T2 ® yo if and only if there exist aq,as, ..., ap_1
i X, by, by, ....b,_1 inY and scalar elements s1, Sa, ..., Sp, t1,t9, ooy tn_1
in Hy such that

Xy = Nl(ala 51)7 Nl(alatl) = lh(az, 52)7 a---ﬂl(aiati) = ,ul(aiJrl: Si+1)

pa(an—1,tn—1) _ p (w2, 8n) (%).
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pa(s1,y1) = pa(te, b1), pa(s2,01) = pa(te, ba), .., pa(siv1, bi)
= p2(tit1, biv1)
,U2<3na bnfl) = Y2 (**)
Proof. Suppose that we have (%) and (). Then,

1 @y = pi(ar, $1) @ y1 = a1 @ po(s1, 1) = a1 ® po(ty, br)

= 11 (22, 8,) ® by
= To ® Ha(Sn, by_1)
= T2 QYo.

Conversely, assume that 7y ® y; = x5 ® yo. By definition there are
(ti,s:) € X xY, 1 <i<n such that

(t1,81) = (21,91), (tn; $n) = (72, 92)

and ((t;, i), (tit1, Siv1)) € p. By definition of p, we have (x) and (xx).
0J

Proposition 3.4. Let X andY be (Hy, Hy)- and (Hs, H3)-sets, respec-
tively. Then, X ® Y is an (Hy, H3)-set by following hyperoperations:

I H xX®Y — P*(X®Y)
hi-(z®y) ={t®@y:tecp(h,z)},

Iy: X®Y x Hy — P*(X®Y)
(z®@y) -hy ={z@t:t€ p(y hs)},
where t @y € X ®Y, hy € Hy and hy € H;.

Proof. Let 1 ® y; = 2 ® yo. Then, by Proposition 3.3,

r1 = pi(ay, s1), pi(ar,t) = p(ag, s2), ..., pi(ai, t;) = pi(aiv1, Siv1)
Nl(anflytnfl) :N1($275n)-

po(s1,y1) = po(ts, b1), po(s2,b1) = pa(te, ba), ..., po(siy1, bi)
= po(tis1, bis1)

,UQ(Sna bn—l) = Y.
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pa(h, z1) = pa(pa((hey ar), s1), pa(pa((he,y an), t)
= p1((p1(he, az), s2)

pa(pa(he,a), ti) = pa(pa(he, air), siv1))

pi(hian—1),th=1) = pa(pa(ha, 2), sp).
Assume that w € py(hy,x1). Since s is a scalar element, then there
exists wy; € py(hy,a1) such that w = py(wy,s1). Also, since sy is a
scalar element, then there exists wy € u1(hy, az) such that
pa(wr, t1) = pa(wa, s2).

After a finite process, we have w, ws, ..., w, € X such that

w = Ml(wh 81)> Nl(wlat1> = M1(w2782)7 -‘-7M1(wiati) = Nl(wz’—i-hsi—i-l)

= M1 (wn—la tn—l)
= Wy, Sp.

Hence, w ® y; = w, ® y; € h1xs ® y3. Thus,
p(hi, 21 @ y1) C fi(he, 22 @ y2).
In the same way, we can see that fi(ha,zo ® yo) C fi(h, (1 @ y1).

Therefore, the hyperoperation 1 defined on X ® Y is well-defined. Also,
fi(ha, fi(he, (x @ y)) N fi(hihs, (z @ y) # 0.
O

Corollary 3.5. Let X and Y be (Hy, Hy)- and (Ha, H3)-sets, respec-
tively. Then, a map m: X XY — X ®Y is a bimap.

Example 3.6. Let (H,o0) be a commutative H,-group and p be a
strongly regular relation on H. Then, X = H/p is a left H-set as
follows:
w:HxH/p — P*(H)
(h,p(x)) —{p(t) :t € houx}.
Since p is a strongly regular relation on H, every element of H is a
scalar element of X. Thus,

pla) @ p(b) = {(p(x),p(y)) 1z € hoa, b€ hoy}.
Also,

orb(p(x)) = {p(t):t € hox, h € H}.
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Theorem 3.7. Let X and Y be (Hy, Hy)- and (Hs, H3)- sets, respec-
tively. Then, (X ® Y, m) is a tensor product over Hs.

Proof. Suppose that Z is an (Hy, Hs)-set and f: X XY — Z be a
bimap. We define §: X ® Y — Z by

Blr @y) = B(z,y),

where v € X and y € Y. Let 21 ® y1 = 22 ® y2. Then, by Proposition
3.3, we have

B(z1,y1) = B(ualar, s1),91) = Blar, pa(s1,y1))

; 5(#1(5102732), bn—l)
B(xa, pa(s, by-1))
= B(w2,92).

