محاسبه مقاومت شناور سهبدنه و تخمین عدم قطعیت در شرایط آب آرام بواسطه روشهای آزمایشگاهی و عددی | ||
مکانیک سازه ها و شاره ها | ||
دوره 11، شماره 6، بهمن و اسفند 1400، صفحه 253-271 اصل مقاله (1.62 M) | ||
نوع مقاله: یادداشتهای فنی | ||
شناسه دیجیتال (DOI): 10.22044/jsfm.2022.11036.3437 | ||
نویسندگان | ||
سعید کرمی* 1؛ روح الله هادی پورگودرزی2؛ محمد زندراد مجرد3 | ||
1مربی، مهندسی دریا، هیدرودینامیک و جلوبرندگی، دانشگاه صنعتی مالک اشتر، پژوهشکده علوم و فناوری شمال | ||
2مربی، مهندسی دریا، معماری کشتی، دانشگاه صنعتی مالک اشتر، پژوهشکده علوم و فناوری شمال | ||
3مربی، مهندسی دریا، هیدرودینامیک، آزمایشگاه ملی دریایی ایران | ||
چکیده | ||
امروزه تحقیقات بر روی شناورهای سهبدنه به دلیل داشتن خواص متعدد افزایش یافته است. شناور تریماران یا سه بدنه یک نمونه از شناورهای چند بدنه است که دارای خواص هیدرواستاتیکی و هیدرودینامیکی مناسب است. این شناورها با توجه به نسبت طول به عرض و آبخور بالا به-ترتیب کاهش مقاومت موجسازی و توان را ارائه مینمایند. در این مطالعه نحوه و روند انجام آزمایش مقاومت برای یک شناور سه بدنه با تناژ سنگین ارائه شده است. الزامات ساخت براساس توصیهنامه ITTC انجام شد. شناور در اعداد فرود 42/0، 23/0 و 17/0، در حالت سهدرجه آزادی شامل : سرج، هیو و پیچ و شرایط آب آرام مورد آزمایش قرار گرفت. سپس به روش دینامیک سیالات محاسباتی نتایج مورد مقایسه قرار گرفت. تایید و اعتباربخشی طبق توصیه نامه ITTC بوسیله سه سطح شبکهبندی انجام و مقدار عدم قطعیت عددی نیز تخمین زده شد. به منظور مدلسازی جریان حول بدنه از مدل دو فازی وی او اف و مدل آشفتگی کی – اپسیلون بهره گرفته شد. تطابق مناسبی بین نتایج عددی و آزمایشگاهی ارائه شد. | ||
کلیدواژهها | ||
شناور سه بدنه؛ مقاومت شناور؛ آزمایش شناور؛ حوضچه کشش؛ عدم قطعیت | ||
مراجع | ||
[1] Dubrovsky V (2016) Specificity and designing of multi-hull ships and boats. Specificity and Designing of Multi-Hull Ships and Boats 1-217.
[2] Dubrovsky VA (2010) Multi-Hulls: Some new options as the result of science development. Brodogradnja: Tisak 61: 142-152.
[3] Grafton TJ (2008) The roll motion of trimaran ships. University of London, UCL.
[4] Hafez K, El-Kot A (2012) Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alex Eng J 51: 153-169.
[5] Zhang J (1997) Design and hydrodynamic performance of trimaran displacement ships. UCL.
[6] Akbari VK, Khedmati M, HasanAbadi A, Mohammadi A (2018) Resistance Prediction for a novel trimaran with wave piercing bow. IJMT 29: 33-40.
[7] Deng R, Li C, Huang D, Zhou G (2015) The effect of trimming and sinkage on the trimaran resistance calculation. Procedia Eng 126: 327-331.
[8] Gong J, Li Y, Jiang F (2019) Numerical simulation about the manoeuvre of trimaran and asymmetric twin hull with hull attitude taken into account by OpenFOAM. J Mar Sci 1-18.
[9] Hatlevik AS (2018) Resistance analysis of trimaran service vessel using CFD. NTNU.
[10] Heidari M, et al. (2019) Numerical analysis of side hull configuration in Trimaran. Rev Int Metodos Numer Para Calc Diseno Ing 35.
[11] Su G, Shen H, Su Y (2020) Numerical Prediction of hydrodynamic performance of planing trimaran with a wave-piercing bow. J Mar Sci Eng 9: 897.
[12] Son CH (2015) CFD Investigation of resistance of high-speed trimaran hull forms. Florida Tech.
[13] Luhulima RB (2017) An investigation into the resistance of displacment trimaran: A Comparative analysis between experimental and CFD approaches. IASET 6: 9-18.
[14] ITTC (2017) ITTC Recomennded Guidline: Model Manufacture Ship Models:1-7.
