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Abstract 

The uncertainty estimation and compensation are challenging problems for the robust control of robot 

manipulators which are complex systems. This paper presents a novel decentralized model-free robust 

controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple 

Gaussian Radial-Basis-Function network (RBF network) as an uncertainty estimator. The proposed network 

includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free 

estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less 

computational and more effective. The weights of the RBF network are tuned online using an adaptation law 

derived by stability analysis. Despite the majority of previous control approaches which are the torque-based 

control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust 

neural network control approach show the efficiency of the proposed control approach applied on the 

articulated robot manipulator driven by permanent magnet DC motors. 

Keywords: Adaptive Uncertainty Estimator, RBF Network Control, Robust Control, Electrically Driven 

Robot Manipulators. 

1. Introduction 

Torque Control Strategy (TCS) has attracted many 

research efforts in the field of robot control [1-3]. 

The robust torque-based control tries to overcome 

problems such as nonlinearity, coupling between 

inputs and outputs and uncertainty raised from 

manipulator dynamics. It is also assumed that the 

actuators can perfectly generate the proposed 

torque control laws for the joints. This assumption 

may not be satisfied due to the dynamics, 

saturation and some practical limitations 

associated with actuators. The problems 

associated with manipulator dynamics will be 

removed if a robust control approach can be free 

from manipulator model. Considering this fact, 

Voltage Control Strategy (VCS) [4-5] was 

presented for electrically driven robot 

manipulators. This control strategy is free from 

manipulator model but is dependent on actuator 

model. Nevertheless, the uncertainty estimation 

and compensation can be effective in VCS to 

improve the control performance [6]. Using the 

estimation of uncertainty, this paper presents a 

voltage-based robust neural-network control for 

electrically driven robot manipulators which is 

model-free from both manipulator and actuators. 

The proposed design has a simpler design 

compared with alternative valuable voltage-based 

robust control approaches such as fuzzy 

estimation-based control [7], observer-based 

control [8], adaptive fuzzy control [9], neural-

network control [10], fuzzy-neural-network 

control [11] and intelligent control [12] were 

presented for electrically driven robot 

manipulators. The simplicity and efficiency of the 

proposed control approach is shown through a 

comparison with the robust neural network control 

approach given by [10].               

In most conventional robust approaches such as 

sliding mode control, the uncertainty bound 

parameter should be known in advance or 

estimated. The tracking error and smoothness of 

the control input are significantly affected by this 
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parameter. The switching control laws resulted 

from these robust control methods may cause the 

chattering problem which will excite the un-

modeled dynamics and degrade the system 

performance. As a result, too high estimation of 

the bounds may cause saturation of input, higher 

frequency of chattering in the switching control 

laws, and thus a bad behavior of the whole 

system, while too low estimation of the bounds 

may cause a higher tracking error [13].  

Generally, uncertainty estimation and 

compensation are essential in robust tracking 

control of robots and the control performance is 

entirely enhanced by these crucial tasks. Function 

approximation methods play an important role in 

this stage and various tools such as fuzzy logic, 

neural networks, optimization algorithms, 

trigonometric function and orthogonal functions 

series have been used. In the two past decades, 

fuzzy logic [14-17] and neural networks [18-20] 

and neuro-fuzzy control [21] have been frequently 

employed in control systems and different control 

objectives have been successfully fulfilled due to 

their powerful capability in function 

approximation [22]. As important criteria, the 

simplicity and efficiency of the estimator should 

be paid attention since complex estimators require 

excessive memory, computational burden and 

many parameters. Tuning or online adaptation of 

these parameters significantly influences the 

estimator performance and increases the 

computations, as well.                                                                                                                                                                    

One of the effective tools to approximate a 

function is the Radial-Basis-Function (RBF) 

networks. Applications of RBF networks in the 

robust control of nonlinear systems can be 

classified into direct and indirect adaptive control 

[23-26]. In direct adaptive control, RBF networks 

are employed as controllers. The network 

parameters are tuned online using adaptation laws 

derived from stability analysis.  

Indirect application of RBF networks consists of 

two stages. In the first stage, the system dynamics 

are estimated using RBF networks and in the 

second stage, the estimated functions are used to 

design the control laws.         

The novelty of this paper is to propose a robust 

model-free control for electrically driven robot 

manipulators using a simple RBF network as an 

uncertainty estimator in the decentralized 

controller. The simplicity of estimator is for using 

RBF network which consists of a hidden layer 

with one node, two inputs and a single output. 

