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THE IDENTIFYING CODE NUMBER AND
FUNCTIGRAPHS

A. SHAMINEZHAD∗ AND E. VATANDOOST

Abstract. Let G = (V (G), E(G)) be a simple graph. A set D of
vertices G is an identifying code of G, if for every two vertices x and
y the sets NG[x] ∩D and NG[y] ∩D are non-empty and different.
The minimum cardinality of an identifying code in graph G is the
identifying code number of G and it is denoted by γID(G). Two
vertices x and y are twin, when NG[x] = NG[y]. Graphs with at
least two twin vertices are not identifiable graphs. In this paper, we
deal with identifying code number of functigraph of G. Two upper
bounds on identifying code number of functigraph are given. Also,
we present some graph G with identifying code number |V (G)|−2.

1. Introduction

All graphs throughout this paper considered simple, finite and undi-
rected. The open neighborhood of a vertex v ∈ V (G), denoted by
NG(v), is the set of vertices adjacent to v in G. If two vertices x and
y are adjacent, then it denoted by x ∼ y, otherwise, x ≁ y. The closed
neighborhood of a vertex v in graph G is NG[v] = NG(v) ∪ {v}. The
degree of a vertex v ∈ V (G) is degG(v) =| NG(v) | . We denote the
maximum degree of G with ∆(G) and its minimum degree with δ(G).
A vertex is called universal if it is adjacent to all of the vertices of
graph.
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The complement of graph G is denoted by G and defineded as a
graph with vertex set V (G) which e ∈ E(G) if and only if e /∈ E(G).
For any S ⊆ V (G), the induced subgraph on S, denoted by G[S].

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the
union G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define their
join G1 ▷◁ G2 = (V1 ∪ V2, E1 ∪ E2 ∪K), where

K = {u ∼ v | u ∈ V1, v ∈ V2}.
Let G be a graph with V (G) = {v1, v2, ..., vn}, G

′ be a copy of G
with V (G

′
) = {v′

1, v
′
2, ..., v

′
n} and E(G

′
) = {v′

i ∼ v
′
j | vi ∼ vj}, where

v
′
i ∈ V (G

′
) is corresponding to vi ∈ V (G). Then a functigraph G with

function σ : V (G) → V (G
′
), (σ is not necesserily bijective) is denoted

by C(G, σ), its vertices and edges are
V (C(G, σ)) = V (G) ∪ V (G

′
)

and
E(C(G, σ)) = E(G) ∪ E(G

′
) ∪

{vi ∼ v
′

j | vi ∈ V (G), v
′

j ∈ V (G
′
), σ(vi) = v

′

j},

respectively. For v
′
i ∈ V (G

′
),

Rv
′
i
= σ−1({v′

i}) = {vj ∈ V (G) | σ(vj) = v
′
i}

and for ℓ ∈ {0, 1, 2, · · · , n = |V (G)|}, we define
Bℓ = {v′

i ∈ V (G
′
) | |Rv

′
i
| = ℓ}.

For simplicity, the open neighborhood of x in C(G, σ) is denoted by
NC(x).

A set of vertices G such as D is a dominating set of graph G if for
every vertex x of V (G), is either in D or is adjacent to a vertex in D. It
is clear that every isolated vertex is in every dominating set of G. Also
a set D is called a separating set of G if for each pair u, v of vertices
of G, NG[u]∩D ̸= NG[v]∩D (equivalently, (NG[u]△NG[v])∩D ̸= ∅).
If a dominating set D in graph G is a separating set of G, then we say
that D is an identifying code of graph G and if G has an identifying
code, then we say that G is an identifiable graph. Given a graph G,
the smallest size of an identifying code of G is called identifying code
number of G and denoted by γID(G). A vertex x is a twin of another
vertex y if NG[x] = NG[y]. A graph G is called twin free if no vertex
has a twin. The first observation regarding the concept of identifying
codes is that a graph is identifiable if and only if it is twin free [2].

