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DIVISOR TOPOLOGIES AND THEIR ENUMERATION

F. ESMAEELI, K. MIRZAVAZIRI AND M. MIRZAVAZIRI∗

Abstract. For a positive integer m, a subset of divisors of m is
called a divisor topology on m if it contains 1 and m and it is closed
under taking gcd and lcm. If m = p1 . . . pn is a square free positive
integer, then a divisor topology m corresponds to a topology on the
set [n] = {1, 2, . . . , n}. Giving some facts about divisor topologies,
we give a recursive formula for the number of divisor topologies on
a positive integer.

1. Introduction

A topology τ on a set X is a collection of subsets of X, possessing
∅ and X, which is closed under arbitrary union and finite intersection.
When X is finite, it should be closed under union and intersection.
Among many problems concerning topologies on finite sets, the prob-
lem of enumerating the number of topologies is one of the oldest and
hardest ones. The largest case, which is recorded for this problem,
is the number of topologies on a finite set with 18 elements in 2007;
see [17]. Various enumerating problems about specific topologies on
finite sets are considered by mathematicians and computer scientists;
see [2–12] and [14, 15].

Taking idea from the definition of a topology motivates us to consider
a number theory version of this concept. By a divisor topology, we mean
a finite set of positive divisors of a positive integer m, possessing 1 and
m, which is closed under taking gcd and lcm. The original key of
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this motivation is the fact that the gcd (resp. lcm) of two square free
positive integers d and d′ is the product of the elements of intersection
(resp. union) of their prime divisors.

Definition of a divisor topology leads us to the notion of a semi-
divisor topology. In the present paper, giving a two sided relation
between the number of divisor and semi-divisor topologies, we establish
a recursive formula to evaluate the number of divisor topologies on a
positive integer m in terms of its divisors.

2. A Relation Between |∆(m)| and |∆′(m)|

Let n be a positive integer. Recall that a topology on the finite set
[n] = {1, 2, . . . , n} is a family τ of subsets of [n] such that ∅, [n] ∈ τ
and τ is closed under taking union and intersection. The set of all
topologies on [n] is denoted by T ([n]). To avoid ambiguity, we use the
terminology ordinary topology for this ordinary concept of a topology
on a set. We denote the number of ordinary topologies on a finite set
with n elements by Tn. For a survey on finite topologies, the reader is
referred to [13].

Furthermore, we recall that if p is a prime number, then pi∥n means
pi|n but pi+1 ̸ |n. Moreover, we denote the number of positive divisors
of n by d(n). We know that d(

∏k
i=1 p

αi
i ) =

∏k
i=1(αi+1). The Dirichlet

inverse d−1 of d under the Dirichlet convolution ∗ is then defined by

d−1(n) =


1, n = 1,

0, p2|n for some prime p,

(−1)r, otherwise, where r is the number of distinct
primes p with p∥n,

which has the property d ∗ d−1 = 1, where 1 is the unit function. To
study more about these notions, see [1].

Definition 2.1. Let m be a positive integer and let Dm = {d : d|m}.
A subset δ of Dm is called a divisor topology on m if 1,m ∈ δ and it
is closed under taking gcd and lcm. We denote the set of all divisor
topologies on m by ∆(m).

Note that each divisor topology is a sublattice of the bounded lattice
Dm of all divisors of a natural number m under the division operation
containing 1 and m.

The following simple result shows that Tn = |∆(p1 . . . pn)|.

Proposition 2.2. Let m = p1 . . . pn be a square free positive integer.
Then there is a one-to-one correspondence between ∆(m) and T ([n]).
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Proof. We can simply consider the mapping φ : ∆(m) → T ([n]) defined
by φ(δ) = τδ = {Ad : d ∈ δ}, where Ad = {i : pi is a prime divisor of d}.
For each δ ∈ ∆(m), it follows that 1,m ∈ δ. Therefore A1 = ∅
and Am = [n] belong to τδ. Furthermore, since Ad ∩ Ad′ = Agcd(d,d′),
Ad ∪ Ad′ = Alcm(d,d′), and τδ is closed under taking union and intersec-
tion, so φ(δ) is well defined. The inverse mapping φ−1 : T ([n]) → ∆(m)
is defined by φ−1(τ) = δτ = {dA : A ∈ τ}, where dA =

∏
i∈A pi. Note

that it follows from gcd(dA, dA′) = dA∩A′ that lcm(dA, dA′) = dA∪A′ .
Since m is square free, for different divisors d and d′, we have Ad ̸= Ad′ .
Therefore φ and φ−1 are one-to-one and onto.