Compared with the conventional robust control, 

the proposed robust control requires neither the 

uncertainty bound parameter nor the bounding 

functions. In addition, it is free from the chattering 

problem.  

The robust RBF network control is compared with 

a robust Neural Network control (robust NN 

control) given by [10]. The robust NN control has 

two interior loops. The inner loop is a voltage 

controller for motor using two-layer neural 

networks whereas the outer loop is a current 

controller using two-layer neural networks for 

providing the desired current. The robust RBF 

network control has a simpler design by using 

only one control loop and a RBF network.  

The structure and design of the proposed Gaussian 

RBF network used as an adaptive uncertainty 

estimator in this paper is simpler than the fuzzy 

system used in [27] as an adaptive fuzzy 

controller [27]. These two designs have different 

structures. An interesting result is that fuzzy 

systems and neural networks can be designed 

somehow to perform the same behavior.  

This paper is organized as follows. Section 2 

explains modeling of the robotic system including 

the robot manipulator and motors. Section 3 

develops the robust RBF network control 

approach. Section 4 describes the RBF network 

for estimation of the uncertainty. Section 5 

presents the stability analysis. Section 6 illustrates 

the simulation results. Finally, section 7 concludes 

the paper. 

2. Modeling  

The robot manipulator consists   of n links 

interconnected at n joints into an open kinematic 

chain. The mechanical system is assumed to be 

perfectly rigid. Each link is driven by a permanent 

magnet DC motor through the gears. The 

dynamics is described [28] as 

( ) ( ) ( ) ( )
r f

D q q + C q,q q + g q = τ τ q (1) 

Where nRq is the vector of joint positions, 

( )D q the n n matrix of manipulator inertia, 

( ) nRC q,q q the vector of centrifugal and 

Coriolis torques, ( ) nRg q the vector of 

gravitational torques, ( ) nR
f
τ q the vector of 

friction torques and nR
r
τ the joint torque vector 

of robot.  

Note that vectors and matrices are represented in 

bold form for clarity. The electric motors provide 

the joint torque vector as follows [28] 
1 1 

r m
Jr q + Br q + rτ = τ (2)                          

 

Where  nR
m
τ is the torque vector of motors, J , 

B and r are the n n diagonal matrices for 

motor coefficients namely the inertia, damping, 

and reduction gear, respectively. The joint 
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velocity vector q and the motor velocity vector 
nR

m
q are related through the gears to yield 


m

rq q (3)                                                   

In order to obtain the motor voltages as the inputs 

of system, we consider the electrical equation of 

geared permanent magnet DC motors in the 

matrix form, 
1  

a a b
RI + LI + K r q φ v (4) 

Where nRv is the vector of motor voltages, 
nR

a
I  is the vector of motor currents and nRφ

is a vector of external disturbances. R , L and 

bK represent the n n diagonal matrices for the 

coefficients of armature resistance, inductance, 

and back-emf constant, respectively.  

The motor torque vector mτ as the input for 

dynamic (2) is produced by the motor current 

vector, 

m a m
K I τ (5)                                                   

Where m
K is a diagonal matrix of the torque 

constants. Using (1-5), obtains the state-space 

model 

( ) x = f x + bv bφ (6) 

Where v is considered as the inputs, x is the 

state vector and ( )f x is of the form of 

1

0

b 0

L


 
 


 
   ,

 
 


 
  a

q

x q

I (7) 

The state-space (6) shows a highly coupled 

nonlinear system in a non-companion form. The 

complexity of model is a serious challenge for the 

control of the robot.  

To avoid much more complexity, many works 

have ignored the motors' dynamics. However, 

considering the motors' dynamics is required in 

high-speed and high-accuracy applications. 

3. Robust control design 

By substituting (2), (3) and (5) into (4), the 

voltage equation of the i th motor in the scalar 

form can be expressed by 
1 1 1 1 1

1

( ) m m b

m r a

RK Jr q RK Br K r q

RK r LI v 

    



 

   

(8) 

Where q , q , r , aI and  are the ith element of 

the vectors  q , q , rτ , 
aI and φ , respectively. 

Equation (8) can be rewritten as 

q F v  (9)                                                                                                                                       

Where F is referred to as the lumped uncertainty 

expressed by 
1 1

1 1 1 1

( 1)

( ) 

m a

m b m r

F RK Jr q LI

RK Br K r q RK r





 

   

    

 

(10)                                                          

Let us define 

ˆ( ) ( )d d d p du q k q q k q q F      (11) 

Where F̂ is the estimate of F , dq is the desired 

joint position, pk and dk are the control design 

parameters. In order to estimate F , this paper 

designs a simple RBF network as an uncertainty 

estimator. In order to protect the motor from over 

voltage, the motor voltage must be under a 

permitted value
 maxv .  

