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H-SETS AND APPLICATIONS ON Hv-GROUPS

S. OSTADHADI-DEHKORDI∗, T. VOUGIOUKLIS AND K. HILA

Abstract. In this paper, the notion of H-sets on Hv-groups is
introduced and some related properties are investigated and some
examples are given. In this regards, the concept of regular, strongly
regular relations and homomorphism of H-sets are adopted. Also,
the classical isomorphism theorems of groups are generalized to H-
sets on Hv-groups. Finally, by using these concepts tensor product
on Hv-groups is introduced and proved that the tensor product
exists and is unique up to isomorphism.

1. Introduction

The concept of hypergroup was introduced in 1934 by a French math-
ematician F. Marty [3], at the 8th Congress of Scandinavian Mathemati-
cians. He published some notes on hypergroups, using them in different
contexts such as algebraic functions, rational fractions and non com-
mutative groups. One of these hyperstructures is Hv-structure[1, 2, 9]
which is the largest class of hyperstructures. This concept was intro-
duced by Vougiouklis in 1990 [9] at the fourth AHA congress. The
concept of an Hv-structure is a generalization of the well-known alge-
braic hyperstructures such as hypergroup, hyperring, hypermodule and
so on. Also, some axioms concerning the hyperstructures are replaced
by their corresponding weak axioms [5, 7, 9, 6, 10, 11, 8].
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The fundamental relations are main tools to study hyperstructures
(β∗, γ∗, ϵ∗ etc.), which are defined in Hv-structures, as the smallest
equivalences so that the quotients would be ordinary structures. Mo-
tivation to introduce Hv-structures:

(1) The quotient of a group with respect to an invariant subgroup
is a group.

(2) Marty construct, the quotient of a group with respect to any
subgroup is a hypergroup.

(3) The quotient of a group with respect to any partition (or equiv-
alently to any equivalence relation) is an Hv-group.

The notion of a group acting on a set is one which links abstract
algebra to nearly branch of mathematics such as linear algebra, and
differential equation. Another application of group actions, the Sylow
Theorems, which are essential to the classification of groups. The mo-
tivation for such an investigation is to generalize the concept of group
acting on a set. We will introduce the notion of H-sets on Hv-groups
that is a new hyperstructure and we investigate some property of this
hyperstructure. Also, by the concept H-set, we define tensor product
on Hv-groups that is a non-additive classical construction such as ring
and module theory. Finally, we prove that tensor product exists and
is unique up to isomorphism.

2. H-sets

In this section, we present some notions about the Hv-groups and
new concept left(right)-set on Hv-groups. Also, we construct quotient
left(right)-sets by regular(strongly) equivalence relation and isomor-
phism theorems.
Definition 2.1. Let H be a nonempty set and ◦ : H ×H −→ P ∗(H)
be a hyperoperation. Then, H is called a canonical Hv-group, when
the following conditions hold:

(1) for every x, y, z ∈ H, x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅,
(2) there exists e ∈ H, called identity, such that x ◦ e = e ◦ x = x,
(3) for every x ∈ H there exists a unique element x′ ∈ H and is

called inverse such that e ∈ (x ◦ x′
) ∩ (x

′ ◦ x),
(4) z ∈ x ◦ y, implies that y ∈ x

′ ◦ z and x ∈ z ◦ y′ .
A nonempty subset N of a canonical Hv-hypergroup (H, ◦) is called

subcanonical Hv-group if (N, ◦) is a canonical Hv-group.
Let H be a canonical Hv-group and N be a subcanonical Hv-group

of H. Then, we define the equivalence relation ≡ on H as follows:
h1 ≡ h2 ⇐⇒ h1 ∈ h2 +N.
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This relation is denoted by N∗ and H∗(h) the equivalence class of the
element h.

Definition 2.2 ([2], p.187). Let H be a nonempty set and
◦ : H × H −→ P ∗(H) be a hyperoperation on H. Then, the hy-
perstructure (H, ◦) is called Hv-group if

(1) x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅,
(2) x ◦H = H ◦ x = H,

where x, y, z ∈ H. An Hv-group (H, ◦) is called commutative, when
x ◦ y = y ◦ x, for every x and y of H.