□
Remark 2.3. Note that ∆(m) does not coincide with T ([n]) for some
n. For example, we know that there is no n with |T ([n])| = 12, but
for two prime numbers p and q, there are 12 divisor topologies on m,
where m = p2q. The 12 divisor topologies on m read as follows:

δ1 = {1, p2q},
δ2 = {1, p, p2q}, δ3 = {1, p2, p2q}, δ4 = {1, q, p2q}, δ5 = {1, pq, p2q},
δ6 = {1, p, p2, p2q}, δ7 = {1, p, pq, p2q}, δ8 = {1, p2, q, p2q},
δ9 = {1, q, pq, p2q},
δ10 = {1, p, q, pq, p2q}, δ11 = {1, p, p2, q, p2q},
δ12 = {1, p, p2, q, pq, p2q}.

Definition 2.4. Let m be a positive integer. A subset ε of Dm is called
a semi-divisor topology on m if it is closed under taking gcd and lcm.
We denote the set of all semi-divisor topologies on m by ∆′(m).

Example 2.5. As an example, here is a list of all divisor topologies
and semi-divisor topologies of m = 2:

∆(2) = {∅, {1, 2}},

∆′(2) = {∅, {1}, {2}, {1, 2}}.

The following lemma gives the structure of a semi-divisor topology.

Lemma 2.6. Let m be a positive integer and let ε be a nonempty semi-
divisor topology on m. Then ε ∈ ∆′(m) if and only if 1

d0
ε ∈ ∆(m0

d0
),

where d0 = min ε and m0 = max ε.

Proof. Let d0 = min ε, let m0 = max ε, and let d be an arbitrary ele-
ment of ε. Then gcd(d, d0) ∈ ε implies that d0 ⩽ gcd(d, d0). However,
gcd(d, d0) ⩽ d0. Thus d0 = gcd(d, d0). This shows that d0|d. There-
fore, 1

d0
ε is a subset of D(m0

d0
), which is closed under taking gcd and



114 ESMAEELI , MIRZAVAZIRI AND MIRZAVAZIRI

lcm, 1 ∈ 1
d0
ε, and m0

d0
∈ 1

d0
ε. As a result, 1

d0
ε is a divisor topology on

m0

d0
. The other side is obvious. □

Theorem 2.7. Let m be a positive integer. Then
|∆′(m)| = 1 +

∑
d|m d(m

d
)|∆(d)|.

Proof. Using Lemma 2.6, we can write
∆′(m) = {∅} ∪

(
∪m′|m ∪d′|m′ d′∆(m

′

d′
)
)
,

where the sets d′∆(m
′

d′
) are disjoint.

To see this, let ε ∈ ∆′(m) and let ε ̸= {∅}. If d′ = min ε and
m′ = max ε, then d′|m′|m and ε ∈ d′∆(m

′

d′
). Conversely, let

δ ∈ d′∆(m
′

d′
). Then δ is clearly a semi-divisor topology on m.

Now we can write

|∆′(m)| = 1+
∑
m′|m

∑
d′|m′

|∆(
m′

d′
)| = 1+

∑
d|m

∑
e|m

d

|∆(d)| = 1+
∑
d|m

d(
m

d
)|∆(d)|.

□
Now we apply Theorem 2.7 for the following example.

Example 2.8. We have
|∆′(12)| = 1 + d(12)|∆(1)|+ d(6)|∆(2)|+ d(4)|∆(3)|

+d(3)|∆(4)|+ d(2)|∆(6)|+ d(1)|∆(12)|
= 1 + 6× 1 + 4× 1 + 3× 1 + 2× 2 + 2× 4 + 1× 12

= 38.

Corollary 2.9. Let m = p1 . . . pn be a square free positive integer.
Then

|∆′(m)| = 1 +
n∑

i=0

(
n

i

)
2n−iTi.

Proof. Using Theorem 2.7, we have

|∆′(m)| = 1 +
∑
d|m

d(
m

d
)|∆(d)|

= 1 + d(
m

1
)|∆(1)|

+
n∑

i=1

∑
{j1,...,ji}⊆{1,...,n}

d(
p1 . . . pn
pj1 . . . pji

)|∆(pj1 . . . pji)|

= 1 + 2n +
n∑

i=1

(
n

i

)
2n−iTi
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= 1 +
n∑

i=0

(
n

i

)
2n−iTi.

□
For example, |∆′(6)| = 1 + 4T0 + 4T1 + T2 = 1 + 4 + 4 + 4 = 13.

Theorem 2.10. Let m be a positive integer. Then
∆(m) =

∑
d|m d−1(m

d
)(|∆′(d)| − 1).