Therefore, a voltage limiter is used for each motor 

to hold the voltage under the value maxv . Then, a 

robust control law is proposed as 

max max( ) ( / )v t sat u  (12)                                                                                                                    

Where 

max

max max max

max

1

( / ) /

1

if u

sat u u if u

if u



  






 
   

(13)                                                                             

The control scheme is presented in figure1. 

4. Adaptive uncertainty estimator  

Applying control law (12) to the system (9) 

obtains the closed loop system 

max max( / )q F sat u   (14)                                                                                                                    

In the case of maxu  , according to (13) we have 

maxq F   (15)                                                                                                                            

Therefore, the estimator F̂ is not effective in the 

closed loop system.  

In the case of maxu   , according to (13) we 

have 

maxq F              (16)                                                                                                                                   

Therefore, the estimator F̂ is not effective in the 

closed loop system.  

In the case of maxu  , according to (9), (11) and 

(13) we have 

( ( ) ( ))

ˆ

d d d p dq F q k q q k q q

F

     



(17)     

Therefore, the closed loop system can be 

written as 

ˆ
d pe k e k e F F    (18) 

Where e is the tracking error expressed by 

 

  
 

1
1

1

1

1 2 2 1 3 2

1 1

2 3

( ) .
( )

( ) ( ) ( )






 

 
 
 
 
 
    

 
   

2

m f

b

x

Jr rD x
f x

Br + rC x ,x x rg x K x rτ x

L K r x Rx
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de q q    (19)                                                                                                                         

This paper suggests a simple RBF estimator for 

every joint as 
2 2ˆ ˆ exp( ( ))F p e e   (20)                                                                                                                           

Where p̂ is an adaptive gain. One can easily 

represent (20) as 

ˆ ˆF p (21)                                                                                                                            

Where  is expressed as 
2 2exp( ( ))e e    (22)                                                                                                                      

The estimator F̂ defined by (21) can approximate 

F adaptively based on the universal 

approximation of RBF networks [22]. Thus, 

ˆ| |  F F   (23)                                                                                                                        

Where  is a positive scalar. Suppose that F can 

be modeled as 

F p   (24)
                                                                                                                                 

 

Where  is the approximation error and vector p

is constant. Assume that 

F p   (25)                                                                                                                                

Considering (24) and (25) shows that   in 

which  is the upper bound of approximation 

error. The dynamics of tracking error can be 

expressed by substituting (24) and (21) into (18) 

to have 

ˆ( )d pe k e k e p p       (26)                                                                                                      

The state space equation in the tracking space is 

obtained using (26) as 

 E AE B (27) 

Where 

  0        1

  p dk k

 
  

  
A , 

0

1

 
  
 

B ,
e

e

 
  
 

E    

ˆ( )p p     (28) 

Consider the following positive definite function 

[27] 

21
ˆ0.5 ( )

2
  E SE

TV p p
(29)

                                                                                                              
 

Where is a positive scalar, S and  Q are the 

unique symmetric positive definite matrices 

satisfying the matrix Lyapunov equation as 
T   A S SA Q (30)                                                                                                                        

Taking the time derivative of V gives that 

ˆ ˆ0.5 0.5 ( ) /    E SE E SE
T TV p p p (31)                                                                         

Substituting (27), (28) and (30) into (31) yields to 

2

2

1
ˆ ˆ( )

0.5

T

T T

V p p p




 
   

 

 

E S

E S E QE

          (32)                                                                           

Figure 1. Proposed robust RBF network control. 

Where  2S is the second column of S . Since 

0.5 0T E QE for 0E , if the adaptation law is 

given by 

2
ˆ Tp   E S (33)                                                                                                                                  

Then 

20.5 T TV   E QE E S (34)                                                                                                      

The tracking error is reduced if 0V  . Therefore, 

the convergence of E is guaranteed if 

2  0.5T T E S E QE  (35)
                                                                                                                          

Using the Cauchy–Schwartz inequality and 

  , we can obtain, 

2 2 2|| || . || || . | | || || . || ||T    E S E S E S (36)                                                                                             

Since 2 2

min max( ) || || ( ) || ||T  Q E E QE Q E , in 

order to satisfy (35), it is sufficient that 

2 min|| || 0.5 ( ) || || S Q E or 

2 min 02 || || / ( )  || ||   S Q E

(37) 

Where 0 is a positive constant, min ( ) Q and 

max ( ) Q are the minimum and maximum 

eigenvalues of  Q , respectively. Thus, we have 

0V  as long as 0  || ||  E . This means that the 

tracking error becomes smaller out of the ball with 

the radius of 0 . As a result, the tracking error 

Geared 

DC Motor 

Robot 

Manipulator 

Robust 

Controller 

Adaptive 

Estimator 
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ultimately enters into the ball. On the other hand 

0V  if 0 > || || E . This means that the tracking 

error does not converge to zero.  

