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ON THE COMPUTATIONAL COMPLEXITY ASPECTS
OF PERFECT ROMAN DOMINATION

S. H. MIRHOSEINI AND N. JAFARI RAD*

ABSTRACT. A perfect Roman dominating function (PRDF) on a
graph G is a function f : V(G) — {0, 1,2} such that every vertex
u with f(u) = 0 is adjacent to exactly one vertex v for which
f(w) = 2. The weight of a PRDF f is the sum of the weights
of the vertices under f. The perfect Roman domination number
of G is the minimum weight of a PRDF in G. In this paper we
study algorithmic and computational complexity aspects of the
minimum perfect Roman domination problem (MPRDP). We first
correct the proof of a result published in [Bulletin Iran. Math.
Soc. 14(2020), 342-351], and using a similar argument, show that
MPRDP is APX-hard for graphs with bounded degree 4. We prove
that the decision problem associated to MPRDP is NP-complete
for star convex bipartite graphs, and it is solvable in linear time
for bounded tree-width graphs. We also show that the perfect
domination problem and perfect Roman domination problem are
not equivalent in computational complexity aspects. Finally we
propose an integer linear programming formulation for MPRDP.

1. INTRODUCTION

Graph Theory Notations: For notations and definitions not given
here we refer to [15]. We consider simple and finite graphs G = (V, E),
where V' = V(QG) is the vertex set and £ = E(G) is the edge set. The
order of G, denoted |V (G)| = n, is the number of vertices in G' and the
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size of G, denoted | E(G)| = m, is the number of edges in G. For any two
vertices z,y € V(G), z and y are adjacent if the edge xy € E(G). The
open neighborhood of a vertex v is the set N(v) ={u €V :uv € E(G)}
and the closed neighborhood of v is the set N[v] = N(v) U {v}. The
open neighborhood of a set D C V' is the set N(D) = |J,p N(v) and
the closed neighborhood of D is the set N[D] = N(D)UD. The degree
of a vertex v, denoted by deg(v) (or deg,(v)), is the cardinality of its
open neighborhood, that is, deg,(v) = |N(v)|. A vertex with exactly
one neighbor is called a pendant vertex (or leaf if the graph is a tree)
and its neighbor is a support vertex. A support vertex with two or more
leaf neighbors is called a strong support vertex. A vertex of degree zero
is called an isolated verter. We denote by A and ¢, respectively, the
maximum degree and minimum degree among the vertices of G. A
vertex v of G is called universal vertex if dege(v) is equal to A. An
induced subgraph is a graph formed from a subset D of vertices of G
and all of the edges in G connecting pairs of vertices in that subset,
denoted by (D). An independent set is a set of vertices in which no two
vertices are adjacent. A graph G is bipartite if V(G) can be partitioned
into two independent sets called partite sets. A bipartite graph G with
partite sets X and Y is called tree convex if there exists a tree T with
V(T) = X such that, for each y in Y, the neighbors of y induce a
subtree in T. When T is a star, G is called star convex bipartite graph
[10].

Domination Theory Notations: A dominating set of a graph G is
a subset D of vertices such that every vertex outside D has a neighbor
in D. The domination number of G, denoted by 7(G), is the minimum
cardinality amongst all dominating sets of G. A perfect dominating set
(PDS) in a graph G is a subset S such that for all vertices v € V(G)\S,
|N[v]NS| = 1. The minimum cardinality of a perfect dominating set in
G is called the perfect domination number of G and is denoted by 7,(G).
A perfect dominating set of G of minimum cardinality is also called a
vp-set of G. The concept of perfect dominating sets and its variations
have received much attention; for example, see [15, 18]. Cockayne et
al. [12] introduced the mathematical definition of Roman domination.
This concept was subsequently developed very vastly, and to see the
latest progress until 2020 we refer to [1, 2, 3, 6, 7, 8, 9]. A function
f:V —{0,1,2} is called a Roman dominating function or just an
RDF for G if for every vertex v € V with f(v) = 0 there exists a vertex
u € N(v) such that f(u) = 2. The weight of an RDF f is the sum
f(V) =>,cv f(v). The minimum weight of an RDF on G is called
the Roman domination number of G and is denoted by vz(G). For an
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RDF f in a graph G, we denote by V; (or V;f to refer to f) the set of all
vertices of G with label ¢ under f. Thus an RDF f can be represented
by a triple (Vp, V1, V2), and we can use the notation f = (Vp, Vi, V).