Karpovsky et al [9] have shown that for every identifiable graph G
of order n, γID(G) ≥ ⌈log2(n+ 1)⌉. Also, they proved that
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γID(G) ≥ 2n

∆(G) + 2
.

For every identifiable graph G of order n with at least one edge, there
exists a famous bound as γID(G) ≤ n − 1 (see [3]). In 2012, Foucaud
et al [4], had a conjecture that for every connected identifiable graph
G, there exist a constant c such that γID(G) ≥ n − n

∆(G)
+ c. It is

noteworthy that in 2006 Gravier et al [6] investigated the identifying
code number of cycles. According to their theorems, this conjecture
holds for graphs of maximum degree 2.

Nowadays, identifying codes are an actively studied topic of its own
like: the location of threats in facilities using sensors [12], error-detection
schemes [9] and routing [10] in networks, terrorist network monitoring
[13], as well as the structural analysis of RNA proteins [7]. For more
details we refer reader to [5, 8, 11].

This concept was studied in a large number of various papers, in-
vestigating particular graphs or families of graphs. This paper deals
with the study of functigraph of some graphs. Section 2, the identify-
ing code number of of some special graphs are considered. Two upper
bounds are presented. We prove that if G is an identifiable graph and
δ(G) ≥ 1, then for every function σ : V (G) → V (G

′
), graph C(G, σ)

is an identifiable graph and the upper bound γID(C(G, σ)) ≤ n is
achieved for σ as a permutation. Also, we show that for every iden-
tifiable graph G of order n, with δ(G) ≥ 1, γID(C(G, σ)) ≤ 2γID(G),
where σ : V (G) → V (G

′
) is a function and this bound is sharp. Section

3, we introduce some graphs with identifying code number |V (G)| − 2.
Section 4, we discuss identifying code number of some graphs, which
are not identifiable.

2. Identifying code number of some graphs which are
identifiable

In this section, the identifiability of functigraph, is investigated.

Lemma 2.1. Let G be a graph. Then γID(G) = 2 if and only if
G ∈ {K2, P3}.

Proof. By γID(G) ≥ ⌈log2(n+ 1)⌉, the proof is straightforward. □

Lemma 2.2. If σ : V (P3) → V (P
′
3) is a permutation, then

γID(C(P3, σ)) = 3.

Proof. For every permutation σ : V (P3) → V (P
′
3), C(P3, σ) is isomor-

phic to Hi (i ∈ {1, 2, 3, 4}) (see Figure 1). In H1, D1 = {v2, v
′
1, v

′
3} is an
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identifying code of C(P3, σ). In H2, D2 = {v2, v3, v
′
1} is an identifying

code of C(P3, σ). In H3 and H4, D3 = {v2, v3, v
′
2} and D4 = {v2, v

′
2, v

′
3}

are identifying codes of C(P3, σ), respectively. So γID(C(P3, σ)) ≤ 3.
By Lemma 2.1, γID(C(P3, σ)) = 3. □
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Figure 1

Lemma 2.3. Let G be a graph and D be an identifying code of G.

1) If NG(x) = NG(y), then x ∈ D or y ∈ D.
2) If NG[x] △ NG[y] = {y1, y2}, then y1 ∈ D or y2 ∈ D.

Proof. Let {x, y} ∩D = ∅ or {y1, y2} ∩D = ∅. Then

NG[x] ∩D = NG[y] ∩D,

which is not true. □

It is clear that if x ∈ V (G) and σ(x) ∈ V (G
′
) are isolated vertices,

then C(G, σ) is not an identifiable graph.

Theorem 2.4. Let G be an identifiable graph of order n. If
δ(G) ≥ 1, then for every function σ : V (G) → V (G

′
), graph C(G, σ)

is an identifiable graph. If σ is a permutation, then γID(C(G, σ)) ≤ n.
Furthermore, this bound is sharp.

Proof. For each pair x, y of vertices of C(G, σ), if {x, y} ⊆ V (G), then
since G is an identifilable graph, so NG[x] ̸= NG[y]. Hence,
NC [x] ̸= NC [y]. Similarly, if {x, y} ⊆ V (G

′
), then NC [x] ̸= NC [y].

