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 Posterior crossbite is a common malocclusion disorder in the primary 

dentition that strongly affects the masticatory function. To the best of 

the author’s knowledge, for the first time, this article presents a 

reasonable and computationally efficient diagnostic system for 

detecting the characteristics between the children with and without 

unilateral posterior crossbite (UPCB) in the primary dentition from 

the surface electromyography (sEMG) activity of masticatory 

muscles. In this work, 40 children (4–6y) are selected and divided 

into the UPCB (n = 20) and normal occlusion (NOccl; n = 20) groups. 

The preferred chewing side is determined using a visual spot-

checking method. The chewing rate is determined as the average of 

two chewing cycles. The sEMG activity of the bilateral masticatory 

muscles is recorded during two 20-s gum-chewing sequences. The 

data of the subjects is diagnosed by the dentist. In this work, the fast 

Fourier transform (FFT) analysis is applied to the sEMG signals 

recorded from the subjects. The number of FFT coefficients is 

selected using the logistic regression (LR) methodology. Then the 

ability of a multi-layer perceptron artificial neural network 

(MLPANN) in the diagnosis of neuromuscular disorders is 

investigated. In order to find the best neuron weights and structures 

for MLPANN, particle swarm optimization (PSO) is utilized. The 

results obtained show the proficiency of the suggested diagnostic 

system for the classification of the EMG signals. The proposed 

method can be utilized in clinical applications for the diagnosis of 

unilateral posterior crossbite. 
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1. Introduction 

Unilateral posterior crossbite (UPCB) is generally 

accompanied by a lateral movement of the jaw 

from maximal opening to centric occlusion [1]. In 

80–97% of cases, posterior crossbite in the 

growing individuals results in functional crossbite 

[2]. Some efforts have confirmed that UPCB 

produces morphological and positional 

asymmetries of the mandible in the children [3, 4].  

The changes in muscle activity as a result of the 

presence of crossbite have been shown in various 

studies [5-7]. The sEMG can be utilized for a key 

objective valuation of changes in the electrical 

activity of the masticatory muscles. In the 

children, sEMG is commonly executed, as it 

provides a non-invasive and easy way to monitor 

muscle activity through the use of surface 

electrodes. Generally, sEMG has been employed 

as information about muscle activation in order to 

classify the differences in chewing patterns among 

the individuals [8]. Moreover, the researchers 

have used sEMG for an early diagnosis of the 

malfunction of muscles and joints that play a role 
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in the chewing process [9, 10]. The studies 

indicate that the presence of crossbite can affect 

the sEMG activity of masticatory muscles [11-

15]. Therefore, the aim of this work was to detect 

the possible differences in the sEMG activity of 

masticatory muscles and the characteristics of 

chewing cycles in the children with and without 

UPCB in the primary dentition. 

Many studies have used the sEMG signals in the 

signal clinical practice and the rehabilitation field. 

They have shown that there is a hidden valuable 

information in the sEMG signals, which is a 

powerful tool used to assist the diagnosis of 

neuromuscular disorders [16, 17]. They have used 

different techniques for signal classification 

including the fast Fourier transform (FFT) [16], 

neuro-fuzzy methods [17], artificial neural 

networks [18-22], Laguerre estimation technique 

[23], SVMs [24], parallel cascade identification 

(PCI) [25], and fast orthogonal search (FOS)[26].  

Guller and Kocer [16] have applied FFT to the 

sEMG signals recorded from ulnar nerves of 59 

patients to interpret data. Then they have used the 

principal component analysis (PCA) in order to 

reduce the amount of FFT signals. Next, they have 

applied the PCA coefficients as the inputs of 

MLPANN and SVM. They have compared the 

ability of these mentioned methods in the 

diagnosis of neuromuscular disorders. Kocer [17] 

has also utilized the neuro-fuzzy system (NFS) 

and auto-regressive (AR) analysis in order to 

produce a new and reliable classification system 

for a rapid diagnosis. Barmpakos et al. [27] have 

introduced a method for detecting the possible 

neuropathy or myopathy cases of a subject based 

on the sEMG signals. They extracted the features 

in the wavelet domain, and used the K-NN 

algorithm and the k-folds method for the 

classification. They showed robustness of their 

approach in the clinical dataset. Wu et al. [28] 

