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An important sector that has a significant impact on the economies of 

countries is the agricultural sector. The researchers are trying to 

improve this sector using the latest technologies. One of the problems 

facing the farmers in the agricultural activities is the plant diseases. If a 

plant problem is diagnosed soon, the farmer can treat the disease more 

effectively. This work introduces a new deep artificial neural network 

called AgriNet, which is suitable for recognizing some types of 

agricultural diseases in a plant using images from the plant leaves. The 

proposed network makes use of the channel shuffling technique of 

ShuffleNet and the channel dependency modeling technique of SENet. 

One of the factors influencing the effectiveness of the proposed 

network architecture is how to increase the flow of information in the 

channels after explicitly modelling the interdependencies between the 

channels. This is, in fact, an important novelty of this research work. 

The dataset used in this work is PlantVillage, which contains 14 types 

of plants in 24 groups of healthy and diseased. Our experimental 

results show that the proposed method outperforms the other methods 

in this area. AgriNet leads to an accuracy and a loss of 98% and 7%, 

respectively, on the experimental data. This method increases the 

recognition accuracy by about 2%, and reduces the loss by 8% 

compared to the ShuffleNetV2 method. 

Keywords: 
Plant Diseases Recognition, 

Convolutional Neural Network, 

ShuffleNet, SENet. 

*Corresponding author: 
m.sadeghi@yazd.ac.ir(M. T. Sadeghi). 

1. Introduction

Deep Neural Networks (DNN) is an improved 

type of artificial neural networks with a relatively 

large number of hidden layers. In the process of 

building DNN, after selecting the network 

architecture and preparing the associated training 

dataset, an iterative process is used in order to 

train the network [1]. In this process, the training 

data passes through all layers and non-linear 

functions of the network. The result obtained at 

the end of the network is normally different from 

the desired one. This difference determines the 

amount of error, and by back-propagating this 

error in the network and correcting the 

parameters, the network is updated. This process 

is repeated until the amount of error is minimized 

[2]. 

Deep learning has provided a bright future in 

various domains including agriculture. This 

emerging concept is known as smart farming. 

Smart farming has entered various fields of 

agriculture, and has received good feedback from 

the users. Smart farming can be used in cases such 

as 1) species management (species recognition 

and species breeding), 2) field condition 

management such as soil and water management, 

3) crop management such as yield prediction, crop

quality evaluation, disease detection, and weed 

detection [3]. 

One of the objectives of smart farming is to 

increase the quality and quantity of the 

agricultural products and achieve sustainable 

growth in productivity of production resources. 
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An early recognition of plant diseases is an 

important issue in smart farming. In this 

framework, a Convolutional Neural Network 

(CNN) has been designed by Liu et al. [4] for 

diagnosing apple leaf diseases. The design is 

based on the architectures of AlexNet [5] and 

GoogleNet [6], and leads to an accuracy of 

97.62%. In a similar study by Yan et al.  [7], some 

techniques such as global average pooling and 

Batch Normalization (BN) layers have been used, 

resultingd in an accuracy of 99.01%. The main 

drawbacks of these methods are that they study 

only the leaves of one type of plant (apple), and 

the adopted models have many parameters. In 

another study, DenseNet-121 has been used for 

identifying apple leaf diseases [8]. This study has 

achieved an accuracy of about 93% using the 

regression methods, multi-label classification, and 

loss function. 

An important challenge in the study of plant leaf 

disease is separation of leaves from the image 

background, which has attracted considerable 

research attention. For example, in [9], soybean 

leaf area, edges, and defoliation have been found 

by Mahalanobis distance and Canny edge 

detection algorithm. Karlekar and Seal have 

suggested two modules. The first module extracts 

the leaf part from the whole image by subtracting 

the complex background. The second module 

introduces a deep learning convolution neural 

network (CNN), SoyNet, for soybean plant 

disease recognition using the segmented leaf 

image [10]. The “image database of plant disease 

symptoms”, which involves 16 categories, was 

used in this study, where 98.14% identification 

accuracy was achieved. Kaur et al. have 

investigated soybean leaf diseases and identified 

healthy and diseased leaves using color and 

texture properties and a semi-automatic system 

based on the K-means rule [11]. This study was 

performed on the PlantVillage dataset, and led to 

an accuracy of about 90% on the training data, 

which is not very significant. In another study, the 

identification process of the corrosion areas in the 

leaf images has been strengthened by applying a 

color transformation and histogram equalization 

technique [12]. Also in [13], the Support Vector 

Machine (SVM) and K-Nearest Neighbors (KNN) 

classifiers have been applied for detection and 

classification of plant disease. A feature extraction 

method based on an improved Local Binary 

Pattern (LBP) technique along with the Extreme 

Learning Machine (ELM) classifier have been 

proposed in [14] for recognition of the plant 

species. 

Within the framework of neural networks, the 

scientists have found that adding more layers to a 

network not only makes training more difficult 

but also reduces the accuracy of network 

performance, and the network also suffers from 

the vanishing gradient problem. In order to solve 

this problem, ResNet was introduced in 2015. 

This network is a deep network that won the first 

place in the ILSVRC competition in 2015. The 

strength of the ResNet is its skip connections or 

additional residual connections. The shortcut 

connection goes through one or more layers and 

ignores them. It actually connects a layer to the 

farther layer. The proposed model also uses the 

shortcut connections.   

In a review study [15], the performance of 9 

different deep learning models on plant disease 

classification has been investigated. They 

performed the study based on two different 

approaches. In the first approach, using the 

transfer learning technique, the last three layers of 

the adopted networks were replaced with some 

other layers. In the second approach, which was 

faster and more accurate than the first one, the 

result of feature extraction in certain layers of 

models was taken, and fed to different machine 

learning classifiers. The highest reported accuracy 

is 97.45%. This result was obtained by extracting 

the features from ResNet101 with extreme 

learning machine classifier and 97.86% from 

Resnet-50 with an SVM classifier. Also an 

accuracy of 94.60% was achieved in transfer 

learning using small datasets with Resnet-50 [15]. 

The computational complexity and number of 

parameters are among the most important issues 

in deep neural networks that have a relatively 

complex architecture. In order to train such a 

network, an advanced hardware is required, which 

is not presumably accessible in all applications. 