Now, let x ∈ V (G) and y ∈ V (G
′
). If σ(x) ̸= y, then x is not adja-

cent to y in C(G, σ). Hence, NC [x] ̸= NC [y]. If σ(x) = y, then since G
does not have any isolated vertex, so there exist z ∈ NC [y] such that
z /∈ NC [x]. So NC [x] ̸= NC [y]. Therefore, C(G, σ) is an identifiable
graph.
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Now, let σ be a permutation and D = V (G). For each pair x, y of
vertices of C(G, σ), if {x, y} ⊆ V (G), then NC [x] ∩ D = NG[x] and
NC [y] ∩D = NG[y]. So NC [x] ∩D ̸= NC [y] ∩D.

If {x, y} ⊆ V (G
′
), then NC [x]∩D = Rx and NC [y]∩D = Ry. Hence,

NC [x] ∩D ̸= NC [y] ∩D.
Finally, if x ∈ V (G) and y ∈ V (G

′
), then NC [x] ∩ D = NG[x]

and NC [y] ∩ D = Ry. Since δ(G) ≥ 1 and σ is a permutation, so
NC [x] ∩D ̸= NC [y] ∩D.

However, NC [x]∩D ̸= NC [y]∩D. Hence, V (G) is an identifying code
C(G, σ). Therefore, γID(C(G, σ)) ≤ |V (G)| = n. By Lemma 2.2, this
bound is Sharp. □
Corollary 2.5. Let G ∼= K1,n−1, n ≥ 3 and σ : V (G) → V (G

′
) be a

permutation such that σ(a) = a
′
, where a is the universal vertex of G

and a
′ ∈ V (G

′
) is corresponding to a. Then γID(C(G, σ)) = n.

Proof. By Theorem 2.4, C(G, σ) is an identifiable graph and
γID(C(G, σ)) ≤ n.

Now, let γID(C(G, σ)) ≤ n−1 and D be an identifying code of C(G, σ),
where γID(C(G, σ)) = |D|. Since for each 2 ≤ i ≤ n − 1, we have
NC [v1] = {a, v1, σ(v1)} and NC [vi] = {a, vi, σ(vi)}, so

|{v1, vi, σ(v1), σ(vi)} ∩D| ≥ 1.

Hence, there is A ⊆ V (X)∪ V (X
′
), such that |A| ≥ n− 2 and A ⊆ D,

where X = V (G) \ {a} = {v1, v2, ..., vn−1}. Since
NC [v1]△NC [σ(v1)] = {a, a′},

by Lemma 2.3, (2), a ∈ D or a′ ∈ D. So |D| ≥ n−1. Thus |D| = n−1.
There is no loss of generality in assuming that a ∈ D and a

′ ̸∈ D.
Hence, there exists some vi ∈ V (G), such that σ(vi) is not dominated
by D. It is a contradiction. □
Theorem 2.6. Let G be an identifiable graph of order n, with δ(G) ≥ 1
and σ : V (G) → V (G

′
) be a function. Then γID(C(G, σ)) ≤ 2γID(G).

Furthermore, this bound is sharp.
Proof. By Theorem 2.4, C(G, σ) is an identifiable graph. Let D1 be
an identifying code of G such that γID(G) = |D1| and D

′
1 ⊆ V (G

′
)

be corresponding to D1. Let X = {v ∈ D1 | NG(v) ∩ D1 = {v}} and
X

′ ⊆ V (G
′
) be the corresponding to X. Also, let

Y
′
= {v′ ∈ X

′ | Rv′ ∩D1 = {x} ⊆ X}.

If Y ′
= ∅, then D = D1 ∪D

′
1 is an identifying code of C(G, σ) and so

γID(C(G, σ)) ≤ 2γID(G).
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So suppose that Y
′ ̸= ∅ and Y

′
= {v′

1, · · · , v
′
t}. Since δ(G) ≥ 1, for

1 ≤ i ≤ t, NG′ (v
′
i) ̸= ∅, we set Y

′
1 = {u′

i1 ∈ V (G
′
) | u′

i1 ∈ NG′ (v
′
i)}.