have proposed a hybrid method in order to 

improve the accuracy of the fuzzy support vector 

classification machine (FSVCM). They used the 

hybrid bacterial foraging (BF) and particle swarm 

optimization (PSO) in order to optimize the 

unknown parameters of the classifier. They 

applied their methods to identify the fatigue status 

of the sEMG signal. Subasi [29] has proposed a 

novel PSO-SVM method in order to improve the 

EMG signal classification accuracy. He used a 

discrete wavelet transform (DWT) and a set of 

statistical features from the sEMG signals. He 

compared the superiority of his method to the 

conventional machine learning ones such as k-NN 

and the RBF classifiers. He showed that PSO-

SVM may be an efficient tool for the diagnosis of 

neuromuscular disorders.   

Figure 1 presents the overall framework of the 

proposed method, which encompasses feature 

extraction, feature selection, and classification. In 

the first step, four bipolar sEMG electrodes 

recorded the electrical activities of the masseter 

and temporalis muscles of the volunteers. Then 

the raw signals were segmented into a fixed 512-

point window with and overlap 256 points. Next, 

the FFT method was applied to each filtered 

signal, and the frequencies and amplitudes of the 

first   peaks were determined. Then a matrix 

containing the features of the training and test set 

was constructed. Next, ten best frequencies 

domain features were selected (determined based 

on LR). Finally, the reduced feature matrix was 

fed to the MLPANN classifier as the input 

vectors. In order to find the best neuron weights 

and structure for MLPANN, particle swarm 

optimization (PSO) was utilized.  

This paper is organized as what follows. Data 

acquisition and experimental protocol are 

prepared in Section 2. Moreover, the feature 

selection and classifier are presented in Section 

2.4.  The results and discussion are shown in 

Sections 3. Finally, the conclusion is presented in 

Section 4. 

 

2. Materials and Methods 

2.1. Subjects  

A cross-sectional study design was used, with 

recruitment of a convenience sample of 40 

children aged 4–6 years who were to start dental 

treatment at the Department of Paediatric 

Dentistry, Mashhad Dental School, Mashhad, 

Iran. The Research Ethics Committee of the dental 

school approved the project. The children were 

divided into two groups: the UPCB group, which 

consisted of 20 children with UPCB, and the 

control group, which consisted of 20 children with 

normal occlusion (NOccl). The children and their 

parents received oral and written explanations of 

the research aims and methodology. The written 

informed consent was obtained from all parents. 

The inclusion criteria were being in the primary 

dentition period (4–6 years), absence of caries and 

pain, and NOccl or UPCB involving two or more 

teeth (functional crossbite). The exclusion criteria 

were a record of previous orthodontic therapy, 

missing or carious teeth, any sign or symptom of a 

craniomandibular disorder or parafunctional habit 

(e.g. clenching, bruxism, oral breathing), and a 

record of previous dental or orofacial trauma.  
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2.2. Data acquisition and experimental protocol 

Two 20-s sequences of chewing the sugar-free 

gum were performed by each child. The average 

number of cycles in these two sequences was then 

divided by 20 in order to establish each subject’s 

automatic habitual chewing rate (cycles/s). In 

addition, the mean cycle duration during the 20-s 

sequence was calculated (Figure 2). In order to 

record the electrical activity of the muscles, an 

eight-channel sEMG amplifier was used. In order 

to perform A/D data conversion, the data 

acquisition cards (sampling rate of 1000 Hz) were 

utilized. Advantech PCI-1730U USB data 

acquisition module was used to gather and digitize 

the signals for storage, analysis, and presentation 

on a PC. 

 
Figure 1. A block diagram of the proposed technique. 

 
Figure 2. Sample raw data recorded from subject 2. 