On the other hand, for dealing with more 

complicated classification problems, a deeper 

architecture is usually required. Most recent 

studies in the field of diagnosing plant diseases 

using the image processing techniques have 

focused on one type of crop. However, the 

farmers usually cultivate a variety of crops, and in 

practice, such studies are not practically 

applicable. Also due to the fact that some plant 

diseases are rare, the plant disease datasets are 

commonly imbalance. Such an imbalanced dataset 

causes traditional classification networks that are 

based on cross-entropy loss function to not train 

and perform well [16]. Therefore, it is better to 

use modern networks such as deep convolutional 

networks, which have a structure consisting of 

several repeating blocks. In this framework, the 
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operations such as Group Convolution (GConv), 

Pointwise Group Convolution (GConv(1×1)), and 

Depthwise Convolution (DWConv) are useful in 

order to extract more information from the 

associated training data. However, there are 

disadvantages for using these methods too. For 

example, if pointwise convolution is used in 

shallow networks with a small number of 

channels, the network accuracy is dropped. Using 

the stacked group convolutions stops the 

information flow between the channel groups, and 

weakens the representation. If the group 

convolution receives input from different groups, 

the input and output channels will be 

interdependent. In order to remove such problems, 

ShuffleNet makes use of the shuffling operation 

[17]. 

The other issue is the metric used for calculating 

the computational complexity of a network. Many 

networks use the indirect Float-Point Operations 

(FLOPs) metric for this purpose. According to 

[18], the FLOPs metric individually will not help 

us to succeed an optimal design. They used new 

approaches with two metrics, direct metric 

(speed), and indirect metric (FLOPs) to measure 

the computational complexity. 

The number of channels is an important challenge 

in channel shuffling-based architectures. Better 

results can be achieved by using the 

interdependencies between the channels. In this 

framework, Squeeze and Excitation Network or 

SENet has been introduced by Hu, Shen [19]. 

They managed to improve the interdependency 

between the channels using this architecture with 

very little computational cost. In order to do this, 

some parameters were added to each channel of 

the convolution block so that the network could 

adjust the weights of each feature map adaptively. 

As a result, the shared low-level representations 

are strengthened and the informative features are 

emphasized. 

In the proposed model of the present study, an 

attempt has been made to increase the network 

accuracy using SENet and recalibrating the 

channel-wise feature responses. For this purpose, 

the new AgriNet architecture inspired by 

ShuffleNetV2 (SHNet) and SENet is designed to 

diagnose and classify leaf diseases of the 

agricultural products. In order to increase the 

network accuracy, the channels with more 

information are first recalibrated. The channel 

shuffling process is then used in order to increase 

the information flow within the network. The 

proposed model identifies and classifies leaf 

diseases of the agricultural products successfully. 

The main objectives of designing AgriNet are 

increasing the model accuracy and reducing the 

network complexity. As a result, this technology 

can be used in general agricultural applications or 

in similar applications. 

The main contributions of this research work 

can be summarized in two folds: 

1- Technically:  

a. To increase the network accuracy and reduce 

the number of parameters; channels with 

more information are recalibrated at the end 

of each model block. 

b. To increase the flow of information in these 

channels; shuffling operations are then used. 

c. The network architecture is experimentally 

optimized, and it is shown that by repeating 

the network blocks appropriately, the number 

of parameters is significantly reduced, while 

a high level of accuracy is achieved. 

2- Application: 

a. A relatively simple and accurate neural 

network is proposed for recognizing plant 

diseases. 

b. Most similar research works focus on one 

type of crop diseases, while in this work, 14 

different types of crops with different 

diseases are taken into account. 

 

2. Materials and Methods 

In this section, you will first get acquainted with 

the PlantVillage dataset, and see some examples 

of the images in this dataset. You will then be 

introduced to some types of CNN networks such 

as the ShuffleNet, SHNet, and SENet networks. 

The proposed AgriNet architecture will then be 

discussed in the proposed architecture section. 

 

2.1. Dataset 

The PlantVillage dataset used in this work can be 

downloaded from https://www.kaggle.com. There 

are color images from 14 types of plants with 

different diseases in this collection. As we will 

mention later, the images are resized to 128 × 128 

× 3. The dataset contains 54,305 images, of which 

43,456 are used as the training data and 10,849 of 

them as the test data. Each folder in the dataset is 

named for a disease. Some of the images in this 

dataset are shown in Figure 1. Rangarajan 

Aravind, Maheswari [20] have published the 

complete information on various diseases of the 

agricultural products. 

Table 1 shows the number of training and testing 

data in the dataset. The numbers in parentheses 

are the number of test data, and the rest are the 

training data. In this table, 14 types of plants are 

classified into 24 types of healthy and diseased. 

Some crops such as tomatoes and potatoes have 
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the same disease. The dash indicates the absence 

of that instance in the dataset. 

 

 
i) 
 

g) 
 

e) 
 

c) 
 

a) 

 
j) 
 

h) 
 

f) 
 

d) 
 

b) 

Figure 1. Some examples of pictures of plant diseases: a) Healthy tomato leaves, b) Tomato leaves with Septoria_leaf_spot 

disease, c) Healthy pear leaves, d) Pear leaves with bacterial spot disease, e) Healthy apple leaves, f) Apple leaves with disease 

Apple_scab, g) Healthy corn leaves, h) Corn leaves with Common_rust disease, i) Healthy cherry leaves, j) Cherry leaves with 

Powder_mildew disease. 

Table 1. Number of training and test data in dataset. 
Corn Soybean Tomato Squash Pepper Potato Blueberry Raspberr

y 
Peach Cherry Strawberr

y 
Grape Orange Apple  

Dataset 

Leaf disease 

930 

(232) 

4072 

(1018) 

1273 

(318) 

- 1183 

(295) 

122 

(30) 

1202 

(300) 

297 

(74) 

288 

(72) 

684 

(170) 

365 

(91) 

339 

(84) 

- 1316 

(329) 
Healthy 

- - - - - - - - - - - - - 504 

(126) 
Apple_scab 

- - - - - - - - - - - 944 
(236) 

- 497 
(124) 

Black_rot 

- - - - - - - - - - - - - 220 

(55) 
Cedar_Apple_rust 

- - - - - - - - - - - - 4406 

(1101) 

- Haunglongbing_(Cit

rus_greening) 

- - - - - - - - - - - 861 
(215) 

- - Leaf_Blight_(Isariop

sis_leaf_Spot) 

- - - - - - - - - - - 1107 

(276) 

- - Esca_(Black_Measle

s) 

- - - - - - - - - - 888 

(221) 

- - - 
Leaf_Scorch 

- - - 1468 

(376) 

- - - - - 842 

(210) 

- - - - 
Powder_mildew 

- - 1702 
(425) 

- - - - - 1838 
(459) 

- - - - - 
Bacterial_spot 

- - 1528 

(381) 

- - 800 

(200) 

- - - - - - - - 
Late_Blight 

- - 800 

(200) 

- - 800 

(200) 