Proof. Define two arithmetic functions f and g by
f(m) = |∆′(m)| − 1

and g(m) = |∆(m)|, respectively. Then Theorem 2.7 says that
f = g ∗ d. Thus g = f ∗ d−1. □
Example 2.11. We have

|∆(12)| = d−1(12)(|∆′(1)| − 1) + d−1(6)(|∆′(2)| − 1)

+ d−1(4)(|∆′(3)| − 1) + d−1(3)(|∆′(4)| − 1)

+ d−1(2)(|∆′(6)| − 1) + d−1(1)(|∆′(12)| − 1)

= (−2)× 1 + 4× 3 + 1× 3 + (−2)× 7

+ (−2)× 12 + 1× 37

= 12.

3. Construction of ∆(pαk) via ∆′(k)

Lemma 3.1. Let k and α be two positive integers, let p be a prime,
and let gcd(p, k) = 1. Then δ is a divisor topology on m = pαk if and
only if there are ε0, . . . , εα such that

i. Each εi is a semi-divisor topology on k;
ii. δ = ∪α

i=0 piεi;
iii. 1 ∈ ε0;
iv. k ∈ εα;
v. If i < i′ and d ∈ εi, d

′ ∈ εi′, then gcd(d, d′) ∈ εi and
lcm(d, d′) ∈ εi′.

Moreover, δ is a semi-divisor topology on m if and only if (i), (ii), and
(v) hold.
Proof. The proof is easily obtained from εi = { d

pi
: pi∥d and d ∈ δ}. □

Definition 3.2. Let k be a positive integer, let p be a prime, and let
gcd(p, k) = 1. Suppose that ε and ε′ are two semi-divisor topologies
on k. Then we say that ε precedes or equals to ε′ and write ε ⪯p ε′ if
ε ∪ pε′ ∈ ∆′(pk).
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Lemma 3.3. Let k be a positive integer, let p and q be two primes,
and let gcd(p, k) = gcd(q, k) = 1. Then

i. ε ⪯p ε
′ if and only if ε ⪯q ε

′ for each ε, ε′ ∈ ∆′(k);
ii. ε ⪯p ε for each ε ∈ ∆′(k);
iii. ε ⪯p ε′ and ε′ ⪯p ε imply ε = ε′ for each ε, ε′ ∈ ∆′(k) with

ε ̸= {∅} and ε′ ̸= {∅}.

Proof. i. This is clear by Lemma 3.1. Note that the parts (i), (ii), and
(v) of Lemma 3.1 are independent of the choice of p.

ii. This is again obvious by Lemma 3.1.
iii. Let d0 = min ε and let d′ be an arbitrary element of ε′. Then

gcd(d0, d
′) ∈ ε implies that d0 ⩽ gcd(d0, d

′). However,
gcd(d0, d

′) ⩽ d0. Thus d0 = gcd(d0, d
′). Hence d0|d′. Now ε′ ⪯p ε

implies that d′ = lcm(d0, d
′) ∈ ε. Thus ε′ ⊆ ε. A similar argument

shows ε ⊆ ε′. □

Regarding (i) of Lemma 3.3, we can use ⪯ instead of ⪯p without
any ambiguity.

Definition 3.4. Let k be a positive integer, let p be a prime, and let
gcd(p, k) = 1. Using ∆′(k) as an index set, we can define a matrix
Ap,k = [aδδ′ ]r×r, where r = |∆′(k)| and

aδδ′ =

{
1, δ ⪯ δ′,

0 othewise.

For 1 ⩽ j ⩽ r, the j-deciding map is the mapping
Fj : ∆

′(k)j+1 → {0, 1}
defined by Fj(δ0, δ1, . . . , δj) =

∏
0⩽s<t⩽j aδsδt . The (j + 1)-tuple

(δ0, δ1, . . . , δj) is called a path in ∆′(k) of length j if
Fj(δ0, δ1, . . . , δj) = 1.

A path (δ0, δ1, . . . , δj) is called a topological path if 1 ∈ δ0 and k ∈ δj.

The following result in fact summarizes our considerations in Lemma
3.1 and the fact that (v) of that lemma is equivalent to εi ⪯ εi′ for any
i < i′, so we omit its proof.