Example 2.3. Let R be the set of real numbers and Mn(R) be the
set of all n × n matrices. Then, Mn(R) is an Hv- group by following
hyperoperation:

(aij)⊕ (bij) = {(raij + rbij) : r ∈ [0, 1]}.

We have,

(aij)⊕ ((bij)⊕ (cij)) = {(raij + rmbij + rmcij)1≤i,j≤n : r,m ∈ [0, 1]},

((aij)⊕ ((bij))⊕ (cij) = {(tnaij + tnbij + tcij)1≤i,j≤n : t, n ∈ [0, 1]}.

If r = t = 0, then

(0ij) ⊆ (aij)⊕ ((bij)⊕ (cij)) ∩ ((aij)⊕ ((bij))⊕ (cij).

Also, we have the reproduction axiom.

Definition 2.4. Let (H, ◦) be an Hv-group with identity and X be
a nonempty set. Then, we say that X is a left H-set, if there is a
hyperoperation µ : H × X −→ P ∗(X) from H × X into P ∗(X) with
the properties:

(1) µ(h1 ◦ h2, x) ∩ µ(h1, µ(h2, x)) ̸= ∅,
(2) x ∈ µ(e, x),

where x ∈ X and h1, h2 ∈ H and

µ(h1 ◦ h2, x) =
∪

t∈h1◦h2

µ(t, x).

Let e be a scalar identity of H and x = µ(e, x), for every x ∈ X.
Then, we say that X is a left H-set with unit. An element h ∈ H
is called scalar, when for every x ∈ X, the set µ(h, x) has only one
element.
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Example 2.5. Let S be a nonempty set and {Ax}x∈H be a partition of
S, where (H, ◦) is an Hv-group. Then, S is an Hv-group by following
hyperoperation:

a⊗ b =
∪

t∈x◦y

At,

where a ∈ Ax and b ∈ Ay. Also, H is a left S-set by following hyper-
operation:

µ : S ×H −→ P ∗(H)
(a, h) −→ x⊗ h.

Example 2.6. Let (H, ◦) be a canonical Hv-group. Then, H is a H-set
as follows:

µ : H ×H −→ P ∗(H)
(x, h) −→ x ◦ h ◦ x′

,

where x′ is an inverse of x.

Example 2.7. Let (H, ◦) be an Hv-group and ρ be a regular relation
on H. Then, H/ρ is a left H-set as follows:

µ : H ×H/ρ −→ P ∗(H/ρ)
(h, ρ(x)) −→ {ρ(t) : t ∈ h ◦ x}.

Example 2.8. Let (H,+) be a canonical Hv-group and N be a sub
Hv-group of H. Then, we define the relation ≡ on H as follows:

x ≡ y ⇐⇒ (x− y) ∩N ̸= ∅.
This relation is equivalence on H. We define the equivalence class
x ∈ H by N∗(x). Hence H/N∗ = {N∗(x) : x ∈ H} is a left H-set by
following hypeoperation:

µ : H ×H/N∗ −→ P ∗(H/N∗)
(h,N∗(x)) −→ {N∗(t) : t ∈ h+ x}.

In the same way, we can construct a right H-set. Also, we say that
X is an (H1, H2)-set, when it is a left H1-set and a right H2-set and

µ2(µ1(h1, x), h2) = µ1(h1, µ(x, h2)),

where h1 ∈ H1, h2 ∈ H2 and x ∈ X.
IfH be a commutativeHv-group, then there is no distinction between

a left and right H-sets.
It is clear that the cartesian product X × Y of a left H1-set X and

a right H2-set Y is an (H1, H2)-set by the following hyperoperations:
µ1(h1, (x, y)) = {(t, y) : t ∈ µ1(h1, x)},

µ2((x, y), h2) = {(x, t) : t ∈ µ2(y, h2)}.



H-SETS AND APPLICATIONS ON Hv-GROUPS 83

Definition 2.9. Let X and Y be left H-sets and φ : X −→ Y be a
map. Then, we say that φ is a morphism, when

φ(µ1(h, x)) = µ2(h, φ(x)),

where x ∈ X and h ∈ H.
Let ρ be an equivalence relation on X and A and B be nonempty

subset of X. Then, we define
(A,B) ∈ ρ⇐⇒ ∀a ∈ A ∃b ∈ B : (a, b) ∈ ρ

and
∀b ∈ B ∃a ∈ A : (a, b) ∈ ρ.