- - - - - - - - 
Early_Blight 

- - - - 798 
(199) 

- - - - - - - - - 
Bell_Bacterial_spot 

- - 762 

(190) 

- - - - - - - - - - - 
Leaf_Mold 

- - 1417 

(354) 

- - - - - - - - - - - 
Septoria_Leaf_Spot 

- - 1341 
(335) 

- - - - - - - - - - - Spider_Mites 

Two_Spotted_Spide

r_Mite 

- - 1124 
(280) 

- - - - - - - - - - - 
Target_Spot 

- - 4286 

(1071) 

- - - - - - - - - - - Yellow_Leaf_Crul_

Virus 

- - 299 

(74) 

- - - - - - - - - - - 
Mosaic_Virus 

411 
(102) 

- - - - - - - - - - - - - Cerospora_leaf_spot 

Gray_leaf_spot 

954 

(238) 

- - - - - - - - - - - - - 
Common_rust 

788 

(197) 

- - - - - - - - - - - - - Northern_Leaf_Blig

ht 
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2.1. Convolutional neural networks 

The convolutional neural networks are created by 

stacking of a number of different layers. Each 

layer has its own task. The most important layers 

are the convolution, pooling, and the Fully 

Connected (FC) layers. The convolution layer 

consists of a set of learnable filters. A pooling 

layer is usually used after each convolution layer 

in order to reduce the size of the resulting feature 

map, and therefore, the number of network 

parameters. In the pooling operations, similar to 

what happens in convolutions, a window is moved 

on the image. If the max pooling operation is 

considered, each window retains the maximum 

value and discards the rest but in Average (AVG) 

pooling, the average of the calculated values is 

used in the output. For example, if a max pooling 

with size 2 × 2 and stride 2 is applied to a feature 

map with size 8 × 8, a 4 × 4 output will be 

obtained. In a CNN, the last layer is usually a FC 

layer that represents the network output as a 

vector for categorizing the input images [21]. 

 

2.2.1. ShuffleNet architecture 

In the deep neural networks, modern architectures 

such as Xception [22] and L2MXception [23] 

exploit repetition of one or more specific blocks. 

An architecture designed using this technique is 

ShuffleNet. In ShuffleNet, the group convolution 

is used instead of the point convolution in order to 

improve the network accuracy. By stacking group 

convolutions, the outputs of a certain group 

depend on the inputs within the group, and the 

information flow between the channels from 

different groups is stopped. In ShuffleNet, this 

problem is removed by the shuffling operation, 

which obtains the input data from different 

groups. The shuffling process makes the input and 

output channels completely interdependent. As 

one can see in Figure 2, ShuffleNet uses the 

operations such as depthwise convolution, 

pointwise group convolution, and shuffeling 

operations in order to reduce the computational 

cost. In the unit with stride = 2, in order to be able 

to connect the output of the main path and the 

shortcut, the AVG pooling technique is used with 

stride = 2 [17]. 

In the main path of the ShuffleNet units, the input 

channels first pass through a GConv layer. In the 

GConv, each kernel looks at only a few input 

feature maps, and combines some information 

across the channels. In this architecture, GConv is 

used for reducing the computational complexity of 

1 × 1 convolution. You can see the pointwise 

group convolution in Figure 3. 

The GConv output is normalized using the BN 

technique and passed through the activation 

function of Rectified Linear Unit (ReLU). The 

reason for using BN is that during the learning 

process, using the gradient descent algorithm, the 

network weights change after each step, and 

consequently, the shape of the data that enters the 

next layer changes. BN causes the next layer to 

receive the data as expected (similar to the 

previous step). As a result, higher learning rates 

and less dropout can be used. For the 

normalization purpose, suppose 
(1) (2) ( )

, , ...( )
d

x xx x  is a d-dimensional data, 

each dimension is normalized by (1) [24]. 

 

 

Figure 2. ShuffleNet architecture a) ShuffleNet unit; b) ShuffleNet unit with stride = 2 [17]. 
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Figure 3. Pointwise group convolution. 

In (1), E and Var are per-dimension mean and 

variance, respectively.  

After BN, the ReLU activation function is used 

(2). This activation functions decide whether a 

particular neuron is active or inactive. 

(1) 
 

 

ˆ

k k

k

k

x E x
x

Var x

   
  

 

 

(2)  
0       0

   

if x
ReLU x

x otherwise


 


 

 

In (2), x is the input of the function, and its output 

is zero for negative numbers and x for positive 

numbers. 

 

The channels are then shuffled based on the 

shuffling operation. In this operation, the channel 

indices are changed, which occurs by re-shaping 

the related tensor and calculating its transposition. 

The output of the shuffling operation enters a 

DWConv. In this type of convolution, a 2D depth 

filter is applied to each depth level of input tensor 

and the kernel has different spatial dimensions but 

only one channel. The depthwise convolution 

keeps each channel separate. You can see 

DWConv in Figure 4. 

 
Figure 4. Depthwise convolution. 

The output DWConv enters GConv to recover the 

channel dimension to match the shortcut path. The 

difference between the two units of this 

architecture is that in the unit with stride = 2 used 

AVG pooling in the shortcut path and channel 

concatenation to connect outputs. The purpose of 

concatenation is to make it easy to enlarge 

channel dimension with little extra computation 

cost. 

 

2.2.2. ShuffleNetV2 (SHNet) architecture 

In ShuffleNetV2, known in the present work as 

SHNet, four guidelines were adopted for 

designing an efficient network. An indirect metric 

used to calculate the computational complexity is 

the number of floating-point operations per 

second or FLOPs. This metric is not equivalent to 

a direct metric such as speed or delay. It has been 

proven that some networks with the same FLOPs 

have different speeds [18]. In the research work of 

[18], it has been stated that the use of FLOPs only 

as a metric of computational complexity damages 

the optimal network design. There is a difference 

between the indirect metrics (FLOPs) and the 

direct metrics (speeds) for two reasons. First, a 

factor such as the Memory Access Cost (MAC), 

which affects speed, is not considered by FLOPs. 

Secondly, the runtime in models with the same 

FLOPs is directly dependent on the type of 

hardware used [18]. 

 

These four guidelines are: first, equal channel 

width reduces MAC; secondly, use of group 

convolutions can increase MAC. In this guideline, 

it has been proven that as the number of group 

increases, the speed of network decreases. Thus it 

is important to pay attention to the choice of the 

number of groups in the model. For example, in 

the study of [17], the model based on group 

convolution did not consider this guideline; 

thirdly, if the network is fragmented, the degree of 

parallelism and the efficiency of the network is 

reduced. One of the architectures that contradicts 

this guideline is the architecture proposed in [18]; 

fourthly, since in GPU much time is spent on 

performing element-wise operators such as ReLU, 

AddTensor, AddBias, and even depthwise 

separable convolution, care must be taken in their 

use [18]. By following the above four guidelines, 

two units were designed, as shown in Figure 5. 