Theorem 3.5. Let k and α be two positive integers, let p be a prime,
and let gcd(p, k) = 1. Then

i. ∆′(pαk) = {∪α
i=0 piεi : (ε0, . . . , εα) is a path in ∆′(k)};

ii. ∆(pαk) = {∪α
i=0 p

iεi : (ε0, . . . , εα) is a topological path in ∆′(k)};
iii. |∆′(pαk)| is the number of paths of length α in ∆′(k);
iv. |∆(pαk)| is the number of topological paths of length α in ∆′(k).
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Corollary 3.6. Let α be a positive integer and let p and q be two
primes. Then

|∆′(pα)| = 2α+1, |∆(pα)| = 2α−1;

|∆′(pαq)| = (α2 + 9α + 16)2α−2, |∆(pαq)| = (α2 + 13α + 18)2α−4.

Proof. The first part is obvious. To evaluate |∆(pαq)|, we use Theorem
3.5 and the facts that

∆′(q) = {ε0 = ∅, ε1 = {1}, ε2 = {q}, ε3 = {1, q}},
∆′(pq) = {εi ∪ pεj : (i, j) /∈ {(2, 1), (2, 3), (4, 2)}}.

This helps us to write

Ap,q =


1 1 1 1
1 1 1 1
1 0 1 0
1 0 1 1

 .

A topological path should begins with ε1 or ε3 and ends with ε2 or ε3.
Moreover, if for a path P = (ε0, ε1, . . . , εα) of length α the notation
P = (i0i

′
0, i1i

′
1, . . . , iαi

′
α) means that εj can be εij or εi′j , then we can

say that a topological path of length α should be one of the following
forms:

(1, 01, 01, . . . , 01, 23),

(1, 01, 01, . . . , 01, 2, 02, 02, . . . , 02, 2),

(1, 01, 01, . . . , 01, 3, 03, 03, . . . , 03, 23),

(1, 01, 01, . . . , 01, 3, 03, 03, . . . , 03, 2, 02, 02, . . . , 02, 2),

(3, 03, 03, . . . , 03, 23),

(3, 03, 03, . . . , 03, 2, 02, 02, . . . , 02, 2).

For example, the first form means that ε0 = 1, ε1, . . . , εα−1 can be ε0
or ε1, and εα can be ε2 or ε3.

The number of the above forms is 2α, (α − 1)2α−2, (α − 1)2α−1,(
α−1
2

)
2α−3, 2α, (α− 1)2α−2, respectively. Summing these, we have

|∆(pαq)| = (α2 + 13α + 18)2α−4.

Now, using Theorem 2.7, we evaluate |∆′(pαq)|. We have

|∆′(pαq)| = 1 +
∑
d|pαq

d(
pαq

d
)|∆(d)|

= 1 +
α∑

i=0

d(
pαq

pi
)|∆(pi)|+

α∑
i=0

d(
pαq

piq
)|∆(piq)|
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= 1 +
α∑

i=0

2(α− i+ 1)2i−1

+
α∑

i=0

(α− i+ 1)(i2 + 13i+ 18)2i−4.

A bothersome simplification gives the result. □

Although the number of topologies on a finite set is still an open
problem, the enumeration of divisor topologies and semi-divisor topolo-
gies creates a wide area of research that can be extended in some dif-
ferent topics. As a collection of some enumerative problems concerning
divisor topologies, one can consider divisor topologies with some con-
straints, the relation between divisor topologies and ordinary topolo-
gies on a finite set, and some partition problems dealing with divisor
topologies.
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آن ها شمارش و علیهی مقسوم توپولوژی های

میرزاوزیری٣ مجید میرزاوزیری٢، کامیار اسماعیلی١، فهیمه

ایران مشهد، مشهد، فردوسی دانشگاه ریاضی، علوم ١,٣دانشکده

ایران تهران، تهران، دانشگاه کامپیوتر، علوم و آمار ٢دانشکده

علیهی مقسوم توپولوژی یک m عدد علیه های مقسوم از مجموعه یک ،m مثبت و صحیح عدد برای
(ک.م.م) و (ب.م.م) به نسبت علاوه به و باشد m و ١ شامل زیرمجموعه این هرگاه می شود، نامیده
توپولوژی هر باشد، مربع از خالی مثبت صحیح عدد یک m = p١ . . . pn که حالتی در باشد. بسته
مقاله در .[n] = {١, ٢, . . . , n} مجموعه ی روی توپولوژی یک با است متناظر m برای علیهی مقسوم
تعداد شمارش برای بازگشتی رابطه یک علیهی، مقسوم توپولوژی های برای نتایجی ارائه ی ضمن حاضر،

می شود. ارائه مثبت صحیح عدد هر برای علیهی مقسوم توپولوژی های

علیهی. مقسوم توپولوژی شبه علیهی، مقسوم توپولوژی توپولوژی، کلیدی: کلمات
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