Henning, Klostermeyer, and MacGillivray [17] introduced the
concept of perfect Roman domination in graphs. A perfect Roman
dominating function (PRDF) on a graph G is a function

f:V(@G) —={0,1,2}

satisfying the condition that every vertex u with f(u) = 0 is adjacent to
exactly one vertex v for which f(v) = 2. The weight of a perfect Roman
dominating function f is the sum of the its weights over the vertices
of G and is denoted by f(V'). The perfect Roman domination number
of G, denoted by 7,r(G), is the minimum weight of a PRDF of G.
The concept of perfect Roman domination was further studied in, for
example [1, 16]. Banerjee et al. [1] studied the algorithmic complexity
of perfect Roman domination in graphs. They proved that the perfect
Roman domination problem is NP-complete for chordal graphs, planar
graphs, and bipartite graphs.

APX-hardness Notations: Let APX be the class of problems, for
which a C-approximation algorithm exist. Let I1I denotes the set of
all instances of an optimization problem II, STI(z) denotes the set of
solutions of an instance x of problem II, mII(z, y) denotes the measure
of the objective function value for x € I1I and y € SII(z) and optIl(x)
denotes the optimal value of the objective function x € ITI. The
L-reduction is defined as follows. Given two NP optimization problems
IT; and II; and a polynomial time transformation f from instances of
I1; to instances of II; one can say that f is an L-reduction if there exists
positive constants a and [ such that for every instance x of Il;:

L. OptH2<f(x)) < Oé-optl_h (:C)
2. for every feasible solution y of f(x) with objective value

ma, (f(2),y) = ¢

in polynomial time one can find a solution y" of x with myy, (z,y’) = ¢
such that |opty, (z) — c1| < B.|opt, (f(z)) — ol

Here, optr,(x) represents the size of an optimal solution for an
instance x of an NP optimization problem II;.

Aims of the paper: In this paper we study algorithmic and
computational complexity aspects of the minimum perfect Roman
domination problem (MPRDP). The organization of the paper is as
follows. In Section 2, we first correct the proof of a result published
in [Bulletin Iran. Math. Soc. 14(3) 2020, 342-351], and using a
similar argument, we show that the MPRDP is APX-hard for graphs
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with bounded degree 4. In Section 3, we prove that the decision
problem associated to MPRDP is NP-complete even when restricted to
star convex bipartite graphs. In Section 4, we show that the MPRDP
can be solved in linear time for bounded tree-width graphs. In Section
5, we compare the computational complexity of perfect domination
and perfect Roman domination, and prove that the perfect domination
problem and perfect Roman domination problem are not equivalent in
computational complexity aspects. In Section 6, we propose an integer
linear programming formulation for MPRDP.

2. APX-HARDNESSRESULTS

We first correct the proof of a theorem presented in [5] on the on
APX-hardness of independent Roman domination.

2.1. A Correction on an APX-hardness result of independent
Roman domination. An independent Roman dominating function
(IRDF) on a graph G is an RDF f such that the vertices assigned
positive values are independent. The weight of an TRDF f is the
value f(V'). The independent Roman domination number of G denoted
by ir(G) is the minimum weight of an /RDF on G. The minimum
independent Roman domination problem (M IRDP) is to find an IRDF
of minimum weigh in the input graph.

In [5] it was shown that MIRDP is Apx-hard for graphs with
maximum degree 4. They used an L-reduction from MINIMUM
INDEPENDENT DOMINATING SET-3 (MIDS-3) problem (to find
a minimum independent dominating set of a graph with maximum
degree 3) which has been proved as APX-complete [11]. However the
proof given in [0] is not correct. The major mistake is that in the
given L-reduction the IRDF g is a feasible solution and not necessarily
ir-function, so the set D = {v;| g(v;) = 2 or g(a;) = 2 } is not neces-
sarily an IDS. To see a counterexample, let V(G) = {vy, vo, v3, vy, U5},
E(G) = {v1v, 903, U304, U305, V405 }, G’ be the graph constructed from
G, as described in [5] and g be an IRDF defined by g(z) = 1 if
x € {v1,as,a4,a5,dy,€1, f1}, g(xr) = 2 if © € {vs3,by,co,¢3,¢4,¢5} and
g(x) = 0 otherwise, and observe that {v;|g(v;) = 2 or g(a;) = 2} is not
an IDS.