In explaining the operations performed in each 

one of the blocks or units, it can be stated that: in 

block1, which is SHNet unit with stride = 2, there 

are two paths, main and shortcut. In the main path, 
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after applying Conv (1×1), BN and ReLU 

activation, a DWConv is used. BN is performed 

again, and the output of Conv (1×1) is 

concatenated to the output of the shortcut path 

after applying BN and ReLU. The number of 

input and output channels per convolution in the 

main path is equal. In the shortcut path, a 

DWConv is applied directly to the input, and the 

continuation of the path is the same as the main 

path. In the main path of block1, unlike 

ShuffleNet, the pointwise group convolution is 

not used because it increases MAC. In order to 

better understand this, pay attention to (3) and (4), 

which show the relations between MAC and 

FLOPs for the 1 × 1 group convolution [18]. 

  1 2
1 2

1

1

c c
MAC hw c c

g

Bg B
hwc

c hw

   

 

 

 

(3) 

1 2hwc c
B

g
  (4) 

In (3) and (4), g  is the number of group. The 

numbers of input and output channel are 1c  and 

2c  respectively. 

h  and w are the spatial size of the feature map, 

and B  is FLOPs. According to these equations, if 

the input shape ( 1c h w  ) and B are constant 

and only increase the number of groups, MAC 

will also increase [18]. 

Also the channel shuffling operation is eliminated. 

The shuffling operation is applied to the output 

obtained by concatenating these two paths finally. 

In block2, using the split operation, the number of 

input feature channels is divided into the c  and 

c c  channels in each path. If c  is considered 

half of c , in each block, half of the feature 

channels are inserted directly into the next block, 

which reuses the features in this way. The main 

paths in block1 and block2 are exactly the same, 

and the output of the shortcut path is directly 

concatenated to the output of the main path. 

In summary, the ShuffleNet architecture is one of 

the shallow architectures that has reached its 

ultimate goal based on the feature channels in the 

image, and this architecture is used in devices 

such as mobile phones. The problem of limiting 

the number of feature channels in shallow 

networks was fixed in the first version of 

ShuffleNet. In the ShuffleNet architecture, in 

order to raise the number of feature channels 

without changing the number of FLOPs, two 

methods of GConv and ShuffleNet units are used. 

Also the shuffling method is used to create 

information interdependence between the groups 

of channels and enhance the network accuracy. 

SHNet considers ShuffleNet inefficient. The 

problems that SHNet raises for the first version of 

ShuffleNet are [18]: 

1- By increasing the number of feature channels 

with point-wise group convolutions and 

bottleneck structures such as ShuffleNet 

units, the MAC value increases, which 

cannot be ignored for the light-weight 

models. 

2- Reducing the network parallelism due to the 

large number of groups will have a negative 

effect on the accuracy and efficiency of the 

network. 

3- Use of add operations increases the training 

time. 

4- Information between different groups in this 

network is lost. 

 

Figure 5. SHNet architecture a) SHNet unit or block2; b) SHNet unit with stride = 2 or block1 [18]. 
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2.2.3. SENet architecture 

In the study of [19] and based on the idea of 

explicit modeling of interdependencies between 

channels, the SENet architecture has been 

proposed. The nets are better able to map the 

channel dependency along with access to global 

information and recalibrate the filter outputs by 

SENet block. Finally, it improves the 

performance. 

The SENet block shown in Figure 6. was used for 

this purpose. This block consists of three sections: 

squeeze module, excitation module, and scale 

module. In this block, input 
H W CX R
   

  is 

mapped to feature maps 
H W CU R    by 

convolution operator   trF . 

 
Figure 6. Squeeze and Excitation block in SENet architecture [19]. 

 

In (5),  1 2, ,.... CV v v v  is the set of learned 

filter kernels, where cv  refers to the parameters of 

the c-th filter, and its output is  1 2  , ,.... CU u u u . 

 

(5) 
1

* *
C S S

C C CS
u v X v x




   

(6) 
1 2, ,.... C

C c c cv v v v
     

(7) 
1 2, ,...., CX x x x

     

(8) 
H W

cu R   

In (5), * refers to the convolution operation. 
s

cv  

denotes a 2D spatial kernel that represents a single 

channel Cv  operating on the corresponding of 

channel X . In order to create a channel 

descriptor, the U  features are passed through the 

squeeze operation, and the feature maps are 

aggregated in their spatial dimensions ( H W ). 

Once the feature maps are aggregated, the 

excitation operation is performed, which is a 

simple self-gating mechanism. By stacking the 

squeeze and excitation blocks, SENet is created. 

The notable point about this network is its low 

computational cost [19]. 

The squeeze operation in SENet uses a global 

averaging pooling. Compressing the global spatial 

information into channel descriptors by an 

average global pooling solves the problem of 

channel dependence. This pooling layer 

transforms U  into Z , where the feature maps of 

C  become 1 1 ,C   for example, the c-th 

component of Z  is calculated in (9). 

(9)    
1 1

1
,

H W

C sq c ci j
z F u u i j

H W  
 


   

where cz  refers to the output of the squeeze 

operation, H W  indicates the spatial dimension, 

and u refers to the feature map. The excitation 

operation is performed on the output of the 

squeeze operation. This operation is indeed a 

sigmoid activator that aims to use the learning 

parameters to model the interdependence between 

the feature channels and generate the weight of 

each feature channel. In order to limit the 

complexity of the model, two FC layers have been 

used between these two operations [19]. Figure 7 

displays a block diagram of the SENet block. 

The input dimensions to the SENet block are 

H W C  . This input passes through the global 

pooling, and changes its dimensions to 1  1 C  . 

Via this technique, each channel is compressed to 

a single numeric value. Using a FC layer after the 

pooling, the number of channels is reduced to 
C

r
 

and then passed through a ReLU activation. Next, 

using another FC layer, the number of channels is 

returned to the primary value. Finally, the output 

of the sigmoid function is scaled with the input, 

and the output is created with the same initial 

dimensions as the primary input. These steps add 

a computational cost of less than 1% to each 

network. So far, SENet has been used in different 

convolutional networks [19]. 