According to (33), the parameter of the RBF 

network estimator is calculated by 

2
0

ˆ ˆ( ) (0)
t

Tp t p d     E S
(38)                                                                                                                

Where ˆ (0)p is the initial value.  

Result 1: The tracking error e and its time 

derivatives e are bounded and ultimately enters 

into a ball with a radius of 0 . 

To evaluate the final size of error, it is worthy to 

note that it depends on the upper bound of 

approximation error,  , and the control design 

parameters pk and dk .  Selecting large values for 

pk and dk , will provide a small size of tracking 

error. To evaluate the size of estimation error 

in (23), one can substitute (24) into (23) to have 

ˆ ˆ| | | ( ) | | |p p p p         (39)                                                                                                         

Thus, to satisfy (23),  can be given by 

ˆ| ( ) |p p     (40) 

5. Stability analysis 

A proof for the boundedness of the state variables 

θ , θ and a
I is given by stability analysis. In 

order to analyze the stability, the following 

assumptions are made: 

Assumption 1 The desired trajectory dq must be 

smooth in the sense that dq and its derivatives up 

to a necessary order are available and all 

uniformly bounded [28].  

As a necessary condition to design a robust 

control, the external disturbance must be bounded. 

Thus, the following assumption is made: 

Assumption 2 The external disturbance  is 

bounded as max| ( ) |t  . 

Control law (12) makes the following assumption. 

Assumption 3 The motor voltage is bounded as 

max| |v v . 

The motor should be sufficiently strong to drive 

the robot for tracking the desired joint velocity 

under the maximum permitted voltages. 

According to result1, [    ]Td dq q q q  E is 

bounded. Since dq and dq are bounded in 

assumption 1,  

Result 2: The joint position q and joint velocity 

q are bounded. 

From (4), we can write for every motor 
1

a a bRI LI K r q v    (41)                                                                                                                

Substituting control law (12) into (41) yields 

1

max

max

( )a a b

u
RI LI K r q sat 



   
(42)                                                                                           

That is 

a aRI LI w  (43) 

1
max max( / ) bw sat u k r q     (44) 

The variables q   and    are bounded according 

to result 2 and assumption 2, respectively. 

Additionally, max max max( / )sat u   . 

Consequently, the input w in (43) is bounded. 

The linear differential (43) is a stable linear 

system based on the Routh-Hurwitz criterion. 

Since the input w is bounded, the output aI is 

bounded.  

Result 3: The current aI is bounded. 

As a result of this reasoning, for every joint, the 

joint position q , the joint velocity q and the 

motor current aI are bounded. Therefore, the 

system states q , q and aI are bounded and the 

stability of system is guaranteed. 

6. Simulation results 

The robust RBF network control is simulated 

using an articulated robot driven by permanent 

magnet DC motors.  

The details of robot is given by [6]. The maximum 

voltage of each motor is set to
 max 40 Vu  . The 

parameters of motors are given in table 1. The 

desired joint trajectory for all joints is shown in 

figure 1. The desired position for every joint is 

given by 

1 cos( / 5)     for      0 <10d t t    (45) 

Table 1. Specifications of DC motors. 

r
.( )

m

Nm s

rad

B
2Nm.s( )

m

rad

J

(H)

L

V.s

rad
( )

bK

( )

R
max

(V)

u

0.01 0.001 0.0002 0.001 0.26 1.26 40 

The external disturbance  in (8) for every joint 

is given by 
0  0 2 and 4 6 and 8 10

1   2 4 and 6 8


     
 

   

t t t

t t

(46) 

Tracking performance: The robust RBF network 

control in (12) is simulated with adaptive law (38) 

and the following parameters 

  0        1

100  20

 
  

  
A ,

2

50

6
S

 
  
 

,   

5000 
,
 ˆ(0) 0p                                                

(47)                                                                          
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Figure 2. The desired joint trajectory. 

Figure 3. Performance of the proposed control. 

Figure 4. Adaptation of parameters. 

Figure 5. Control efforts of the proposed control. 

The initial errors for all joints are given 0.02rad . 