Also,
(A,B) ∈ ρ⇐⇒ (a, b) ∈ ρ, for all a ∈ A, b ∈ B.

Definition 2.10. Let X be a left H-set and ρ be an equivalence rela-
tion on X. Then, we say that ρ is regular on X, when

(x, y) ∈ ρ =⇒ (µ(h1, x), µ(h2, x)) ∈ ρ,

and is called strongly regular, when
(x, y) ∈ ρ =⇒ (µ(h1, x), µ(h2, x)) ∈ ρ.

By using a certain type of equivalence relations, we can construct
quotient left H-sets as follows:
Theorem 2.11. Let X be a left H-set and ρ be a regular relation on
X. Then, X/ρ is a left H-set by following hyperoperation:

µ̂(h, ρ(x)) = {ρ(t) : t ∈ µ(h, x)}.
and π : X −→ X/ρ is a morphism
Proof. Suppose that ρ(x1) = ρ(x2). Let (x1, x2) ∈ ρ and since ρ is
regular, we have (µ(h, x1), µ(h, x2)) ∈ ρ. This implies that for every
t1 ∈ µ(h, x1), there exists t2 ∈ µ(h, x2) such that (t1, t2) ∈ ρ. Hence
µ̂(h, ρ(x1)) ⊆ µ̂(h, ρ(x2)). In the same way, µ̂(h, ρ(x2)) ⊆ µ̂(h, ρ(x1)).
Thus, the hyperoperation defined on X/ρ is well-defined. Also,
µ̂(h1, µ̂(h2, ρ(x)) = µ̂(h1, {ρ(t) : t ∈ µ(h2, x)})=

∪
t∈µ(h2,x)

µ̂(h1, ρ(t))

=
∪

t∈µ(h2,x),t1∈µ(h1,t)

ρ(t1)

=
∪

t1∈µ(h1,µ(h2,x))

ρ(t1).

By a similar argument, we have
µ̂(h1 ◦ h2, ρ(x)) =

∪
t1∈µ(h1◦h2,x)

ρ(t1).
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Also, µ(h1, µ(h2, x)) ∩ µ(h1 ◦ h2, x) ̸= ∅, implies that

µ̂(h1, µ̂(h2, ρ(x)) ∩ µ̂(h1 ◦ h2, ρ(x)) ̸= ∅.
Also,

ρ(x) ∈ µ̂(e, ρ(x)) = {ρ(t) : t ∈ µ(e, x)}.
Therefore, X/ρ is a left H-set. Also,

π(µ(h, x)) = {ρ(t) : t ∈ µ(h, x)} = µ̂(t, ρ(x))
= µ̂(t, π(x)).

Hence, π is a morphism and this completes the proof. □
Theorem 2.12. Let X and Y be left H-sets and φ : X −→ Y be a
morphism. Then, the relation

kerφ = {(x1, x2) ∈ X ×X : φ(x1) = φ(x2)},
is a regular relation on X and there is a monomorphism
φ̂ : X/kerφ −→ Y such that imφ̂ = imφ and φ̂ ◦ π = φ, where
π : X −→ X/kerφ is a natural map.
Proof. Suppose that (x1, x2) ∈ kerφ. Hence φ(x1) = φ(x2). This
implies that for every h ∈ H,

φ(µ(h, x1)) = µ(h, φ(x1)) = µ(h, φ(x2)) = φ(µ(h, x2)),

and for every t1 ∈ µ(h, x1), there exists t2 ∈ µ(h, x2) such that
φ(t1) = φ(t2). Also, for every t2 ∈ µ(h, x2) there exists t1 ∈ µ(h, x1)
such that (t1, t2) ∈ kerφ. Thus, the relation kerφ is regular. Let
us denote kerφ by k. We define φ̂ : X/kerφ −→ Y defined by
φ̂(k(x)) = φ(x), where x ∈ X. Then, φ̂ is both well-defined and
one to one, since

k(x1) = k(x2) ⇐⇒ (x1, x2) ∈ k ⇐⇒ φ(x1) = φ(x2).

Also, for every x ∈ X and h ∈ H,
φ̂(µ̂(h, k(x)) = φ̂({k(t) : t ∈ µ(h, x)}) = {φ(t) : t ∈ µ(h, x)}

= φ(µ(h, x))
= µ(h, φ(x))
= µ(h, φ̂(k(x)).