In short, we can say about this architecture: 1- It 

has used a convolution block as an input. 2- In the 

squeeze module, each channel is squeezed into a 

single value using the average pooling. 3- In order 
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to reduce the complexity of the output channels, a 

dense layer followed by a ReLU adds non-

linearity. 4- Another FC layer followed by a 

sigmoid gives each channel a smooth gating 

function. 5- Finally, it weights each feature map 

of the convolutional block based on the side 

network, the "excitation". 

 

2.3. Proposed architecture 

In any image classification task, the pre-

processing operations are usually required in order 

to achieve better results and reduce the effects of 

noise and distortions. CNN uses less pre-

processing than the other classification methods. 

This is mainly due to the fact that the filtering 

processes are automatically performed in the 

convolution layers of CNNs. However, within the 

CNN framework, a required pre-processing step is 

to resize the input images to the same size. In the 

proposed architecture, the input images are 

resized to 128 x 128. Our experiments show that 

using such an image size improves the network's 

ability to capture the images information, while 

the computational complexity is restricted. 

Another pre-processing step of the proposed 

model is normalization for rescaling the pixel 

values. This puts the pixel values in a certain 

range. 

Inspired by the lightweight architectures with very 

low computational complexity such as SENet and 

SHNet this work aims to preserve the benefits of 

these architectures such as emphasizing on the 

informative features and suppressing the less 

useful ones, and to reduce the number of network 

parameters in order to achieve a higher accuracy 

than the previous architectures.  

The block diagram of the proposed model can be 

seen in Figure 8. It is observed that once the 

network input with dimensions of 128 × 128 × 3 

has passed through the convolution layer and 

global maximum pooling, it goes through three 

main stages. Each one of these stages involves a 

combination of block1 and block2, previously 

shown in Figure 5. Finally, the last four layers of 

this architecture are convolution, global maximum 

pooling, FC, and Softmax. 

the network outputs for classification, and the sum 

of its outputs is 1. Indeed, the Softmax output 

indicates the possibility of correctly classifying 

each one of the classes. Equation (10) expresses 

the Softmax activation function. 

(10) 

1

( )
i

k

z

i K z

k

e
z

e







 

where z is a vector of the inputs to the output 

layer (for example, if z has 5 elements, the output 

will be 5 units), i = 1, 2... K is the output units. 

The iz values are the elements of the input vector 

to the output layer. The standard exponential 

function is e. 

 

Figure 7. Block diagram of SENet [19]. 

The Softmax activation function is usually used at  

The difference between the two proposed 

architectures AgriNet131 and AgriNet373 is in the 

number of repetitions of the blocks in each one of 

the stages. For example, Figure 9 reveals a block 

diagram for the AgriNet131 model. In this model, 

in stage 1 and stage 3 after block 1, block 2 is 

located, while in stage 2 after block 1, block 2 is 

repeated three times. If the AgriNet373 

architecture is considered, in each one of the 

stages after block 1, block 2 is repeated three 

times, seven times, and again three times, 

respectively, and the continuation of the process is 

similar to the AgriNet131 model. Due to the large 

architecture of AgriNet373, its block diagram is 

not shown.  

applying BN and ReLU. The number of input and 

output channels per convolution in the main path 

is equal. In the shortcut path, a DWConv is 

directly applied on the input, and the continuation 

of the path is the same as the main path. In each 

one of the stages, after concatenating the outputs 

Global pooling 

FC 

FC 

H×W×C 

ReLU 

Scale 

Sigmoid 

1×1×  

1×1× C 

1×1×  

1×1× C 

1×1× C 

H × W × C 
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of the main and shortcut paths, the informative 

features are emphasized, and the less useful 

features are suppressed using SENet. Then the 

channels will be shuffled using the channel 

shuffling operations. Finally, after the completion 

of stage 3, as seen in Figure 10, the output (O) 

passes through the final 4 layers (convolution, 

global maximum pooling, FC, and SoftMax) and 

the input image is classified. 

Section SHNet architecture describes the internal 

structure of each block. 

Figure 10 shows the details of AgriNet131. It is 

observed that the network input has passed 

through the convolution layer and global 

maximum pooling, going through stages 1, 2, and 

3. Each one of these stages involves a 

combination of blocks 1 and 2.  

Each one of these blocks consists of the 

components such as convolution, Depthwise 

convolution, batch normalization, and ReLU. As 

shown in the figure, for example, there are two 

main and shortcut paths in block 1. In the main 

path, after applying Conv (1 × 1), BN, and ReLU 

activation, a DWConv is used. BN is performed 

again, and the output of Conv (1 × 1) is 

concatenated to the output of the shortcut path 

after applying BN and ReLU. The number of 

input and output channels per convolution in the 

main path is equal. In the shortcut path, a 

DWConv is directly applied on the input, and the 

continuation of the path is the same as the main 

path. In each one of the stages, after concatenating 

the outputs of the main and shortcut paths, the 

informative features are emphasized, and the less 

useful features are suppressed using SENet. Then 

the channels will be shuffled using the channel 

shuffling operations. Finally, after the completion 

of stage 3, as seen in Figure 10, the output (O) 

passes through the final 4 layers (convolution, 

global maximum pooling, FC, and SoftMax) and 

the input image is classified. 

2.4. Evaluation metrics 

In this section, the metrics used for evaluating the 

performance of the proposed method are 

introduced. 

Accuracy: The most important metric for 

determining the performance of a classification 

algorithm is the classification accuracy or rate. 

This criterion calculates the total accuracy of a 

classifier. Indeed, this criterion is the most famous 

and general metric for calculating the performance 

of the classification algorithms, which shows that 

whether  a model is being trained correctly and 

how it may perform generally [25]. 

(11) 
     

       

Number of correct predictions
Accuracy

Total number of predictions made
  

Loss: One of the most important goals in 

designing a network is to enhance the forecasting 

accuracy, which is calculated by a cost function. 

This function fines the network when it makes a 

mistake. The best output occurs when there is the 

minimum cost, and the optimization algorithms 

are used to achieve it. The optimization algorithm, 

based on the cost function and data, determines 

how the network weights are updated to optimize 

the network. One of the appropriate algorithms 

that adjusts the learning rate during the training 

process is the Adam algorithm (Adam: a method 

for stochastic optimization) [25]. 

(12)  
 

   

True Positives
Precision

True Positives False Positives



 

Recall: The maximum value of this criterion 

is one or 100%, and the minimum value is zero. 

The recall is the ratio of the correct positive 

predictions to all the observations in the real class. 

This will be a good metric when the False 

Negative value is high [25]. 

 
Figure 8. General structure of AgriNet architecture. 

 



AgriNet: a new classifying convolutional neural network for detecting agricultural products’ diseases  

 

295 

 

 

Figure 9. stage 1, stage 2, and stage 3 in AgriNet131 

model. 