For each subject, the sEMG signals from four 

muscles–the right and left masseter and 

temporalis–were recorded (Figure 3). The surface 

electrodes were placed ~2 cm apart on the 

masseter and anterior temporalis in the following 

orientations: for the masseter, the level halfway 

between the zygomatic arch and the gonial angle, 

close to the level of the occlusal plane; and for the 

anterior portion of the temporalis muscle, anterior 

to the anterior border of the hairline. The 

evaluation was performed in a quiet and 

comfortable environment. During the procedure, 
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the child remained seated comfortably, with a 

straight back and with the head oriented in the 

Frankfort plane, parallel to the floor. The skin and 

the electrodes were cleaned with 70% ethyl 

alcohol for grease or pollution residue. The 

ground electrode was placed over the subject’s 

occipital protuberance. The muscle activity was 

recorded during two 20-s chewing sequences (in 

which the subject chewed sugar-free Trident 

gum). 

 

Figure 3. (a) Position of sEMG electrodes (b) 

experimental setup. 

2.3. sEMG feature extraction 

The sEMG signals contained key hidden 

information about the neuromuscular disorders 

and motion of limbs. Feature extraction that is 

known as a significant methodology for extracting 

valuable information from sEMG can 

significantly improve the pattern recognition 

accuracy. In order to extract the frequency 

features from the sEMG signal, spectral analysis 

should be applied to the sEMG signal. The 

recorded raw sEMG signals were passed through 

a band-pass (15–400 Hz) third-order Butterworth 

filter. After filtering out the noise, the signals 

were cut in fixed-width windows of 0.512 s with 

an overlap of 0.256 s. This rectangular windowing 

technique was utilized to estimate the frequency 

spectrum for the corresponding frame. Then FFT 

was applied to each windows, and the value of the 

frequencies at which the oscillations occurred and 

the corresponding amplitudes were obtained. 

Next, the frequencies and amplitudes of the first 

  peaks were chosen, and a matrix containing 

these values was constructed. In this work, 

    . This matrix had 160 columns as the 

frequency features (4 muscles × 20 peaks × 2 

values). 

   

2.4. Feature selection and classification 

Eliminating the redundant features of the sEMG 

signals is a vital step in the classification scheme 

[19] Since the FFT analysis produces a large 

number of coefficients (i.e. number of feature is 

160). Therefore, the amount of FFT coefficients 

has to be reduced. We used a LR model in order 

to select independent features. The maximum 

likelihood estimation was employed to train the 

LR model. In this work, ten optimum frequency 

features were selected and fed to MLPANN. 

MLPANN is the significant method in the pattern 

classification problems [18, 22]. This 

methodology is well-known as universal 

approximates for non-linear input-output 

mapping. A MLPANN consists of three layers: an 

input layer, an output layer, and an intermediate or 

hidden layer. Figure 4 shows a scheme of a 

common MLPANN with four layers: input, two 

hidden and output layers. Mathematically, a four-

layer MLPANN comprising   input nodes,    

first hidden layer nodes,    first hidden layer 

nodes and    output layer nodes is expressed as: 

3 2 1

2 1 2 1

2 1

(3) (3) (2) (2) (1) (1)
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where the functions  ( ),  ( )  and  ( ) are the 

activation functions, and       
( )

,       
( )

 and      
( )

 

are the weight set connecting the  2
nd

 hidden layer 

to the output layer, the 1
st
 hidden layer to the 2

nd
 

hidden layer, and the input layer to the 1
st
 hidden 

layer, respectively; Moreover,   
  indicates the 

network outputs.  

Commonly standard back-propagation (BP) was 

employed to train the networks [30].  However, in 

this work, the PSO methodology was employed to 

obtain the optimal neuron weights in the neural 

networks and optimum structures. PSO has the 

ability to explore the solution space of a given 

problem in order to obtain the best answers given 

to a particular objective function. This method is 

inspired by the natural social behavior and 

movement of insects, birds, and fishes [31]. The 

role of PSO is to find the best reference value for 

the prediction process, while MLPANN searches 

for the best mapping function to predict the targets 

based on the scheme provided by PSO. The 

optimization parameter structure of MLPANN 

consists of the number of hidden layers (one or 

two), the number of neurons in each hidden layer 

(between 5 to 25), and   the activation function in 

each hidden layer (log-sigmoid function and tan-

sigmoid function). All algorithms are coded in 

Python using Scipy, Numpy, and scikit-learn. 
 