We fix this part of the proof as follows. We follow the proof given in
[5]. Thus ig(G") = 3n+i(G) and optppp(G') < 13.0ptyrps—3(G). Let
g be a feasible solution for G’ and f be an optimal solution for it. Let
D={v;eV]|g(v)=2 or g¢g(v)=1}. Clearly D is an independent
set. If D is not a dominating set for G, then there exists a vertex v;,
such that v;, is not dominated by D. Let D; = DU{vj, }. If Dy isnot a
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dominating set for G, then there exists a vertex vj, such that v, is not
dominated by Dy, and let Dy = Dy U {v;,}. Continuing this process,
we obtain a set Dy = D U {vj,,vj,, ..., v;, } that dominates all vertices
of G. Note that Dy, is an IDS for G. For every vertex v; € V(G), if
vi € Dy then g(v;) + g(a;) + g(bi) + g(ci) + g(di) + g(e:) + g(fi) = 4,
while if v; € V — D;, then
9(vi) +g(a;) + g(bi) + g(ci) + g(di) + gle:) + g(fi) = 3.

Thus, g(V') > 4|Di| + 3(n — |Dg|) = 3n + |Dy|. Consequently,

|Di| < g(V') — 3n. Since ig(G’") = 3n +i(G), we have
| Di| —i(G) < g(V') = 3n —i(G)
= g(V') —ir(G")
< 1x (g(V') —ir(G").
Thus, g =1.

2.2. APX-hardness of perfect Roman domination. We now prove
the APX-hardness of minimum perfect Roman domination.

Theorem 2.1. MPRDP is APX-hard for graphs with maximum degree
4.

Proof. The proof is similar to APX-hardness of independent Roman
domination given in [5] (Theorem 22), and so we omit the details. Let
G = (V,E) be an arbitrary instance of the MINIMUM PERFECT
DOMINATING SET-3 (MPDS-3) problem, where V' = {vy,vs, ..., v, },
and let G’ be the graph is constructed in [5]. It can be seen that
’)/pR<G,) = 3n + ’yp(G) and OPtMpRDp(G,) < 13.0ptM1DS,3(G). Let
go be a feasible solution for G’ and f be an optimal solution for it.
Let Dy = {v; € V(G)|go(vi) = 1 or go(v;) = 2}. If Dy is a PDS for
G then go(vi) + go(ai) + go(bi) + ... + go(fi) > 4 for each v; € Dy,
while go(vi) + go(a:i) + go(bi) + ... + go(fi) = 3 for each v; ¢ Dy, and
so go(V') > 4|Do| + (n — |Dg|) x 3 = 3n + |Doy|. This implies that
|Do| — 7(G) < go(V') — 3n — v,(G). If Dy is not a PDS for G, then
there exists a vertex v;, such that v;, is not dominated by Dy. Let
Dy = Dy UA{v;, }. If Dy is not a PDS for G, then there exist a vertex
vj, such that v;, is not dominated by Ds, and let Dy = Dy U {v,,}.
Continuing this process, we will reach a set Dy = D U {v;,,v;,,...,vj, }
that dominates all vertices of G. It is straightforward to see that

| Di| < go(V') = 3n.

Thus |Dy| — 7,(G) < go(V') — 3n — v,(G). Consequently, 8 = 1, and
the proof is completed. O
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3. NP-COMPLETENESS ON STAR CONVEX BIPARTITE GRAPHS

The decision problem associated to the perfect domination defined
as follows.
PERFECT ROMAN DOMINATION PROBLEM (PRDP)
INSTANCE: A graph G = (V| F) and a positive integer k.
QUESTION: Does G have a PRDF of weight at most &7

In this section, we show that PRDP is NP-complete for star convex
bipartite graphs by giving a polynomial time reduction from a well-
known NP-complete problem, Exact-3-Cover (X3C) which is known
to be NP-complete in [I1]. The Exact-3-Cover problem is defined as
follows.

EXACT-3-COVER (X3C)

INSTANCE: A finite set X with |X| = 3¢ and a collection C' of 3-
element subsets of X.

QUESTION: Is there a sub collection C" of C' such that every element
of X appears in exactly one member of C'?

Theorem 3.1. PRDP is NP-complete for star convex bipartite graphs.

Proof. Given a graph G and a function f, whether f is a PRDF of
size at most k can be checked in polynomial time. Thus PRDP is
a member of NP. Now we show that PRDP is NP-hard by trans-
forming an instance (X,C) of X3C, where X = {z1,22,...,x3,} and
C ={C,Cy,...,C}, to an instance (G, k) of PRDP that was presented
in [5].