Hence, f(z, ® y1) = B(z2 ® y2) and B is well-defined. Also,
Blir(hi,z @ y)) = Bl (h,x) @ y) = Blu(ha, @), y)

= pig(hy, B(x,y))
= u3(h17 ﬁ(x ® y))’

where hy € Hy, 2@y € X ®Y. In the same way, we can see that
Bis(x @y, hs)) = pus(B(x ® y), hs). Thus, 8 is a morphism. Also,

Bom(z,y) = Blz®y) = p(x,y),

implies that Bom = . If B, : X ® Y — Z be an another morphism
such that 8, o m = 3, then we have

Bi(x @y) = Pi(m(z,y)) = Prom(z,y) = Bom(z,y) = Blz@y).

Therefore, § is unique with respect to this properties. O

Theorem 3.8. Let X1, X5 and Y1,Ys be (Hy, Hy)- and (Hs, H3)-sets,
respectively such that X1 ~ Xy and Yy ~ Yy, Then, X1 Y] ~ Xo®Y5;.

Proof. Suppose that X; ~ X5 and Y] ~ Y,. By definition, there exist
isomorphisms ¢; : H; — H;yq for 1 <i <3 and A\; : X; — X, and
Ao 1 Y] — Y5 such that
M(pn (b, 21)) = pa(p1(ha), Ai(21)), Ayt (pa(ha, 22))
= (7 (ha), A\ (22)),

where 1 € X1,29 € X5 and hy € Hy, hy € H.

Ao(pa(he,y1)) = pa(p2(ha), Aa(y1))
Ay (pa(hs y2)) = pa(e ™ (hs), Ay (12)),
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where y; € Y1,y € Y5 and hy € Hy, hy € Hs.

We define A : X; @Y — Xo ®@Ys, by Mz ®y) = Mi(x) @ A2 (y),
where x € X; and y € Y]. Let 21 ® y1 = 22 ® yo, where z1, 25 € X
and yp,y2 € Y;. Then,

Ty = Ml(al, 31)7 ,Ul(alatl) = Ml(%, 82)> ,---Ml(ai,tz’): Ml(ai+1, 3i+1)

M1 (an—h tn—l) = 1 (x27 Sn)-

M2(517y1) = Mz(thbl)a M2(327b1): MQ(t% 52)
p2(Siv1,0i) = po(tivy, big1)

Nz(Smbn—1)= Yo.

where s1, S9,...,Sp, ti1,te,...,t,_1 are scalar elements in Hy; and
a; € X1, b; €Yy, 1 <1 <n—1. This implies that

(1) = Ai(pa(as, s1)), Ar(pa(ar, 1)) = Ai(pa(az, s2))
A1 (ai, ti)) : A1 (pa (aig, Sig1))

A (p(an-1,tn-1)) - A1 (22, 8n))-

Aa(p2(s1,91)) = Aa(pa(ts, b1)), Aa(pa(s2, b1))= Aa(pa(ta, b2))
Aa(p2(Sit1, bi)) - Ao (pa(tiy1, biv1))

Mo (112(5m b 1)) = Ao().

Hence,

A1) = py(Ar(ar), @2(s51)), g (Aalar), 2(ty)) = py(Ai(az), 2(s2))
(A (as), @a(8) = iy O (assn), 9a(s511))

1y (A (ne), @2(t1)) = 1, (0 (), 2(50))-
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1y (25511, Aa(b:)) = ia(altinn), Aalbis))

1a(22(50), A2 (bn—1)) = Ao (y2)-
Thus, A1 (71) @ Aa(y1) = A1(22) ® Aa(y2) and the map A is well-defined.
Also,

A (b, 2 @ 1)) = Al (b 1) @ yn)) - = A (pa (hn, 21) @ Ao (1)
= M;(‘P(h1)7 A(21)) ® Aa(y1)
= ﬁ;(@(hl); (1) ® Aa(y1))

=y (p(ha), Mar @ 1))
We can see for A other properties holds. |

4. CONCLUSION

The concept of H,-structures were introduced by Vougiouklis at the
fourth AHA congress (1990)[10]. The concept of an H, -structure
constitutes a generalization of the well-known algebraic hyperstruc-
tures. Numerous applications of hyperstructures are presented, espe-
cially those that were found and studied in the last fifteen years. By
this hyperstructure, we can study chemical reactions as mathematical
models [1]. In this paper, we introduce H-sets on H,-groups and ten-
sor products on H,-groups that is crucially important in homological
algebra. In a future study, by the concept H,-group we will consider
and classify mathematical and chemical properties of these H,-groups.
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