Then D = D1∪Y
′
1 ∪D

′
1 \σ(Y

′
) is an identifying code of C(G, σ). Thus

γID(C(G, σ)) ≤ |D| = γID(G) + t+ γID(G)− t = 2γID(G).
It is clear that γID(P3) = 2. Let σ : V (P3) → V (P

′
3) be a func-

tion, such that σ(a) = σ(b) = σ(c) = b
′
, where degP3(b) = 2. Then

γID(C(P3, σ)) = 4. This show that this bound is sharp. □
Theorem 2.7. Let G be a graph with δ(G) ≥ 1 such that G is not an
identifiable graph and σ : V (G) → V (G

′
) be a function. Then C(G, σ)

is an identifiable graph if and only if two following conditions are hold.
1) If NG[x] = NG[y], then σ(x) ̸= σ(y).
2) If NG′ [x] = NG′ [y], then x /∈ B0 or y /∈ B0.

Proof. Let conditions (1) and (2) are holding and x and y be two ver-
tices of C(G, σ). Let {x, y} ⊆ V (G). If NG[x] = NG[y], then
σ(x) ̸= σ(y). So σ(x) ∈ NC [x] and σ(x) /∈ NC [y]. If NG[x] ̸= NG[y],
then NC [x] ̸= NC [y]. Suppose that {x, y} ⊆ V (G

′
). If NG′ [x] ̸= NG′ [y],

then NC [x] ̸= NC [y]. If NG′ [x] = NG′ [y] and x /∈ B0, then there exists
z ∈ V (G) such that σ(z) = x. So z ∈ NC [x] and z /∈ NC [y]. Now,
assume that x ∈ V (G), y ∈ V (G

′
) and NC [x] = NC [y]. Then σ(x) = y

and y is an isolated vertex in G
′
, which is contradiction with this fact

that δ(G) ≥ 1.
Conversely, let C(G, σ) be an identifiable graph. If NG[x] = NG[y]

and σ(x) = σ(y). Then NC [x] = NG[x] ∪ {σ(x)} and
NC [y] = NG[y] ∪ {σ(y)}.

Hence, NC [x] = NC [y]. Which is not true. If NG′ [x] = NG′ [y] and
{x, y} ⊆ B0, then NC [x] = NG′ [x] and NC [y] = NG′ [y]. Which is a
contradiction. □

Let us mention two consequences of the Theorem 2.7.
Corollary 2.8. Let G be a graph of order n with δ(G) ≥ 1. If G is not
an identifiable graph, then for every permutation σ : V (G) → V (G

′
),

C(G, σ) is an identifiable graph.
Proof. By Theorem 2.7, the proof is straightforward. □
Corollary 2.9. Let G ∼= Kn and n ≥ 2. Then C(G, σ) is an identifiable
graph if and only if σ : V (G) → V (G

′
) be a permutation.

Proof. If σ is a permutation, then by Corollary 2.8, C(G, σ) is an iden-
tifiable graph.

Conversely, let C(G, σ) be an identifiable graph. On the contrary,
let σ not be a permutation. Then B0 ̸= ∅. If {x, y} ⊆ B0, then
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NC [x] = NC [y] = V (Kn).

Which is contradiction. If |B0| = 1, then |B2| = 1. Let y ∈ B2 and
σ(t) = σ(z) = y. Then NC [t] = V (G)∪ {y} = NC [z]. So C(G, σ) is not
an identifiable graph. That is not true. □

3. Graphs G = (V (G), E(G)) with identifying code number
|V (G)| − 2

Foucaud et al.[3], in 2011 classified all graphs with identifying code
number |V (G)| − 1. In this section, we intruduce some graphs with
identifying code number |V (G)| − 2.
For an integer k ≥ 1, let Ak = (Vk, Ek) be the graph with vertex set
Vk = {x1, ..., x2k} and edge set Ek = {xi ∼ xj | |i− j| ≤ k − 1}. Also,
let A be the closure of {Ai | i = 1, 2, · · · } with respect to operation
▷◁ . In the next theorem, Foucaud et al. showed that for any twin free
graph G ̸∈ {K1,n−1} ∪ (A , ▷◁) ∪ (A , ▷◁) ▷◁ K1, γ

ID(G) ≤ |V (G)| − 2.