Hence φ̂ is a morphism. Clearly, im(φ̂) = imφ and φ̂ ◦ π = φ. □
Let X be a left H-set, σ1 and σ2 be regular relations on X such that

σ1 ⊆ σ2. Then, there is a morphism α from X/σ1 onto X/σ2 such that
α ◦ π1 = π2, where π1 : X −→ X/σ1 and π : X −→ X/σ2 are natural
morphisms. The morphism α given by

α(σ1(x)) = σ2(x), x ∈ X,
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and the regular relation kerα on X/σ1 given by
kerα = {(σ1(a), σ1(b)) : (a, b) ∈ σ2}.

We write kerα by σ1/σ2.

Theorem 2.13. Let X be a left H-set, σ1, σ2 be regular relations such
that σ1 ⊆ σ2. Then, σ1/σ2 is a regular relation on X/σ2 and

(X/σ2)/(σ1/σ2) ∼= (X/σ1).

Proof. The proof is straightforward. □
Definition 2.14. Let X be a left H-set on a canonical Hv-group H.
Then, X is called invertible, when

x ∈ µ(h, y) =⇒ y ∈ µ(h
′
, x),

where x, y ∈ X.

Let X be an invertible left H-set. Then, we define an equivalence
relation ∼ on X as follows:

x ∼ y ⇐⇒ ∃h ∈ H : x ∈ µ(h, y).

The equivalence class x ∈ X is called orbital and denoted by orb(x).
HenceX =

∪
x∈X orb(x) and whenX is a finite set |X| =

∑
x∈X |orb(x)|.

Also, the stabilizer x ∈ X is defined as follows:
stab(x) = {g ∈ H : g ∈ µ(g, x)}.

Example 2.15. Let X be a left H-set and ρ be a strongly regular
relation on X. Then, X/ρ is a H-set as follows:

µ̂ : H ×X/ρ −→ P ∗(X/ρ)
(h, ρ(x)) −→ {ρ(t) : t ∈ µ(h, x)},

where ρ(x) ∈ X/ρ and h ∈ H. Since ρ is a strongly regular relation,
| µ̂(h, ρ(x)) |= 1. Hence,

orb(ρ(x)) = {ρ(t) : t ∈ µ(h, x), h ∈ H},

stab(ρ(x)) = {h ∈ H : ρ(x) = µ̂(h, ρ(x))}.

Proposition 2.16. Let X be a left H-set on canonical Hv-group H and
ρ be a strongly regular relation on X. Then, stab(ρ(x)) is a Hv-subgroup
of H.

Proof. Suppose that h1, h2 ∈ stab(ρ(x)). Hence, ρ(x) = µ̂(h1, ρ(x))
and ρ(x) = µ̂(h2, ρ(x)). This implies that

µ̂(h1 ◦ h2, ρ(x)) ∩ µ̂(h1, µ̂(h2, ρ(x)) ̸= ∅.
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Thus,
µ̂(h1 ◦ h2, ρ(x)) = µ̂(h1, µ̂(h2, ρ(x)) = µ̂(h1, ρ(x)) = ρ(x).

Then, for every h ∈ h1 ◦h2, µ̂(h, ρ(x)) = ρ(x) and h1 ◦h2 ⊆ stab(ρ(x)).
Also, we can see stab(ρ(x)) is closed with respect to the inverse. □
Theorem 2.17. Let X be a left H-set on commutative canonical Hv-
group (H,+) and ρ be a strongly regular relation on X. Then,

| orb(ρ(x)) |=| H/S∗ |,
where S = stab(ρ(x)).
Proof. Suppose that φ : H/S∗ −→ orb(ρ(x)) defined by

φ(S∗(h)) = µ̂(h, ρ(x)).

Let S∗(h1) = S∗(h2). Then, h1 ∈ h2 + s, for some s ∈ stab(ρ(x)) and
µ̂(h1, ρ(x))) ⊆ µ̂(h2 + s, ρ(x)) = µ̂(h2, µ̂(s, ρ(x)) = µ̂(h2, ρ(x)).