3. Results and Discussion 

Many studies have investigated the sEMG activity 

of the masseter muscles in patients with UPCB 

but few have evaluated the activity of the 
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masticatory muscles in patients with primary 

dentition [1, 11, 32-35]. The results from different 

studies are discrepant, possibly due to the 

differences in the samples, the measurement point 

locations, and/or the sEMG quantification 

techniques [36, 37]. In the current work, we 

employed MLPANN in order to detect this 

malocclusion on the masticatory muscle activity 

to provide information on the necessity of early 

treatment in patients with primary dentition. 

 
Figure 4. Structure of multi-layer perceptron. 

In contrast, the previous researchers have mainly 

used RMSs for the quantitative analysis of the 

sEMG signals to provide further insight into the 

characteristic changes in muscle composition and 

structure due to the presence of crossbite, and the 

FFT methodology has been used. A comparison 

between the performance of BP and PSO shows 

that there is no statistically significant difference 

between them, when they are used for updating 

the neural network weight parameters. However, 

the main advantage of PSO is to find the best 

structure of MLPANN simultaneously. Thus the 

PSO method was employed for training and 

finding the optimal structure of MLPANN. The 

optimum MLPANN architecture is the 10-5-2 

topology. The result obtained indicates that the 

feature reduction using the LR method has a small 

impact on the overall network feature 

performance, and the error of the classification 

accuracy rate is maintained within 1–3%. Since 

the classification accuracy rate is reasonable, the 

feature reduction can reduce the storage and 

calculation cost. Moreover, the results obtained 

show that the percentage of a correct classification 

is 84.2%. For comparison of the diagnostic 

accuracy of the mentioned MLPANN, linear 

kernel support vector machine (LSVM), radial 

kernel support vector machine (RSVM), and 

linear discriminant analysis (LDA), the concept of 

receiver operating characteristic (ROC) analysis 

was used. The ROC analysis is an appropriate 

way to visualize the performance of a classifier. In 

order to represent the classifier's performance as a 

single value, the area under the ROC curve (AUC) 

value is determined. In fact, this value expresses 

how much the model is capable of distinguishing 

between the classes, and the higher the AUC, the 

better the model is at distinguishing between 

UPCB and NOccl. As shown in Figure 5, 

MLPANN with an area of 0.866 has a more 

diagnostic ability than the other methods. 

Generally, the result obtained show that an 

optimum MLPANN has a superior performance 

than the mentioned methodologies to classify 

people with and without disease in a clinical 

application. 

 
Figure 5. ROC curves of MLPANN, LSVM, RSVM, and 

LDA methods. 

It should be noted that to find the reason for errors 

in classification, root mean square (RMS) and   

median frequencies (MDFs) are used. These 

parameters revealed the possible variations in 

muscle characteristics and muscle fibre 

composition. 

Figure 6 illustrates the MDF and RMS values 

from sEMG signals for the left and right chewing 

sides in the two groups. Neither feature different 

significantly according to chewing side or group. 

Moreover, the global difference between chewing 

sides was not significant. The same results were 

obtained for the masseter and temporalis muscles. 

Mean RMS values for the masticatory muscles as 

well as mean MDF values for the masseter 

muscles on both sides had large standard 

deviations (Figure 6). Given the lack of a 

significant difference between the sides in both 

groups, the mean values of the features 

corresponding to the left and right temporalis and 

masseter muscles were calculated for a further 

inter-group comparison (Figure 7). The mean 

MDF for the temporalis muscles was significantly 

larger in the NOccl group than in the UPCB group 

(p < 0.05). No such difference was observed for 
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the masseter muscles. Moreover, RMSs for the 

masseter and temporalis muscles did not differ 

significantly. 

 

  

  

Figure 6. RMS and MDF values for the masseter and temporalis muscles on both sides in the UPCB and NOccl 

groups. 

Therefore, the mean MDF for the temporalis 

muscles was significantly larger in the NOccl 

group than in the UPCB group. Comparison of the 

MDF and RMS values from the masseter and 

temporalis muscles revealed no significant 

difference for chewing side or group. These 

results indicate that both muscles play symmetric 

roles in the two studied groups. Thus despite this 

similarity of the two groups, we could conclude 

that the proposed methods were able to classify 

both groups with reasonable accuracies.   