Theorem 3.1. [3] Let G be an identifiable graph of order n. Then
γID(G) = |V (G)| − 1 if and only if G ̸∼= K2 and

G ∈ {K1,n−1} ∪ (A, ▷◁) ∪ (A, ▷◁) ▷◁ K1.

Theorem 3.2. Let G ∼= Km,n, m, n ≥ 2 and G ̸∼= C4. Then
γID(G) = |V (G)| − 2.

Proof. Let the bipartition of Km,n be X and Y with |X| = n and
|Y | = m. Also, let D be an identifying code of Km,n. By Lemma 2.3,
(1), we have |X ∩D| ≥ n−1 and |Y ∩D| ≥ m−1. So |D| ≥ m+n−2.
By Theorem 3.1, γID(G) = m+ n− 2. □

Observation 3.3. If σ : V (K2) → V (K
′
2) is a permutation, then

γID(C(K2, σ)) = 3.

Proof. It is clear that C(K2, σ) ∼= C4. Since γID(C4) = 3, so
γID(C(K2, σ)) = 3. □

Theorem 3.4. Let G ∼= Kn, n ≥ 3 and σ : V (G) → V (G
′
) be a

permutation. Then γID(C(G, σ)) = |V (C(G, σ))| − 2.

Proof. By Corollary 2.9, C(G, σ) is an identifiable graph. Let

X = V (G) \ {v1} ∪ V (G
′
) \ {σ(v1)}.

Then for 2 ≤ i ≤ n, we have NC [vi] ∩ X = V (G) \ {v1} ∪ {σ(vi)},
NC [v1] ∩X = V (G) \ {v1}. If v′

i ∈ V (G
′
) and v

′
i ̸= σ(v1), then

NC [v
′
i] ∩X = V (G

′
) \ {σ(v1)} ∪ σ−1(v

′
i)
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and NC [σ(v1)]∩X = V (G
′
)\{σ(v1)}. So for each pair x, y in C(G, σ),

we have NC [x] ∩ X ̸= NC [y] ∩ X. Hence, X is an identifying code of
C(G, σ) and so γID(C(G, σ)) ≤ |X| = 2n− 2.

Now, let D be an identifying code of graph C(G, σ) and
γID(C(G, σ)) = |D|. Since NC [v1] △ NC [v2] = {σ(v1), σ(v2)}, so by
Lemma 2.3, (2), we have σ(v1) ∈ D or σ(v2) ∈ D. Let σ(v1) ̸∈ D. Then
σ(v2) ∈ D. Now, let 3 ≤ i ≤ n. Since NC [v1]△NC [vi] = {σ(v1), σ(vi)},
by Lemma 2.3, (2), σ(vi) ∈ D. So there is A ⊆ V (G), such that A ⊆ D
and |A| ≥ n−1. Similarly, There is A′ ⊆ V (G

′
), such that A′ ⊆ D and

|A′ | ≥ n−1. Hence, |D| ≥ 2n−2. Therefore, γID(C(G, σ)) = 2n−2. □
Following Ashrafi et. al [1], a link of graphs G and H by vertices

y ∈ V (G) and z ∈ V (H) is defined as the graph (G ∼ H)(y, z) obtained
by joining y and z by an edge in the union of these graphs.
Theorem 3.5. Let B be a family of graphs of order n, with identifying
code number n − 1. Also, let G ∈ B, u ∈ V (G) and v ∈ V (K1), such
that (G ∼ K1)(u, v) ̸∈ B. Then γID((G ∼ K1)(u, v)) = n− 1.