Hence µ̂(h1, ρ(x))) = µ̂(h2, ρ(x)) and φ is well-defined. Also,
φ(S∗(h1)) = φ(S∗(h2)), implies that

ρ(x) = µ̂(0, ρ(x)) ⊆ µ̂(h1 − h1, ρ(x)) = µ̂(−h1, µ̂(h1, ρ(x))
= µ̂(−h1, µ̂(h2, ρ(x))
= µ̂(h2 − h1, ρ(x)).

Hence, for some s ∈ h2 − h1 such that ρ(x) = µ̂(s, ρ(x)). Thus,
s ∈ stab(ρ(x)) and S∗(h1) = S∗(h2) and the map φ is one to one. □
Corollary 2.18. Let X be a left H-set and ρ be a strongly regular
relation on X such that | H/S∗ | is finite. Then, the order H/S∗ divide
| X/ρ |.
Definition 2.19 ([2], p. 188). Let (H1, ◦) and (H2, ∗) be Hv-groups.
Then, a map φ : H1 −→ H2 is called a strong homomorphism, when

φ(x1 ◦ x2) = φ(x1) ∗ φ(x2),
for every x1, x2 ∈ H1. An injective and onto strong homomorphism is
called an isomorphism.
Definition 2.20. Let X1 and X2 be left H1 and H2-sets, respectively,
φ : H1 −→ H2 be an isomorphism and λ : X1 −→ X2 be a bijective
morphism. Then, we say that X1 and X2 are equivalent when,
λ(µ1(h1, x1)) = µ2(φ(h1), λ(x1)), λ−1(µ2(h2, x2)) = µ1(φ

−1(h2), λ
−1(x2)),

where h1 ∈ H1, h2 ∈ H2 and x1 ∈ X1, x2 ∈ X2. We write X1 ∼ X2,
when X1 and X2 are equivalent. When X1 and X2 are (H1, H2)-sets,
we say that X1 and X2 are equivalent, if X1 and X2 are equivalent as
left H1-set and right H2-set.
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Proposition 2.21. Let X1 and X2 be equivalent left H1- and H2-sets
and x1 ∈ X1. Then,

stab(x1) ≃ stab(λ(x1)).

Proof. The proof is straightforward.
□

3. Tensor product

In this section by left(right) H-sets we introduce a new type of su-
perstructures that will be called tensor product.
Definition 3.1. Let X, Y and Z be (H1, H2)-, (H2, H3)- and (H1, H3)-
sets, respectively. Then, a map φ : X × Y −→ Z is called bimap, if for
every x ∈ X, y ∈ Y and h2 of H2,

φ(µ1(x, h2), y) = φ(x, µ2(h2, y)).

Definition 3.2. Let X, Y and T be (H1, H2)-, (H2, H3)- and (H1, H3)-
sets, respectively, and ψ : X×Y −→ T be a bimap. Then, a pair (T, ψ)
is called tensor product of X and Y over H2, if for every (H1, H3)-set
C and every bimap β : X × Y −→ C there exists a unique bimap
β : T −→ C such that β ◦ ψ = β.

Let X and Y be (H1, H2) and (H2, H3)-sets, respectively. Then, we
define the relation ρ on X × Y as follows:

ρ = {((t1, t2), (t3, t4)) : t1 = µ1(t3, h2) t4 = µ2(h2, t2)},
where h2 is a scalar element of H2. The relation ρ is reflexive and
symmetric. Let ρ∗ be transitive closure of ρ and we denote a typical
element ρ∗(x, y) of X ⊗ Y by x⊗ y. For any two nonempty subsets A
of X and B of Y , we define

A⊗B =
∪

a∈A,b∈B

a⊗ b.

We note that by definition of ρ for every scalar element h2 ∈ H2,
µ1(x, h2)⊗ y = x⊗ µ2(h2, y).

Proposition 3.3. Let X and Y be (H1, H2)- and (H2, H3)-sets, respec-
tively. Then, x1 ⊗ y1 = x2 ⊗ y2 if and only if there exist a1, a2, ..., an−1

in X, b1, b2, ..., bn−1 in Y and scalar elements s1, s2, ..., sn, t1, t2, ..., tn−1

in H2 such that
x1 = µ1(a1, s1), µ1(a1, t1) = µ1(a2, s2), , ...µ1(ai, ti) = µ1(ai+1, si+1)

...
µ1(an−1, tn−1) = µ1(x2, sn) (∗).
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µ2(s1, y1) = µ2(t1, b1), µ2(s2, b1) = µ2(t2, b2), ..., µ2(si+1, bi)
= µ2(ti+1, bi+1)
...