The tacking performance is very good as shown in 

figure 3. All joint errors finally go under 
54.2 10 rad without overshoot.  

The adaptation of parameters for all joints is 

shown in figure 4. All parameters are varied to 

cover all effects of higher order terms in RBF 

network estimators. Motors behave well under the 

permitted voltages as shown in figure 5.  

The control efforts are increased when starting 

because of the initial tracking error. Simulation 

results confirm the effectiveness of the robust 

RBF network control. 

A comparison: The robust RBF network control 

is compared with a robust Neural Network control 

(robust NN control) given by [10]. The control 

structure has two interior loops. The inner loop is 

a voltage controller for motor using two-layer 

neural networks whereas the outer loop is a 

current controller using two-layer neural networks 

for providing the desired current.  

The control design is based on the stability 

analysis using Lyapunov theory. As a comparison 

it is noted that the robust RBF network control is 

much simpler since it has only one control loop 

using a RBF network.  

The parameters of the robust NN control are set to 

100  , 30k  , 1vk  , 1 0.1k  , 1k  , 

1000  , 1
ˆ (0) 0W  and 2

ˆ (0) 0W  . The initial 

errors and external disturbances for all joints are 

the same as ones used in Simulation 1.  

Figure 6. Performance of the robust NN control. 

Figure 7. Control efforts of the robust NN control. 

The control performance of [10] is shown in 

figure 6. Both control approaches are robust with 

a good tracking performance. Figure 8 shows 

voltages applied to the motors.  

The control efforts in figure 7 are smooth and 

permitted. The robust RBF network control is 

much simpler, less computational, less number of 
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design parameters and has better control 

performance. On the other hand, the tracking error 

of the robust NN control will be decreased by 

increasing the gains however the chattering 

phenomenon will be increased. 

7. Conclusion 

This paper has presented a novel robust model-

free control approach for electrically driven robot 

manipulators. It has been found that the complex 

dynamics of the robotic system can be estimated 

by using a RBF network in a decentralized 

structure as an estimator of uncertainty. The 

robust controller has become model-free by using 

this estimator to compensate the uncertainty. The 

proposed adaptive mechanism has guaranteed the 

stability and provided a good tracking 

performance. The performance of the proposed 

estimator in the robust control system has been 

very good as shown by simulations. In order to 

have a simple design with easy implementation 

yet good performance it has been confirmed that 

using only the tracking error and its time 

derivatives is sufficient to form the estimator. A 

comparison with a robust NN control has shown 

that the proposed control approach is simpler in 

design, less computational and better control 

performance. 
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 چکیده:

کٌٌذُ پیشٌْادی اس شبکِ پزداسد. بِ عٌَاى ًَآٍری، کٌتزلکٌٌذُ جذیذ هقاٍم ٍ هستقل اس هذل بزای باسٍّای رباتیک بزقی هیایي هقالِ بِ ارائِ کٌتزل

ًوایذ. شبکِ پیشٌْادی اس یک لایِ هخفی با یک گزُ، دٍ ٍرٍدی ٍ یک خزٍجی گَسی بِ عٌَاى تخویٌگز عذم قطعیت استفادُ هیشعاعی -هبٌا-تابع

تز با ّای فاسی، سادُّای عصبی چٌذ لایِ ٍ سیستنشَد. تخویٌگز پیشٌْادی در هقایسِ با سایز تخویٌگزّای هستقل اس هذل هاًٌذ شبکِتشکیل هی

گزدد. بز خلاف اکثز شعاعی با بکارگیزی قاًَى تطبیقی هبتٌی بز تحلیل پایذاری تٌظین هی-هبٌا-ّای شبکِ تابعکارآهذتز است. ٍسى هحاسبات کوتز ٍ

ّستٌذ طزاحی کٌتزل پیشٌْادی بز هبٌای کٌتزل ٍلتاژ است. کارآهذی رٍش کٌتزل پیشٌْادی  ّای پیشیي کٌتزل کِ هبتٌی بز کٌتزل گشتاٍررٍش

شَد. ایي ربات تَسط هَتَرّای جزیاى هستقین ًشاى دادُ هیسی ٍ هقایسِ با رٍش کٌتزل عصبی هقاٍم رٍی باسٍی رباتیک ٌّزهٌذ ساشبیِتَسط 

 هغٌاطیس دائن راًذُ هی شَد.

 رباتیک بزقی.شعاعی، کٌتزل هقاٍم، باسٍّای -بٌاه-بیقی، کٌتزل شبکِ تابعتخویٌگز عذم قطعیت تط :کلمات کلیدی

 