Proof. Since (G ∼ K1)(u, v) ̸∈ B, so
γID((G ∼ K1)(u, v)) ≤ |(G ∼ K1)(u, v)| − 2 = n+ 1− 2 = n− 1.

Let D be an identifying code of (G ∼ K1)(u, v) and
γID((G ∼ K1)(u, v)) = |D|.

Then |D| ≤ n− 1. If v ̸∈ D, then D is an identifying code of G. Hence,
γID(G) ≤ |D|. Thus n− 1 ≤ |D| and so |D| = n− 1. Now, let v ∈ D.
Then there exists some x ∈ V (G), such that x ∈ NG(u) ∩D. Since G
is an identifiable graph, so there exists z ∈ V (G), such that z ∼ x and
z ̸∼ u or z ∼ u and z ̸∼ x. It is easy to see that D \ {v} ∪ {z} = D1 is
an identifying code of G. So |D1| ≥ n − 1. Hence, |D| ≥ n − 1 and so
|D| = n− 1. Therefore,

γID((G ∼ K1)(u, v)) = |V (G ∼ K1)(u, v))| − 2.

□
Theorem 3.6. Let G ∼= (K1,r ∼ K1,s)(a, b), where a and b be the uni-
versal vertices of K1,r and K1,s, respectively. Then γID(G) = |V (G)|−2.

Proof. Let V (K1,r) = {a, v1, v2, · · · , vr} and
V (K1,s) = {b, u1, u2, · · · , us},

such that a and b be the universal vertices of K1,r and K1,s, respectively.
Then D1 = V (K1,r) \ {a} ∪ V (K1,s) \ {b} is an identifying code of G.
So γID(G) ≤ |D1| = s+ r.
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Now, let D be an identifying code of G, where γID(G) = |D|. For
each 1 ≤ i ≤ r, we have NG[v1] △ NG[vi] = {v1, vi}, by Lemma 2.3,
(2), v1 ∈ D or vi ∈ D. Hence, there is A ⊆ V (K1,r) \ {a}, such that
|A ∩ D| ≥ r − 1. Similarly, there is F ⊆ V (K1,s) \ {b}, such that
|F ∩D| ≥ s− 1. So |D| ≥ r+ s− 2. Since D is a dominating set of G,
so |A| = r or |A| = r − 1 and a ∈ D. Similarly, |F | = s or |F | = s− 1
and b ∈ D. However, |D| ≥ s+ r. Therefore, γID(G) = s+ r. □

4. Identifying code number of C(G, σ), where G is not an
identifiable graph

In this section, we consider the identifying code number of C(G, σ),
where σ : V (G) → V (G

′
) is a function and G is not an identifiable

graph.

Theorem 4.1. Let H be an empty graph of order s and G ∼= H ▷◁ Kr,
where (s, r) ̸∈ {(0, 2), (1, 1)}. Also, let σ : V (G) → V (G

′
) be a permu-

tation, such that σ(V (H)) = V (H
′
). Then

γID(C((H ▷◁ Kr), σ)) =


2r − 2, s = 0
2r, s = 1
s+ 1, r = 1
2r + s− 3, o.w.

Proof. By Corollary 2.8, C(G, σ) is an identifiable graph. If s ∈ {0, 1},
then by Theorem 3.4, the proof is straightforward. If r = 1, then by
Theorem 2.5, γID(C(G, σ)) = s+ 1.

Let r, s ≥ 2, V (H) = {v1, v2, · · · , vs} and V (Kr) = {u1, u2, · · · , ur}.
Then D1 = V (Kr) \ {u1} ∪ V (K

′
r) \ {σ(u1)} ∪ {v1, v2, · · · , vs−1} is an

identifying code of C(G, σ). So γID(C(G, σ)) ≤ 2r + s− 3.
Now, let D be an identifying code of C(G, σ) and

γID(C(G, σ)) = |D|.