µ2(sn, bn−1) = y2 (∗∗).

Proof. Suppose that we have (∗) and (∗∗). Then,

x1 ⊗ y1 = µ1(a1, s1)⊗ y1 = a1 ⊗ µ2(s1, y1) = a1 ⊗ µ2(t1, b1)
...
= µ1(x2, sn)⊗ b1
= x2 ⊗ µ2(sn, bn−1)
= x2 ⊗ y2.

Conversely, assume that x1 ⊗ y1 = x2 ⊗ y2. By definition there are
(ti, si) ∈ X × Y , 1 ≤ i ≤ n such that

(t1, s1) = (x1, y1), (tn, sn) = (x2, y2)

and ((ti, si), (ti+1, si+1)) ∈ ρ. By definition of ρ, we have (∗) and (∗∗).
□

Proposition 3.4. Let X and Y be (H1, H2)- and (H2, H3)-sets, respec-
tively. Then, X ⊗ Y is an (H1, H3)-set by following hyperoperations:

µ1 : H1 ×X ⊗ Y −→ P ∗(X ⊗ Y )
h1 · (x⊗ y) = {t⊗ y : t ∈ µ1(h1, x)},

µ2 : X ⊗ Y ×H3 −→ P ∗(X ⊗ Y )
(x⊗ y) · h3 = {x⊗ t : t ∈ µ2(y, h3)},

where x⊗ y ∈ X ⊗ Y , h1 ∈ H1 and h3 ∈ H3.

Proof. Let x1 ⊗ y1 = x2 ⊗ y2. Then, by Proposition 3.3,

x1 = µ1(a1, s1), µ1(a1, t1) = µ1(a2, s2), ..., µ1(ai, ti) = µ1(ai+1, si+1)
...

µ1(an−1, tn−1) = µ1(x2, sn).

µ2(s1, y1) = µ2(t1, b1), µ2(s2, b1) = µ2(t2, b2), ..., µ2(si+1, bi)
= µ2(ti+1, bi+1)
...

µ2(sn, bn−1) = y2.
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We have,
µ1(h1, x1) = µ1(µ1((h1, a1), s1), µ1(µ1((h1, a1), t1)

= µ1((µ1(h1, a2), s2)
...

µ1(µ1(h1, ai), ti) = µ1(µ1(h1, ai+1), si+1))
...

µ1(h1an−1), tn−1) = µ1(µ1(h1, x2), sn).

Assume that w ∈ µ1(h1, x1). Since s1 is a scalar element, then there
exists w1 ∈ µ1(h1, a1) such that w = µ1(w1, s1). Also, since s2 is a
scalar element, then there exists w2 ∈ µ1(h1, a2) such that

µ1(w1, t1) = µ1(w2, s2).

After a finite process, we have w1, w2, ..., wn ∈ X such that
w = µ1(w1, s1), µ1(w1, t1) = µ1(w2, s2), ..., µ1(wi, ti) = µ1(wi+1, si+1)

...
= µ1(wn−1, tn−1)
= wnsn.

Hence, w ⊗ y1 = wn ⊗ y1 ∈ h1x2 ⊗ y2. Thus,
µ̂(h1, x1 ⊗ y1) ⊆ µ̂(h2, x2 ⊗ y2).

In the same way, we can see that µ̂(h2, x2 ⊗ y2) ⊆ µ̂(h1, (x1 ⊗ y1).
Therefore, the hyperoperation µ̂ defined on X⊗Y is well-defined. Also,

µ̂(h1, µ̂(h2, (x⊗ y)) ∩ µ̂(h1h2, (x⊗ y) ̸= ∅.
□

Corollary 3.5. Let X and Y be (H1, H2)- and (H2, H3)-sets, respec-
tively. Then, a map π : X × Y −→ X ⊗ Y is a bimap.

Example 3.6. Let (H, ◦) be a commutative Hv-group and ρ be a
strongly regular relation on H. Then, X = H/ρ is a left H-set as
follows:

µ : H ×H/ρ −→ P ∗(H)
(h, ρ(x)) −→ {ρ(t) : t ∈ h ◦ x}.