Let A ={v}U{r; : 1 <i<3¢tuU{b;:1<i<t}, B=V\A
The subgraph induced by A is a star with vertex vy as central vertex
and the neighbors of each element of B induce a subtree of the star.
Therefore GG is a star convex bipartite graph and can be constructed
from the given instance (X,C) of X3C in polynomial time. The
constructed graph and the associated star is shown in the Figure 1.
Next we show that X3C has a solution if and only if G has a PRDF
with weight at most 2t + ¢ + 1.

Suppose C’ is a solution for X3C with |C’| = ¢. Let f be a
function defined by f(v) = 2 if v € C'"U{b; : ¢; & C'}, f(v) =1
ifve{a:c¢ € C'}U{v} and f(v) = 0 otherwise. It can be easily
verified that f isa PRDF of G and f(V) = 2¢+2(t—q)+q+1 = 2t+q+1.
Conversely, suppose that G has a PRDF g with weight 2t + ¢ + 1.
Clearly, each path a; — b; — ¢; requires a weight of at least 2. The
number of such a paths is ¢, so this makes the weight at least 2t.
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FI1GURE 1. An illustration to the construction of star
graph from an instance of X3C.

If ¢ =1 then X = {x1, 29,23}, t = 1 and we have only one subset
of three members of X, so C'= {C4}. In this case if g is a PRDF with
weight 2t + ¢ + 1 = 4 then g(c;) = 2. Note that if g(c;) # 2 then
g(V) > 6 and clearly D = {C}} is a solution of X3C.

Next we assume that ¢ > 1. It is evident that if [{¢;|g(¢;) =2} > 1
then g(vg) # 0. Assume that ¢g(V) = 2t + ¢ + 1. We show that
{cilg(ci) = 2}| > 1. Suppose that [{c;|g(¢;) = 2} < 1. Thus at most
one of the ¢;’s has weight 2. If |{c;|g(c;) = 2}| = 0, then g(c¢;) # 2 for
each i. Since g is a PRDF, each path a; — b; — ¢; requires a weight of
at least 2, and therefore on each sub graph ({a;, b;, ¢;, zi,, Ty, Tis, Vo })
we have g(a;) +g(bi) +g(ci) > 2, g(z:,) > 1, g(x,) > 1, g(z3,) > 1 and
g(vg) > 1. Thus we arrive g(V') > 2t+3q+g(vy) > 2t+3g+1 > 2t+q+1,
a contradiction with g(V') = 2t + ¢ + 1. Thus assume that

Heilg(e) =2} = 1.

Without loss of generality, assume that the relevant branch is sub graph
({a1,b1, 1,21, 29,23}). Then the minimum weight of this branch is 3.
Note that g(c;) = 2 and g(c¢;) # 2 for ¢ # 1. Since each path a; — b; — ¢;
requires a weight of at least 2, every x; which is not joined to ¢; has
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a weight of at least 1. The number of such z;’s is equal to 3¢ — 3.
Therefore [{z; : g(x;) > 1}| = 3¢ — 3. Hence,

g(V) =2 3+2(t—1)+ (3¢ = 3) + g(vo)
>2t+1+3g—34 g(w)
=2t+3¢—2+g(v) >2t+q+1.

Note that for ¢ € N,q > 1 we have 3¢ — 2 > ¢ + 1. This contradicts
assumption g(V') = 2t + ¢ + 1. Therefore [{c;|g(¢;) = 2}| > 1. Now it
is evident that g(vg) # 0. We show next that g(z;) = 0 for 1 < i < 3q.
Suppose that there exist m (m > 1) x;’s such that g(z;) > 1. The
number of z;’s with g(z;) = 0 is 3¢ — m. Since g is a PRDF, each z;
with g(x;) = 0 should have exactly one neighbor ¢; with g(c;) = 2. So
the number of ¢;’s required with g(c;) = 2 is [2™]. For such branches
g(a;) + g(bi) + g(¢;) > 3 and otherwise g(a;) + g(b;) + g(¢;) > 2. Hence

3g—m

3¢ —m
3

—m —m

g(V) =3[ T+20 -1 1) +m+g(w)

:%+q+mﬁ{%¥1+ﬂ%)

>2t+q+ 1+ g(vo)
>2t+q+ 1.