(13)  
 

Re
   

True Positives
call

True Positives False Negative



 

F1_Score: One of the best criteria for evaluating 

the accuracy of a test is F1_Score. This criterion is 

1 in the best case and 0 in the worst case, and is 

calculated based on the precision and recall [25]. 

(14) 1_ 2
Precision Recall

F score
Precision Recall


 


 

2.5. Equipment 

This work was developed using the Python's high-

level interpretive programming language. 

Pycharm programming environment and 

Tensorflow-Keras framework have been used in 

all stages of the work. The GeForce graphics card 

used was the GTX1080 with 2560 CUDA cores 

and 8GB of memory. The computational time 

using this equipment will be discussed in the next 

section.  

 

3. Experimental Results and Discussion 

In this section, the details of our experimental 

study and the results are presented. 

 

3.1. Experimental setting 

When designing a DNN, consideration should be 

given to selecting the values such as the number 

of layers, number of neurons in each layer, 

number of epochs, and size of the batch used. 

Finding the right values for the mentioned cases is 

experimental, and should be selected in a way that 

it does not adversely affect the accuracy and 

speed. For example, if the number of hidden 

layers of the network is large, the network 

performance is better but the speed of the network 

is affected.  

 

3.2. Parameter setting 

In order to understand the two concepts of number 

of epochs and batch size, the concept of gradient 

descent should be introduced. This concept is 

generally used to optimize the network, which is 

applied to find the best response based on 

iteration. The gradient descent has a parameter 

called the learning rate. At the beginning, the 

steps are larger and the learning rate is higher, and 

as the steps shrink, so does the learning rate. By 

gradient descent, the cost is also reduced and the 

model is optimized [26]. 

 

In this work, in order to accelerate convergence, 

the learning rate is controlled, and if no 

improvement is seen in the convergence process 

after three epochs, the learning rate is 

automatically reduced. The new learning rate is 

obtained through multiplying the initial learning 

rate by 0.5. The lowest learning rate in the 

proposed architecture is 0.00001. At the end of an 

epoch, the entire training dataset is sent to the 

network once. Thus an epoch is a very large 

process, and it is better to break it into smaller 

batches. In this way, all data can be sent to the 

network several times, and the appropriate 

weights in the network can be obtained. The 

hyper-parameters in the proposed architecture are 

given in Table 2. The network is trained using the 

training set for 50 epochs with a batch size of 128 

and compress rate 16 (all numbers were obtained 

experimentally using the validation dataset). 
 

Table 2. Hyper-parameters of proposed model. 

Setting Parameters 

128 Batch size 
(128,128,3) Image size 

Adam Optimization 

50 Epoch 

16 Compress rate 
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3.3. Model training 

Use of all available data to train the network does 

not seem logical. It is best to divide the available 

dataset into two parts: training and validation. In 

this work, 70% of the available images are 

considered for the network training and the 

remaining 30% are considered as the validation 

sets. 

One of the criteria for evaluating an architecture is 

accuracy. Accuracy refers to how close the value 

predicted by a machine algorithm is to its true 

value. The network performance is directly related 

to the accuracy criteria, and a network with a 

higher accuracy has a better performance. The 

right images of Figures 11 to 14 show a reduction 

in loss, and the left images show an increase in 

accuracy in 50 epochs. As the model learns, the 

loss successfully decreases, while the accuracy 

increases. 

 

 

 

 

I = Input 

O = output 
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Figure 10. Figure with more details of Model AgriNet131. 

 

 

Figure 11 depicts the accuracy and loss diagrams 

in both training and validation in the AgriNet373 

and SHNet373 networks. The training accuracy 

and loss in both networks has the best value, 1 and 

0, respectively, while in validation, AgriNet373 

performed better. 

Figure 12 indicates the loss and accuracy curves 

of the two architectures AgriNet131 and 

SHNet131 in the two phases of training and 

validation. As it can be seen in the figures, both 

networks have reached accuracy 1 in the training 

phase, and are very close in the validation phase. 

Also the loss figures are very close in both phases. 

The two curves related to the proposed 

architecture are compared in Figure 13. In the 

initial model (AgriNet373) and reduced 

parameters model (AgriNet131), it could be seen 

that the loss in both networks as well as in the 

training and validation phase reached zero after 

approximately 20 epochs, and remained 

unchanged. Note that the accuracy of the 

validation phase was better in the AgriNet131 

architecture than in the AgriNet373 

When comparing the two curves related to the 

SHNet networks in the two initial model 

(SHNet373) and parameter reduction model 

(Figure 14), it is observed that the lowest and 

highest loss in the validation phase are related to 

SHNet131 and SHNet373, respectively. 

Concerning accuracy in the validation phase, the 

highest value is related to the SHNet131 states. In 

the training phase, both networks operate almost 

identically. 

 

 

 

 



AgriNet: a new classifying convolutional neural network for detecting agricultural products’ diseases  

 

297 

 

 

 

 

Figure 11. Comparison of accuracy and loss in AgriNet373 and SHNet373 architecture. 

 

 

 

Figure 12. Comparison of accuracy and loss in AgriNet131 and SHNet131 architecture. 

 

 

 

Figure 13. Comparison of accuracy and loss in AgriNet373 and AgriNet131 architectures. 

  
Figure 14. Comparison of accuracy and loss in SHNet373 and SHNet131 architectures. 
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In all of the above curves except Figure 14, after 

about 20 epochs, the amount of loss and the 

amount of accuracy have reached their minimum 

and maximum values, respectively, and have 

remained almost unchanged. In Figure 14, this 

situation occurred in about 10 epochs. 

Table 3 reports the Accuracy, F1_score, Loss, 

Precision, and Recall in the training, validation, 

and testing phases in SHNet373, SHNet131, 

AgriNet373, and AgreNet131 architectures. 

All the experiments were performed on 

“PlantVillage” with 14 types of plants in 24 

healthy and diseased groups. 

As it can be seen in Table 3, in the training phase, 

the best performance in term of accuracy is 1 that 

belongs to all models. This indicates that the 

network is well-trained. In the validation and test 

phase, the AgriNet131 network has shown the 

best performance in terms of accuracy. This 

indicates that the proposed model (with the lowest 

repetition rate in blocks) is able to classify the leaf 

disease images with a very low error rate. As a 

result, in the proposed architecture, by reducing 

the number of iterations of units, in addition to 

reducing the number of parameters from 4051690 

in AgriNet373 to 2661978 in AgriNet131 (the 

number of parameters is almost halved), accuracy 

has increased from 0.97 to 0.98 in the test and 

validation phase. Since the difference in the 

accuracy of the two test phases in the AgriNet373 

and AgriNet131 models is very small, it is 

preferable to use the AgriNet131 model with 

fewer parameters. In the training phase, reducing 

the number of blocks, and consequently, the 

number of parameters did not change the accuracy 

of the network. On the other hand, in the 

validation and test phase, it improved the accuracy 

of AgriNet and SHNet by 1%. The best F1_Score 

has been achieved in the validation and testing 

phase of all models. The lowest loss among the 

models and in all phases belongs to the SHNet131 

model. The best precision has been achieved in 

the validation and testing phase of all models. The 

recall values are all acceptable in all cases. 

