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r—CLEAN RINGS RELATIVE TO RIGHT IDEALS
H. HAKMI* AND B. ALHUSSEIN

ABSTRACT. An associative ring R with identity is called r—clean
if every element of R is the sum of a regular and an idempotent
element. In this paper, we introduce the concept of r—clean rings
relative to right ideal. We study various properties of these rings.
We give some relations between r—clean ring and r—clean ring of
2 x 2 matrices over R relative to some right ideal P. We give some
necessary and sufficient conditions for a ring R to be r—clean, in
terms of P—regular, P—local and P—clean properties of a given
ring. Also, we prove that every ring is r—clean relative to any
maximal right ideal of it.

1. INTRODUCTION

In their fundamental work [2], Andrunakievich V. A and Ryabukhin
Yu. M were the first who introduced the notion of rings relative to right
ideals, they study the quasi-regularity and pimitivity relative to right
ideals. Later in [1] the concept of rings relative to right ideals which
was extended to regular ring relative to right ideals in as generalization
of (Von Neumann) regular rings (also known as P—regular rings). In
[5], H. Hakmi continued the study of P—regular and P—potent rings
and in [6], he studied local ring relative to right ideal (P—local rings).
In our paper we continue the study of rings relative to right ideals
from a new point of view that, r—clean rings relative to right ideals.
An element a of a ring R is said to be clean if a = u + e, where e € R
is an idempotent and wu is a unit in R. If every element of a ring R is
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clean, then R is called a clean ring. Clean rings were introduced by W.
K. Nicholson in his fundamental paper [7]. He proved that every clean
ring is an exchange ring, and a ring with central idempotents is clean if
and only if it is an exchange ring, where a ring R is said to be exchange
if for each a € R there exists idempotent e € R such that e € aR and
(1 —¢) € (1 —a)R. The clean rings were further extended to r—clean
rings and the r—clean rings were introduced by Ashrafi and Nasibi [3].
They defined an element x of a ring R to be r—clean if x = a+e, where
a € R is a regular element and e € R is an idempotent. A ring R is
said to be r—clean if each of its element is r—clean. In our paper we
study the concept of r—clean ring relative to some proper right ideal.
Throughout this paper, all rings are associative with identity. In
Section 2, we study the fundamental properties of P—idempotents,
where we proved that if e € R is an idempotent, then the set of
all elements f € R such that f —e € P is a semi-group relative to
multiplication on P. In Section 3, we study some properties of
P—regular and P—clean elements. In Section 4, we study r—clean
rings relative to right ideal P. Where we proved that every ring R
is an r—clean relative to every maximal right ideal. In addition, we
obtain that a ring R is P—local if and only if R is r—clean relative to
P and the set of idempotents in R is {0,1,p,1 + p} for every p € P.
Furthermore, we proved that, if in the ring R the set of all
P— idempotents is {0,1,p,1 + p} for every p € P, then the ring R
is r—clean relative to P if and only if R is P—clean. Also, if the set
of all idempotents in R is {0,1,p,1 + p} for every p € P, then the
ring R is r—clean relative to P if and only if for every x € R, either
x or 1 — x is the P—regular element. Also, in this section, we study
the connection between the r—clean elements in a ring R and r—clean
elements relative to P (relative to @) in the ring of 2 X 2 matrices over
R. We prove that an element a of a ring R is r—clean if and only if

there exist z,y € R such that the element "g g] is r—clean relative

to some proper right ideal P of Ms(R).

2. P-IDEMPOTENT ELEMENTS

Let R be a ring and P # R be a right ideal of R. Recall that an
element e € R is idempotent relative to right ideal P or P—idempotent
for short, if e?—e € P and eP C P, [1]. Note that in previous definition
it is easily verified that 0,1 € R are P—idempotents for every right ideal
P of R. Also, if P = 0, then an element e € R is P—idempotent if and
only if e is idempotent.
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Lemma 2.1. Let R be a ring and P # R be a right ideal of R. For
every P— idempotent e € R the following hold;

(1) € and 1 — e are P—idempotents.
(2) For every positive integer k, e* is P—idempotent.
(3) For everyp € P, e+ p € R is P— idempotent in R.

Proof. (1) It is obvious.

(2) Since e is P—idempotent, ¢? —e € P and eP C P, 50 €* = e+ py
for some py € P. The proof can be done by induction on k. For
k = 1,2 the assertion holds by assumption and (1). Suppose that e*~*
is P—idempotent, then

("2 —eteP and T'PCP
So (eF71)2 = k=1 4 p; for some p; € P. Thus
(9)? = ()22
= ("' +p1)(e + po)
=" + € po + pre + papo.

Therefore (e¥)? — b = p, where p = e*~1py + pie + pipo € P. This
shows that

(ek)2 —éfeP and e'P=ef'PCePCP

(3) Since e € R is P—idempotent, e2—e € P and eP C P, s0 € = e+py
for some pg € P. Let p € P and suppose that f = e + p, then

f? =(e+p)e+p)
=e* +ep+pe+p?
= e+ po + ep + pe + p?
= (e+p) + (=p+po + ep + pe + p?)
= f+po
Where p; = —p + po + ep + pe + p*> € P, thus f2 — f € P. On the

other hand, for every t € P, ft = (e+p)t =et+pt €eP+ P C P, so
fP C P. Thus f = e+ pis P—idempotent. OJ

Let R be a ring and P # R be a right ideal of R. Suppose that
Pid(R) be the set of all P—idempotent elements in R. It is clear that
Pid(R) is a non-empty subset of R, because 0,1 € Pid(R). For every
e, f € Pid(R), we define the relation (~) on Pid(R) as following:

e~f&ee—feP
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It is easy to see that (~) is an equivalent relation on Pid(R). If
e € Pid(R), then the equivalent class of e is:

[e] ={f:[f€PidR); e~ [}
={f:fePidR): e—feP}
Lemma 2.2. Let R be a ring and P # R be a right ideal in R. If

e,g € R such that e — g € P, then g is P—idempotent if and only if e
is P—idempotent.