For every i, j ∈ {1, · · · , r}, we have NC [ui]△NC [uj] = {σ(ui), σ(uj)}.
By Lemma 2.3, (2), σ(ui) ∈ D or σ(uj) ∈ D. So there is A

′ ⊆ V (K
′
r),

such that |A′ | ≥ r−1 and A
′ ⊆ D. Similarly, there is A ⊆ V (Kr), such

that |A| ≥ r − 1 and A ⊆ D. Hence, |D| ≥ 2r − 2.
Now, let |D| ≤ 2r + s − 4 and F ⊆ (V (H) ∪ V (H

′
)) ∩ D. Then

|F | ≤ s − 2. Let |F ∩ V (H)| = ℓ ≤ s − 2 and {x, y} ⊆ V (H) \ F.
Since NC [x]△ NC [y] = {σ(x), σ(y)}, by Lemma 2.3, (2), σ(x) ∈ D or
σ(y) ∈ D. Thus there is X ⊆ V (H

′
), such that |X| ≥ (s − ℓ) − 1 and

X ⊆ D. Hence, |F | ≥ ℓ + s − ℓ − 1 = s − 1, which is not true. So
|D| ≥ 2r + s− 3. Therefore, γID(C(G, σ)) = 2r + s− 3. □
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Theorem 4.2. Let G be a graph of order n and a be an universal vertex
of G. Also, let G \ {a} = Ks

∪r
i=1 Kni

, r ≥ 2, 2 ≤ n1 ≤ n2 ≤ · · · ≤ nr

and
σ : V (G) → V (G

′
)

be a permutation, such that σ(V (Kni
)) = V (K

′
ni
), for each 1 ≤ i ≤ r

and σ(a) = a
′
. Then

γID(C(G, σ)) =

 2n− 2r − 1, s = 0, n1 = 2
2n− 2r − 2, s = 0, n1 ≥ 3
2n− 2r − s− 1, s ≥ 1

Proof. By Corollary 2.8, C(G, σ) is an identifiable graph. Let

V (Kni
) = {vi1, vi2, · · · , vini

}

and V (G) = V (
∪r

i=1Kni
) ∪ {vj | 1 ≤ j ≤ s} ∪ {a}.

Let s = 0, n1 = 2 and

X1 = V (G) \ {vi1 | 1 ≤ i ≤ r} ∪ V (G
′
) \ {σ(vi1), a

′ | 1 ≤ i ≤ r}.

Then X1 is an identifying code of C(G, σ). Thus
γID(C(G, σ)) ≤ |X1| = 2n− 2r − 1. (4.1)

Assume that s = 0, n1 ≥ 3 and

X2 = V (G) \ {a, vi1 | 1 ≤ i ≤ r} ∪ V (G
′
) \ {a′

, σ(vi1) | 1 ≤ i ≤ r}.

Then X2 is an identifying code of C(G, σ) and so
γID(C(G, σ)) ≤ |X2| = 2n− 2r − 2. (4.2)

Also, let s ≥ 1 and
X3 = V (G) \ {vi1, vs | 1 ≤ i ≤ r}

∪V (G
′
) \ ({σ(vi1), v

′

j | 1 ≤ i ≤ r, 1 ≤ j ≤ s}.

Then X3 is an identifying code of C(G, σ). Thus
γID(C(G, σ)) ≤ |X3| = 2n− 2r − s− 1. (4.3)

Now, let D be an identifying code of C(G, σ) with

γID(C(G, σ)) = |D|.

Since NC [vi1] △ NC [vij] = {σ(vi1), σ(vij)}, so by Lemma 2.3, (2),
σ(vi1) ∈ D or σ(vij) ∈ D. Thus there is A

′ ⊆
∪r

i=1 V
′
(Kni

), such
that |A′ ∩D| ≥

∑r
i=1(ni − 1). Also, we have

NC [σ(vi1)]△NC [σ(vij)] = {vi1, vij},
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so by Lemma 2.3, (2), we have vi1 ∈ D and vij ∈ D. So there is
A ⊆ V (

∪r
i=1 Kni

), such that |A ∩D| ≥
∑r

i=1(ni − 1). Thus
|D| ≥ 2(

∑r
i=1(ni − 1)) = 2

∑r
i=1 ni − 2r.