 

Table3. Accuracy, F1_score, Loss, Precision, and Recall in training, validation, and testing phases in SHNet373, SHNet131, 

AgriNet373, and AgreNet131 architectures. 

Recall Precision Loss F1_Score Accuracy 
SHNet373  

50 epochs 

1 0.988 6.676e-5 0.994 1 Train 

1 1 0.145 1 0.963 Validation 

1 1 0.153 1 0.962 Test 

Recall Precision Loss F1_Score Accuracy 
SHNet131  

50 epochs 

1 0.988 6.093e-5 0.944 1 Train 

1 1 0.090 1 0.975 Validation 

1 1 0.091 1 0.976 Test 

Recall Precision Loss F1_Score Accuracy 
AgriNet131 
50 epochs 

1 0.988 0.0006 0.994 1 Train 

1 1 0.074 1 0.980 Validation 

1 1 0.075 1 0.980 Test 

Recall Precision Loss F1_Score Accuracy 
AgriNet373 

50 epochs 

1 0.988 0.0001 0.994 1 Train 

1 1 0.122 1 0.971 Validation 

1 1 0.125 1 0.979 Test 

 

Table 4 shows examples of the network 

performance on healthy and diseased crops. Each 

column mentions the name of the product and the 

type of leaf disease related to it; in each row of the 

table, the probability of belonging to the class in 

the architecture and the name of the class 

predicted by the network are also mentioned. 

It is shows that in the diagnosis of healthy grape 

leaves, all architectures have correctly identified 

the leaf class, and the AgriNet architecture 

outperformed the SHNet. On the other hand, the 

healthy peach leaf in the AgriNet131 architecture 

is mistakenly known as the leaf with 

Peach_bacterial_spot disease. The reason for this 

misclassification can be attributed to the very 

similarity of Peach_bacterial_spot to 

Peach_health. The architecture has also worked 

well for defective peach leaves. In general, except 

for one error in other cases, the proposed network 

can assign the images to the correct class with the 

highest probability. This shows the high accuracy 

and efficiency of the proposed model. 

Table 5 reports the accuracy and hardware of the 

networks that used the PlantVillage dataset. Three 

studies [27], [28] and [29] were limited to the 

tomato products from this dataset. They classified 

tomatoes into 10 different classes including 
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healthy tomato leaves and 9 diseased leaf samples. 

The highest accuracy in these three studies was 

98.4%. Only in the present study and the study 

[30], all 38 classes in the PlantVillage dataset are 

covered. In [30], two networks, AlexNet and 

GoogleNet, are used in two modes: transfer 

learning and training from scratch. The AlexNet 

architecture is categorized as shallow 

architectures. The GoogleNet architecture with 9 

Inception modules has only 5 million parameters, 

which is 12 times less than the number of 

parameters that can be learned in AlexNet. 

However, the proposed architecture has only 

2661978 learnable parameters. Given the size of 

the network and the limited number of learnable 

parameters, the accuracy obtained from the 

proposed network has been acceptable. 

 

 

 

Table 4. Examples of results obtained from AgriNet373, AgriNet131, SHNet131, and SHNet373 architectures. 

 

Due to the fact that SHNet is 40% faster than 

ShuffleNetV1, the runtime of the proposed model 

is very close to ShuffleNetV2. The network 

training time on our GPU and with the same batch 

size is 9739 s for the SHNet and 9856 for 

AgriNet. The test time in the proposed model is 

about 15 ms (for all test samples), while it is about 

18 ms in the SHNet. We believe that the small 

additional computational cost incurred by AgriNet 

is justified by its contribution to model 

performance. In order to compare the hardware 

used in the present study and [30], which is in the 

4th row, some points should be noted. There are 

two types of technologies in the manufacturing of 

Nvidia graphics card: CUDA Cores technology 

and Tensor Cores. The CUDA technology allows 

hundreds of separate Nvidia graphics chips to 

process the data in parallel. The tensor technology 

is designed to accelerate the learning capabilities 

of an artificial intelligence system. This 

technology is 47 times faster than a CPU-based 

server and 12 times more powerful than Nvidia's 

previous GPU products [31]. Due to the very 

strong technology used in the study of [30], the 

results obtained in this study are remarkable. 

Challenges that may be faced using the new test 

data are: 

1- The biggest challenge for a big dataset is 

hardware constraints. How to store and 

import such a volume of data into the 

model also has its own problems. 

2- If the dataset is small, in order to achieve 

acceptable results, the number of input 

data should be increased in different ways 

such as data augmentation. 

3- In the datasets that have a more crowded 

background, more initial pre-processing is 

required. 

Peach_bacteri

al_spot 

Peach_healthy Grape_leaf_blight 

(isariosis_leaf_spot) 

Grape-healthy 
Sample name 

    

Sample image 

0.99 
Peach_bacterial

_spot 

0.99 
Peach_healthy 

1 

Grape_leaf_blight 

(isariosis_leaf_spot) 

0.99 
Grape-healthy 

Possibility of belonging to 
the desired class in 

AgriNet373 architecture/ 

Network predicted class 
 

0.99 

Peach_bacterial
_spot 

0.92 

Peach_bacterial_spot 

0.99 

Grape_leaf_blight 
(isariosis_leaf_spot) 

0.99 

Grape-healthy 

Possibility of belonging to 

the desired class in 
AgriNet131 architecture/ 

Network predicted class 

 
0.99 

Peach_bacterial

_spot 

0.99 

Peach_healthy 
1 

Grape_leaf_blight 

(isariosis_Leaf_spot) 

0.91 

Grape-healthy 

Possibility of belonging to 

the desired class in SHNet131 

architecture/ 
Network predicted class 

 

0.99 
Peach_bacterial

_spot 

0.97 
Peach_healthy 

0.99 
Grape_leaf_blight 

(isariosis_leaf_spot) 

0.98 
Grape-healthy 

Possibility of belonging to 
the desired class in SHNet373 

architecture/ 

Network predicted class 
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In order to fill the research gaps, a new method 

has been proposed for automatic detection as well 

as classification of plant leaf diseases using 

AgriNet. The advantages of the proposed 

algorithm are as follow: 

1- Recalibration has been used to increase 

the network accuracy. 