This is a contradiction. Therefore for each z; € X, g(z;) = 0. Since
each ¢; has exactly three neighbors in X, so there exist ¢ number of ¢;’s
with weight 2 such that every element of X is adjacent with exactly
one of the ¢;’s. Consequently, C" = {¢; : g(¢;) = 2} is a solution for
X3C. O

4. MPRDP IN BOUNDED TREE-WIDTH GRAPHS.

In this section we focus on bounded tree-width graphs and show that
the perfect Roman domination problem is solvable in linear time for
bounded tree-width graphs. To achieve this goal, we need to state some
notations and definitions. Let G be a graph, T" a tree and v a family of
vertex sets V; C V(G) indexed by the vertices ¢ of T'. The pair (7, v)
is called a tree-decomposition of G if it satisfies the following three
conditions: (i) V(G) = Uy, Vi, (ii) for every edge e € E(G) there
exists a t € V(T') such that both ends of e lie in V;, (iii) V;, NV, CV,,
whenever t1,t9,t3 € V(T) and t5 is on the path in T from ¢; to t3. The
width of (T, v) is the number max{|V;| —1: ¢ € T}, and the tree-width
tw(G) of G is the minimum width of any tree-decomposition of G. By
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Courcelle’s Theorem, it is well known that every graph problem that
can be described by counting monadic second-order logic (CMSOL)
can be solved in linear-time in graphs of bounded tree-width, given a
tree decomposition as input [13].

Theorem 4.1 (Courcelle’s Theorem [13]). Let P be a graph property
expressible in CMSOL and k be a constant. Then, for any graph G of
tree-width at most k, it can be checked in linear-time whether G has
property P.

We show that the PRDP can be expressed in CMSOL. For this
purpose we use the following notations.
1. adj(p,q) is the binary adjacency relation which holds if and only if|
p, q are two adjacent vertices of G.
2. inc(v,e) is the binary incidence relation which holds if and only if
edge e is incident to vertex v in G.

Theorem 4.2. Given a graph G and a positive integer k, the PRDP
can be expressed in CMSOL.

Proof. Let f : V. — {0,1,2} be a function on a graph G and
Vi={v: f(v) =i} for i = 0,1,2. The CMSOL formula for the
PRDF problem is expressed as follows.

f—PRDF = 3V,, Vi, Vs,
Vp(pe Vivpe VoV (pe VoA3lge VaAadi(p,q))).

f — PRDF guarantees that for every vertex p € V, either p € V; or
p € Vy or if p € V4 then there exist exactly one vertex ¢ € V5 such that
p is adjacent to q. Now, we can express PRDP in CMSOL as follows:

PRDP = (f(V) < k) A (f — PRDF).
0

Now, the following result is immediately obtained from Theorems
4.1 and 4.2.

Theorem 4.3. PRDP can be solved in linear time for bounded tree-
width graphs.
5. COMPLEXITY DIFFERENCE IN PERFECT DOMINATING SET

PROBLEM AND PERFECT ROMAN DOMINATING PROBLEM

Consider the following decision problem associated to perfect domi-
nation set.
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PERFECT DOMINATION DECISION PROBLEM (PDSP)

INSTANCE : A simple, undirected graph G and a positive integer
k.
QUESTION : Does there exist a perfect dominating set of size at most
k in G?

In this section, we discuss the difference in computational complex-
ity between the problems PDSP and PRDP. Although problems PDSP
and PRDP are types of domination problems, these two problems
can differ in complexity. For some instances (for example K,,), both
problems may be solved in a maximum of polynomial-time. In
certain cases, there are classes of graphs for which the decision
version of the problem of domination PRDP can be solved in
polynomial-time, while the problem of PDSP for them is in the
N P-complete class, and vice versa. Similar study has been made
between domination and other domination parameters in [19, 20, 21].
We consider a new class of graphs, namely, GC graphs, in which the
MPRDP can be solved trivially, whereas the PDSP is NP-complete.
A graph is GC graph if it can be constructed from a connected graph
G = (V,E), with V. = {v1, vy, ...,v,} by joining each vertex v; to the
vertex ¢; of a graph G;, where G; is a graph with

V(GZ) = {ai, bi, Ci, di, €i}
and E(Gl) = {aibi, biCi, Cidi, d,»ei, €;a;, bzdl}, for i = 1, 2, ..., n. Figure 2
depicts a GC graph.

U3

FIGURE 2. An illustration of the GC construction.
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Theorem 5.1. If G is a graph of order n and G’ is a GC' graph obtained
from G, then v,r(G') = 4n.