Case 1: Let s = 0, n1 = 2 and {v11, σ(v11)} ∩D = ∅. If
|D| = 2

∑r
i=1 ni − 2r,

then D ∩ {a, a′} = ∅ and so NC [v12] ∩ D = NC [σ(v12)] ∩ D, which is
not true. So D ∩ {a, a′} ̸= ∅. Hence, |D| ≥ 2

∑r
i=1 ni − 2r + 1. By (1),

γID(C(G, σ)) = 2n− 2r − 1.
Case 2: Let s = 0 and n1 ≥ 3. We have |D| ≥ 2

∑r
i=1 ni − 2r. By (2),

γID(C(G, σ)) = 2n− 2r − 2.
Case 3: Let s ≥ 1. For 1 ≤ i ≤ s, we have NC [v1] = {a, v1, σ(v1)}
and NC [vi] = {a, vi, σ(vi)}. So |{v1, vi, σ(v1), σ(vi)} ∩ D| ≥ 1. Thus
there is F ⊆ {vi, σ(vi) | 1 ≤ i ≤ s}, such that |F ∩D| ≥ s− 1. Hence
|D| ≥ 2

∑r
i=1 ni−2r+s−1 = 2n−2r−s−3. Now, if |D| = 2n−2r−s−3,

then {a, a′}∩D = ∅. It is clear that NC [vi]∩D = NC [σ(vi)]∩D, which
is a contradiction. Hence, D ∩ {a, a′} ̸= ∅. Let |D ∩ {a, a′}| = 1. Then
|D| ≥ 2n−2r−s−2. If |D| = 2n−2r−s−2 and a ∈ D, then a

′ ̸∈ D (or
if a′ ∈ D, then a ̸∈ D). Thus there is an x in {v′

i | 1 ≤ i ≤ s} such that
x is not dominated by D. It is impossible. Hence, {a, a′} ⊆ D and so
|D| ≥ 2n−2r−s−1. By (3), we have γID(C(G, σ)) = 2n−2r−s−1. □
Corollary 4.3. Let G ∼= Kr

3 be a graph, r ≥ 2 and σ : V (G) → V (G
′
)

be a permutation. Then γID(C(G, σ)) = 2r + 1.

Proof. By Theorem 4.2, the proof is straigtforward. □
Conjecture 4.4. [4] There exists a constant c such that for any non-
trivial connected twin-free graph G of maximum degree ∆(G),

γID(G) ≤ n− n

∆(G)
+ c.

Note: The conjecture 4.4, holds for graphs which are presented in
Theorems 4.1 and 4.2 with c = 0.
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تابعی گراف های و شناساگر کد عدد

وطن دوست٢ ابراهیم و شامی نژاد١ آتنا

ایران قزوین، (ره)، خمینی امام المللی بین دانشگاه پایه، علوم دانشکده محض، ریاضی ١,٢گروه

کد یک G رئوس از D مجموعه ی یک باشد. ساده گراف یک G = (V (G), E(G)) کنید فرض
و ناتهی NG[y] ∩D و NG[x] ∩D مجموعه های ،y و x رأس دو هر برای اگر هست، G شناساگر
شده نامیده G شناساگر کد عدد عضو، کمترین با G گراف شناساگر کد یک اعضای تعداد باشند. متمایز

می شود. داده نشان γID(G) نماد با و
دارند، دوقلو رأس دو حداقل که گراف هایی .NG[x] = NG[y] هرگاه هستند، دوقلو y و x رأس دو
کران دو می دهیم. قرار بررسی مورد را G تابعی گراف شناساگر کد عدد مقاله، این در نیستند. کدپذیر
کد عدد دارای که گراف هایی از برخی همچنین، است. شده بیان تابعی گراف شناساگر کد عدد برای بالا

می کنیم. ارائه را می باشند |V (G)| − ٢ شناساگر

تابعی. گراف کد پذیر، گراف شناساگر، کد کلیدی: کلمات
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