2-  In order to increase the information flow 

in the network, the shuffling process has 

been used. 

3- In addition to reducing the number of 

parameters, the complexity of the network 

has been reduced. 

 

Table 5. Comparison of accuracy and hardware of networks working on the PlantVillage dataset. 

Test accuracy 

Numb

er of 

classes 

crop 

Numb

er of 

crops 

reviewed 

Number 

of images 

System 

specifications 
Dataset 

Method or 

author 

Numb

er 

AlexNe without pre-
training: 97.35% 

GoogleNet without pre-

training: 97.71% 

10 Tomato 1 14,828 

GPU: Quadro K 
5000 4GB, 

1536 cores 

128 GB RAM 

PlantVilla

ge 

Mohammed 
Brahimi, 

Kamel 

Boukhalfa, 
Abdelouahab 

Moussaoui 

[27] 

1 

98.4% 10 tomato 1 18160 

GPU: NVIDIA 

DGX v. 100 

40600 CUDA 
cores 

128 GB RAM 

PlantVilla

ge 

Mohit 

Agarwal, Suneet 

Kr. Gupta, K.K. 
Biswas 

[28] 

2 

AlexNet: 95.65% 

SqueezeNet: 94.3% 
10 tomato 1 - 

GPU: Nvidia 

Jetson Tx1 

256 CUDA cores, 
4GB RAM, 

PlantVilla

ge 

Halil Durmuú, 

Ece Olcay Güneú, 

Mürvet KÕrcÕ 
[29] 

3 

Training from scratch 
AlexNet: 97.82% 

GoogleNet: Training from 

scratch: 98.36% 

38 

Apple,Blueberr

y 
Cherry,Corn 

Grape,Orange 

Peach,Bell 
Pepper 

Potato,Raspberr

y 
Soybean,Squas

h 

Strawberry,To
mato 

14 54306 

GPU: NVIDIA 
Tesla V100 

640 tensor cores 

32GB RAM 

PlantVilla

ge 

Sharada P. 

Mohanty, 
David P. 

Hughes, 

Marcel Salathé 
[30] 

4 

96.20% 38 
Similar to row 

4 
14 54306 

GPU: GeForce 

GTX 1080 
2560 CUDA 

cores, 

8GB RAM, 

PlantVilla

ge 
SHNet373 5 

97.60% 38 
Similar to row 

4 
14 54306 

GPU: GeForce 

GTX 1080 

2560 CUDA 
cores, 

8GB RAM, 

PlantVilla

ge 
SHNet131 6 

97.90% 38 
Similar to row 

4 
14 54306 

GPU: GeForce 
GTX 1080 

2560 CUDA 

cores, 
8GB RAM, 

PlantVilla
ge 

AgriNet373 7 

98% 38 
Similar to row 

4 
14 54306 

GPU: GeForce 

GTX 1080 
2560 CUDA 

cores, 

8GB RAM, 

PlantVilla

ge 
AgriNet131 8 

 

4. Conclusion 
In this work, a new method was proposed for 

diagnosing and classifying plant diseases of 

various crops such as corn and apples using CNN. 

In this way, the learnable parameters of the 

proposed network were reduced. Based on the 

results of the implementation of the proposed 

architectures, the high efficiency and accuracy of 

the AgriNet131 architecture in diagnosing and 

classifying diseases of agricultural products were 

proved. Given the variety of diseases in the 

database, the accuracy of 98% seems acceptable. 

In the future, in order to improve the network 

performance, after using SENet, the channels can 

be grouped, and then those groups can be shuffled 

through channel shuffling operations, whereby 

better results can be obtained. 
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 .1041 سال ،دوم شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده                                                                                              یآبادصادقی و  نجف

 

AgriNet:  های محصولات کشاورزیبند جدید جهت تشخیص بیمارییک شبکه عصبی پیچشی طبقه 

 

  ،*2محمدتقی صادقیو  1آبادی فرزانه سلیمیان نجف

  .پردیس آزادی، دانشگاه یزد، یزد، ایران 1

 .دانشکده مهندسی برق، دانشگاه یزد، یزد، ایران  2

 11/40/0400 پذیرش؛ 40/41/0400 بازنگری؛ 40/11/0401 ارسال

 چکیده:

 .اسهتمحققها  ها در این بخش از موضوعات مورد توجهه فعالیتبهبود  توسعه واست.  یبر اقتصاد کشورها، بخش کشاورزو موثر  مهمهای بخشیکی از 

داده شهود،  صیتشهخ یبهه زود اهیهمشکل گ اگر .است یاهیگ یهایماریب ،با آ  مواجه هستند یکشاورز یهاتیکه کشاورزا  در فعال یاز مشکلات یکی

د کهه از شهویم یمعرف AgriNetبه نام  دیجد قیعم یمصنوع یشبکه عصب کی تحقیق، نیادر  .درما  کند یرا به طور موثرتر یماریتواند بیکشاورز م

بهه ههم زد   ههایتکنیهکاز  یشهنهادی. شبکه پکنداستفاده می یکشاورزدر محصولات ها یماریاز انواع ب یبرخ صیتشخ یبرا ا اهیگ یهابرگ ریتصاو

 شینحهوه افه ا ،یشهنهادیشهبکه پ یمعمار یاز عوامل موثر بر اثربخش یکی .کندیم استفاده (SENet)کانال یوابستگ یسازو مدل (ShuffleNet) کانال

اسهت. مجموعهه  پهووهش نیهمهم ا نوآوری کیدر واقع  نیا. ها استکانال نیمتقابل ب یهایوابستگ حیصر یسازها پس از مدلاطلاعات در کانال ا یجر

کهه روش  دههدیمها نشها  مه یتجربه جینتها .است ماریگروه سالم و ب 00در  اهینوع گ 10است که شامل  PlantVillage کار نیداده مورد استفاده در ا

ی دسهت یافتهه اسهت. تجربه هایداده در ٪7 و ٪80 ه ینهبه دقت و  بیترت به AgriNet . کندیبهتر عمل م نهیزم نیدر ا گرید یهااز روش یشنهادیپ

  دهد.یکاهش م %0 مقدار ه ینه نهایی را به مقدار و داده شیاف ا %0را تا حدود  صیدقت تشخ ShuffleNetV2با روش  سهیروش در مقا نیا

 .SENet، شبکه ShuffleNetهای عصبی پیچشی، شبکه های گیاهی، شبکهبیماریشخیص ت :کلمات کلیدی

 