[15] ITTC (2014) ITTC-Recommended Procedures and guidelines Practial guidelines for ship CFD application 7.5-03-02-03.
[16] ITTC (2014) ITTC Recommended Procedures and guidelines practical guidelines for ship Resitance CFD 7.5-03-02-04.
[17] ITTC (2014) ITTC-Recommended Procedures and guidelines Practical Guideline Practical Guidelines for RANS calculation of Nominal wakes 7.5-03-03-02.
[18] STAR CCM+ (2017) User Guide Version 14.04.
[19] Guo H.p and Z.j. Zou J. (2017) System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests. Appl Ocean Res 68: 11-25.
[20] Shenoi RR, Krishnankutty P, Selvam RP, Kulsreshtha A (2013) Prediction of maneuvering coefficients of a container ship by numerically simulating HPMM using RANSE based solver. in Proc. 3rd MASHCON, Ghent, Belgium.
[21] Yeo D, Yun K, Kim Y (2016) Experimental Study on the Manoeuvrability of KVLCC2 in Shallow Water. in 4th MASHCON 287-294.
[22] STAR-CCM+ (2017) STAR-CCM+ Documentation.
[23] Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: The finite volume method. Pearson Education.
[24] Bertram V. (2012) Practical ship hydrodynamics. Elsevier sci.
[25] Tezdogan T, Demirel YK, Kellett P, Khorasanchi M, Turan O (2015) Full-Scale unsteady RANS CFD simulations of ship behaviour and performance. Head Sea Due To Slow Steaming Ocean Eng 97: 186-206.
[26] Luis AEC, Vaz G, Hoekstra M (2010) Code verification, solution verification and validation in RANS solvers. Proc Int Conf. Offshore Mech Arct Eng OMAE.
[27] A. I. O. (1998) Aeronautics and Astronautics. guide for the verification and validation of computational fluid dynamics simulations. AIAA.
[28] Shen Hc, Yao Zq, Wu BS, Zhang N, RYJJOS, Yang M (2010) A new method on uncertainty analysis and assessment in ship CFD. J Hydrodynam B 10: 1071-1083.
[29] Simonsen CD, Stern FJC (2003) Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments. Comput Fluids 32 :1325-1356.
[30] کرمی س، هادی پور گودرزی ر (2020) مطالعه تایید و اعتبارسنجی در روش دینامیک سیالات محاسباتی برای نتایج مقاومت کشتی کانتینربرKCS بوسیله مدل توربولانسی انتقال تنش برشی. فصلنامه علمی پژوهشی دریا فنون 85-70 :(2)8.
[31] ITTC (2011) Guidelines: Practical guidelines for ship cfd applications. 7: 02-03.
[32] ITTC Manual (1999) Uncertainty analysis in CFD uncertainty assessment methodology. The 22nd ITTC, Seoul and Shanghai.
[33] ITTC Procedures (1999) ITTC–Recommended Procedures-Performance, Propulsion in International Towing Tank Conference 7.5-02.
[34] ITTC Procedures (2002) Uncertainty analysis in CFD, uncertainty assessment methodology and Procedures. in In Proceedings of the International Towing Tank Conference, Venice, Italy 7.5-02.
[35] ITTC Procedures (2017) Uncertainty Analysis in CFD, Verification and Validation Methodology and Procedures. ITTC-Recommended Procedures and Guidelines 7.5-03-01-01. In Proceedings of the International Towing Tank Conference, Wuxi, China.
[36] Oberkampf WL, Blottner FG (1998) Issues in computational fluid dynamics code verification and validation. AIAA J 36: 687-695.
[37] Richardson LF, Gaunt JA (1927) containing papers of a mathematical or physical character. VIII. The deferred approach to the limit. JSTOR 226: 636-646.
[38] Wilson R, Shao J, Stern FJ (2004) Discussion: Criticisms of the correction factor verification method. J Fluids Eng 26: 704-706.
[39] Carlton J (2012) Marine propellers and propulsion. Butterworth-Heinemann.
[40] کرمی س، ملکی ع، هادیپورگودرزی ر ا، علیزاده ا (2020) طراحی و بررسی عددی جریان پایا و ناپایا حول پروانه باز و بسته در آب آزاد بوسیله مدل های SRANS و URANS. فصلنامه علمی پژوهشی مکانیک تبریز 194-185 :(3)50.
[41] کرمی س، میرزایی ق، ملکی ع (2020) تحلیل عددی جریان حول یک پروانه گام ثابت وPBCF به روشCFD . فصلنامه علمی پژوهشی دریا فنون 111-98 :(3)7.
| ||
آمار تعداد مشاهده مقاله: 37,449 تعداد دریافت فایل اصل مقاله: 922 |