Proof. Let G' = (V',E’) be a GC graph constructed from G, and
let f:V — {0,1,2} be a function on G’ defined by f(v) = 2 if
veEd{g 1 <i<n} flv)=1ifv e {a,e; : 1 < i < n} and
f(v) = 0 otherwise. Then f is a PRDF and ~,r(G’) < 4n. Next,
we show that v,z(G’) > 4n. Let g be a PRDF on graph G’. Clearly,
9(a;) +g(ei) = 2 and g(v;) + g(b;) + g(c:) + g(d;) = 2 for i = 1,2,...,m,
and so g(v;) + g(ai) + g(bi) + g(c;) + g(di) + g(e;) = 4 for i = 1,2, ... n.
Since g is arbitrary so min {g(V’)} > 4n. Therefore v,r(G') > 4n.
Hence v,r(G') = 4n. O

Lemma 5.2. Let G' be a GC graph constructed from a graph
G = (V,E). Then v,(G") = 2n+ v,(G).

Proof. Let D be a minimum perfect dominating set of G. It is clear
that D' = D U {a;, b;|v; ¢ D} U {a;,e;|lv; € D} is a PDS for G' and
|D'| = |D| 4 2n. Thus 7,(G") < 2n + v,(G). Conversely, let D’ be a
minimum perfect dominating set of G’. Then at least vertices {a;, b;}
or {d;,e;} or {a;,e;} must be included in D'. Therefore |D’| > 2n.
Observe that if a vertex like v; € V(G) is not dominated by vertices
D', then ¢; € D'; if ¢; € D', then b;,d; € D', since D' is a PDS;
and if D" has the minimum size, then ¢; ¢ D'. Let D = D' N V(G).
Note that D is a PDS for G and |D'| > 3 x |D| + (n — |D|) x 2 so
|D'| > 2n + |D| > 2n + 7,(G). We conclude that

Y(G') = 2n + 7, (G).
OJ

The following result is well known for the Perfect Domination
Problem.

Theorem 5.3. The PERFECT DOMINATION PROBLEM s
NP-complete for general graphs.

From Lemma 5.2 and Theorem 5.3 we have the following.

Theorem 5.4. The PERFECT DOMINATION DECISION problem
is NP-complete for GC graphs.

6. INTEGER LINEAR PROGRAMMING FORMULATION FOR MPRDP

In this section we propose an integer linear programming (ILP)
formulation for the MPRDP. Let G = (V, E) be a simple undirected



200 MIRHOSEINI AND JAFARI RAD

graph, with |V| =n, |E|=m and f:V — {0,1,2} be a PRDF on G.
The MPRDP can be modeled as Integer Linear Programming. This

model uses three sets of binary variables. For each vertex v € V', we
define

av:{1 flv)=0 b_{1 flv)=1 _{1 flo)=2

0 otherwise U | 0 otherwise “ | 0 otherwise.

So clearly, f(V) =3, cy(g)(bv +2¢,). Therefore the ILP model of the
MPRDP can now be formulated as:

min( Y (b, +2¢,)) (6.1)

veV(Q)

subject to

2, +e,+(1—b)1l—c) > 26,=20veV(G) (6.2

ueN (v)
ay+b,+c, =1, veV(G) (6.3)
Ay, by, ¢y € {0,1}, v € V(G) (6.4)

The objective function 6.1 minimizes the weight of a PRDF. The
condition in 6.2, guarantees that every vertex labeled zero, is
adjacent to exactly one vertex v for which f(v) = 2. The condition in
6.3, guarantees that exactly one label is assigned to every vertex and
the condition in 6.4, ensures that the variables are binary in nature.
Clearly, the number of variables is 3n and the number of constraints
is 3n.

7. CONCLUSION

In this paper, we have shown that PRDP is NP-complete for star
convex bipartite graphs. Next, we have studied algorithmic and
computational complexity aspects of the minimum perfect Roman
domination problem and it is shown that MPRDP is linear time
solvable for bounded tree-width graphs. For approximation point of
view, we have shown that MPRDP is APX-hard for graphs with
maximum degree 4. Also, by constructing a new class of graphs,
we have shown that perfect domination problem and perfect Roman
domination problem are not equivalent in computational complexity
aspects. Investigating the algorithmic complexity of these problems
for other subclasses of bipartite graphs remains open. Finally, we have
proposed an ILP formulation for the MPRDP.
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