Since ρ is a strongly regular relation on H, every element of H is a
scalar element of X. Thus,

ρ(a)⊗ ρ(b) = {(ρ(x), ρ(y)) : x ∈ h ◦ a, b ∈ h ◦ y}.
Also,

orb(ρ(x)) = {ρ(t) : t ∈ h ◦ x, h ∈ H}.
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Theorem 3.7. Let X and Y be (H1, H2)- and (H2, H3)- sets, respec-
tively. Then, (X ⊗ Y, π) is a tensor product over H2.

Proof. Suppose that Z is an (H1, H2)-set and β : X × Y −→ Z be a
bimap. We define β : X ⊗ Y −→ Z by

β(x⊗ y) = β(x, y),

where x ∈ X and y ∈ Y . Let x1 ⊗ y1 = x2 ⊗ y2. Then, by Proposition
3.3, we have

β(x1, y1) = β(µ1(a1, s1), y1) = β(a1, µ2(s1, y1))
...
= β(µ1(x2, s2), bn−1)
= β(x2, µ2(s, bn−1))
= β(x2, y2).

Hence, β(x1 ⊗ y1) = β(x2 ⊗ y2) and β is well-defined. Also,

β(µ̂1(h1, x⊗ y)) = β(µ1(h1, x)⊗ y) = β(µ1(h1, x), y)
= µ3(h1, β(x, y))
= µ3(h1, β(x⊗ y)),

where h1 ∈ H1, x ⊗ y ∈ X ⊗ Y . In the same way, we can see that
β(µ̂3(x⊗ y, h3)) = µ3(β(x⊗ y), h3). Thus, β is a morphism. Also,

β ◦ π(x, y) = β(x⊗ y) = β(x, y),

implies that β ◦ π = β. If β1 : X ⊗ Y −→ Z be an another morphism
such that β1 ◦ π = β, then we have

β1(x⊗ y) = β1(π(x, y)) = β1 ◦ π(x, y) = β ◦ π(x, y) = β(x⊗ y).

Therefore, β is unique with respect to this properties. □

Theorem 3.8. Let X1, X2 and Y1, Y2 be (H1, H2)- and (H2, H3)-sets,
respectively such that X1 ∼ X2 and Y1 ∼ Y2. Then, X1⊗Y1 ∼ X2⊗Y2.

Proof. Suppose that X1 ∼ X2 and Y1 ∼ Y2. By definition, there exist
isomorphisms φi : Hi −→ Hi+1 for 1 ≤ i ≤ 3 and λ1 : X1 −→ X2 and
λ2 : Y1 −→ Y2 such that

λ1(µ1(h1, x1)) = µ2(φ1(h1), λ1(x1)), λ
−1
1 (µ2(h2, x2))

= µ1(φ
−1
1 (h2), λ

−1
1 (x2)),

where x1 ∈ X1, x2 ∈ X2 and h1 ∈ H1, h2 ∈ H2.

λ2(µ2(h2, y1)) = µ3(φ2(h2), λ2(y1))
λ−1
2 (µ2(h3, y2)) = µ2(φ

−1(h3), λ
−1
2 (y2)),
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where y1 ∈ Y1, y2 ∈ Y2 and h2 ∈ H2, h3 ∈ H3.
We define λ : X1 ⊗ Y1 −→ X2 ⊗ Y2, by λ(x ⊗ y) = λ1(x) ⊗ λ2(y),

where x ∈ X1 and y ∈ Y1. Let x1 ⊗ y1 = x2 ⊗ y2, where x1, x2 ∈ X1

and y1, y2 ∈ Y1. Then,

x1 = µ1(a1, s1), µ1(a1, t1) = µ1(a2, s2), , ...µ1(ai, ti)= µ1(ai+1, si+1)
...

µ1(an−1, tn−1)= µ1(x2, sn).

µ2(s1, y1) = µ2(t1, b1), µ2(s2, b1)= µ2(t2, b2)
...

µ2(si+1, bi)= µ2(ti+1, bi+1)
...

µ2(sn, bn−1)= y2.

where s1, s2, ..., sn, t1, t2, ..., tn−1 are scalar elements in H2 and
ai ∈ X1, bi ∈ Y1, 1 ≤ i ≤ n− 1. This implies that

λ1(x1) = λ1(µ1(a1, s1)), λ1(µ1(a1, t1))= λ1(µ1(a2, s2))
...