Due to the ethical considerations, we only 

employed the sEMG electrodes in this work, and 

thus monitored the average estimated electrical 

activity of the muscles located at the hearing site 

of the electrodes. The use of needle electrodes 

may provide further insight into the variations in 

the muscle fibre characteristics due to the 

presence of crossbite and the chance for a more 

discriminative investigation. 

 

4. Conclusion  

In the current work, we employed MLPANN and 

FFT in order to detect the unilateral posterior 

crossbite on the masticatory muscle activity to 

provide the main information on the necessity of 

early treatment in the patients with primary 

dentition. The frequency features from the sEMG 

signals were extracted by FFT. Then in order to 

enable the diagnosis to become faster and easier, 

the LR method was employed to select the best 

features as the input parameter MLPANN. 

Moreover, the PSO method was used to find the 

optimum MLPANN. The optimum MLPANN 

architecture was the 10-5-2 topology. The results 

showed that in spite of RMSs and MDFs not 

differing between the chewing sides or groups, the 

optimized MLPANN had a reasonable accuracy 

(84.2%). The results of evaluation of the ROC 

curve clearly show the viability of the proposed 

automated system in the clinical applications.  

The main contributions of this paper include 

proposing a method that can be used to diagnose 

unilateral posterior crossbite (UPCB) from the 

sEMG signals. This paper contributes by (1) using 

FFT to extract the frequency features from the 

sEMG signals, (2) employing the LR method to 

choose the important features, and (3) finally, 

PSO-MLPANN employed to estimate the problem 

during the gum-chewing sequences. 
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Figure 7. Mean RMS and MDF for left and right 

temporalis and masseter muscles in UPCB and NOccl 

groups. **p < 0.05. 
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 .1041 سال ،دوم شماره هم،دوره د ،کاویدادهمجله هوش مصنوعی و                                                                                                      عباسیو  کلانی

 

 زیآنالبا استفاده از  یخلف تیکراس بابیماری های الکترومایوگرافی برای تشخیص طبقه بندی سیگنال

  کیلجست ونیرگرسو  عیسر هیفور لیتبد
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 چکیده:

با استتفاده  میمقاله قصد دار نیدارد. در ا ییبسزا ریتاث دنیاست که بر عملکرد جو یریش یدر دندان ها عیاز اختلالات شا یکی یخلف تیکراس بابیماری 

 شتناادیپ یریشت یدر دندان ها یخلف تیکراس با صیتشخ یبرا ستمیس کی دن،یدر عمل جو یعضلات اصل( sEMG) یوگرافیالکتروما یهاگنالیاز س

 یوگرافیالکترومتا تیتمشتکل هستتند. فلال نیا ینفر از آناا دارا ستیاند که بشده دهیبرگزچاار تا شش سال(  نیپژوهش چال کودک ) ب نیم. در ایده

 عیستر هیتفور لیتبد زیآنال در ابتدا مقاله، نیآدامس ثبت شده است. در ا دنیجو هیثان ستیب این کودکان دو مرتبه و در هر مرتبه به مدت عضلات صورت

(FFT) یاتیح یهاگنالیبه س sEMG بی. تلداد ضراشودیشده از افراد اعمال مثبت FFT کیلجستت ونیبا استفاده از روش رگرس (LR) یانتختا  مت-

بته  گیترد. مودر ارزیتابی قترار متی یعضلان یاختلالات عصب صیدر تشخ (MLPANN) هیپرسپترون چند لا یمصنوع یشبکه عصب یید. سپس توانانشو

استتفاده  (PSO) ازدحتام ررات یستازنهیشتبکه، از با نیتا یبترا نتهیستاختار با نیهمچنتو  یشبکه عصب ینرون ها یها براوزن نیباتر افتنیمنظور 

 یشتناادیروش پباشد. می sEMG یهاگنالیس یبندطبقه یبرا یشناادیپ ستمیو قابل قبول س یقطمن ییدهنده تواناآمده نشاندستبه جی. نتاشودیم

 .ردیاستفاده قرار گمورد  یت خلفیکراس با صیتشخ یبرا ینیبال یتواند در کاربردهایم

   .   هیپرسپترون چند لا یمصنوع یشبکه عصب، عیسر هیفور لیتبد زیآنال ،یوگرافیالکتروما یهاگنالیس، یخلف تیکراس با :کلمات کلیدی

 