λ1(µ1(ai, ti))= λ1(µ1(ai+1, si+1))
...

λ1(µ1(an−1, tn−1))= λ1(µ1(x2, sn)).

λ2(µ2(s1, y1)) = λ2(µ2(t1, b1)), λ2(µ2(s2, b1))= λ2(µ2(t2, b2))
...

λ2(µ2(si+1, bi))= λ2(µ2(ti+1, bi+1))
...

λ2(µ2(sn, bn−1))= λ2(y2).

Hence,

λ1(x1) = µ
′
1(λ1(a1), φ2(s1)), µ

′
1(λ1(a1), φ2(t1))= µ

′
1(λ1(a2), φ2(s2))

...
µ

′
1(λ1(ai), φ2(ti))= µ

′
1(λ1(ai+1), φ2(si+1))

...
µ

′
1(λ1(an−1), φ2(tn−1))= µ

′
1(λ1(x2), φ2(sn)).



92 OSTADHADI-DEHKORDI, VOUGIOUKLIS AND HILA

µ
′
2(φ2(s1), λ2(y1))= µ

′
2(φ2(t1), λ2(b1))

µ
′
2(φ2(s2), λ2(b1))= µ

′
2(φ2(t2), λ2(b2))

...
µ

′
2(φ2(si+1), λ2(bi))= µ

′
2(φ2(ti+1), λ2(bi+1))

...
µ

′
2(φ2(sn), λ2(bn−1))= λ2(y2).

Thus, λ1(x1)⊗ λ2(y1) = λ1(x2)⊗ λ2(y2) and the map λ is well-defined.
Also,

λ(µ1(h1, x1 ⊗ y1)) = λ(µ1(h1, x1)⊗ y1)) = λ1(µ1(h1, x1)⊗ λ2(y1)
= µ

′
1(φ(h1), λ1(x1))⊗ λ2(y1)

= µ
′
1(φ(h1), λ1(x1)⊗ λ2(y1))

= µ
′
1(φ(h1), λ(x1 ⊗ y1)).

We can see for λ other properties holds. □

4. Conclusion

The concept of Hv-structures were introduced by Vougiouklis at the
fourth AHA congress (1990)[10]. The concept of an Hv -structure
constitutes a generalization of the well-known algebraic hyperstruc-
tures. Numerous applications of hyperstructures are presented, espe-
cially those that were found and studied in the last fifteen years. By
this hyperstructure, we can study chemical reactions as mathematical
models [4]. In this paper, we introduce H-sets on Hv-groups and ten-
sor products on Hv-groups that is crucially important in homological
algebra. In a future study, by the concept Hv-group we will consider
and classify mathematical and chemical properties of these Hv-groups.
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Hv-گروه ها در کاربردشان و مجموعه ها -H

هیلا٣ کوستاک و وجیوکلیس٢ توماس دهکردی١، استادهادی سهراب

ایران هرمزگان، هرمزگان، دانشگاه پایه، علوم دانشکده ریاضی، ١گروه

یونان یونان، الکساندروپولیس تراکیه، دموکریتوس دانشگاه تربیتی، علوم ٢دانشکده

آلبانی تیرانا، تیرانا، پلی تکنیک دانشگاه ریاضی، گروه ٣

آن ها ویژگی های از برخی کرده، معرفی را Hv-گروه ها روی H-مجموعه ها مفهوم مقاله، این در
منظم، روابط مفاهیم رابطه، این در است. شده ارائه نیز متعددی مثال های و داده قرار بررسی مورد را
قضیه  های به گروه ها یکریختی کلاسیک قضیه های همچنین، می شود. معرفی همریختی و قوی منظم
مفاهیم، این از استفاده با نهایت، در می شود. داده تعمیم Hv-گروه ها روی H-مجموعه ها در یکریختی
حد در و دارد وجود حاصلضرب این می شود ثابت و معرفی Hv-گروه ها روی تانسوری حاصلضرب

است. منحصربه فرد یکریختی

منظم رابطه منظم، رابطه تانسوری، حاصلضرب چپ(راست)، H-مجموعه Hv-گروه، کلیدی: کلمات
قوی.
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