Proof. Suppose that e—g € P, then e = g+p; for some p; € P. Assume
that g is P—idempotent, then ¢> — g € P, gP C P. So ¢?> = g + p, for
some pg € P and
> = (g+p)(g+p)
= 9"+ gp1 + prg + P11
=g+ Dpo+9gp1+p1g+pip1
= (9 +p1) + (=p1 +po + gp1 + P19 + P1p1),
for
p'=-pi+potgp+pg+pmeP
We have €2 —e = p' € P and eP C gP + p; P C P. This shows that e
is P— idempotent. Similarly, we can prove the converse. O
Lemma 2.3. Let R be a ring and P # R be a right ideal of R. Then
for every P— idempotent e € R the following hold:
(1) Every element f € [e] is P—idempotent.
(2) For every g € le], ge and eg are P—idempotents.

Proof. Since e € R is P—idempotent, ¢? — e € P and eP C P, so
e? = e + py for some py € P.
(1) Let f € [e], then f—e € P,so f = e+ p; for some p; € P. Thus,
fP=f=(et+p)letp)—(et+p)
= +epi+pet+pi—e—p
= (e —e)+ep +pie+ (2 —p1) €P.
So f? — f € P. For every t € P;
ft:(e+p1)t:et+p1t€eP+PgP.

This shows that f € [¢] is P—idempotent.
(2) Let g € [e], then g — e € P, so g = e + py for some py € P. On
the other hand, since g € [e], by (1) g is P—idempotent, so g> —g € P
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and gP C P, therefore g2 = g + p3 for some p3 € P. Thus

ge = (e+po)e
:€2+p2€
= (e + po) + pee
=€+ po + p2e
=e—+ pa.

Where, ps = pg + p2e € P+ PR C P and

(9e)* — ge = (e +pa)(e +ps) — (e + pa)
= +epstpietpi—e—pa
= (e —e)+epy+pie+pi—pa
ceP+ P
CP.

So (ge)* — ge € P. Also, for every t € P;
(ge)t = g(et) € g(eP) C gP C P.

This shows that ge is P—idempotent. Similarly, we can prove that
eg is a P—idempotent element. 0]

Lemma 2.4. Let R be a ring and P # R be a right ideal of R. Then
for every P—idempotent e € R the following hold:
(1) For every f € R, f € [e] if and only if 1 — f € [1 — ¢€].
(2) For every element f € [e], fe € [e] and ef € [e].
(3) For every f,g € [e], fg € le] and gf € [€].
(4) The set [e] is closed under multiplication defined on R.

Proof. Suppose that e € R is P—idempotent, then €2 — e € P and
eP C P, so e? = e+ py for some py € P.

(1) (=). If f € le], then f —e € P, so

1-fl—-(1l—-e)=1—f—14+e=—(f—e)eP.

Sol—fe[l—el.

(<). lf1-fe[l—e],then f-e=1-14+f—e=(1—e)—(1—f) € P,
so f € [e].

(2) Let f € [e], then f—e € P,so f = e+ p; for some p; € P. Thus,

fe—e=(e+ple—e=(e—e)+pe€ P+ PRCP;

ef —e=ele+p)—e=(e*—e)+ep, € P+eP CP.
This shows that fe,ef € [e].
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(3) Let f,g € [e], then f —e€ Pand g—e € P,so f = e+ py and
g = e + ps3 for some po, p3 € P. Thus,
fg=(e+p2)(e+ps) =€+ eps + pre + pops = € + pu,

where, py = ep3 + pae + pap3 € P, so fg —e = (e —e) + py € P. This
shows that fg € [e]. Similarly, we can prove that gf € [e]. (4) Is clear
by (2). O

From two Lemmas 2.3 and 2.4, we can obtain the following:

Corollary 2.5. Let R be a ring and P # R be a right ideal of R. Then
for every P—idempotent e € R the set:

el ={f:feRe~feP}

is a semi-group in R.

3. P-REGULAR ELEMENTS AND P—CLEAN ELEMENTS

An element a of a ring R is called (Von Neumann) regular, if aba = a
for some b € R, [4]. A ring R is called regular if every element in R is
regular, [4]. Recall that an element z of a ring R is clean if z = a + ¢,
where a € R is unit and e € R is idempotent, [8]. A ring R is called a
clean ring, if every element z in R is clean, [8].

Let R be a ring and P # R be a right ideal of R. Recall that an
element a € R is regular relative to right ideal P or P—regular for
short, if there exists b € R such that aba —a € P and abP C P, [2]. A
ring R is called a P—regular ring if every element a in R is P—regular,
[2]. Also, an element a € R has a right P—inverse if R = aR+ P. Note
that an element a € R has a right P—inverse if and only if there exists
x € R such that 1 —ax € P.

Lemma 3.1. Let R be a ring, P # R be a right ideal of R and a € R.
If a is P—reqular, then a + p is P—regular for every p € P.

Proof. Suppose that a € R is P—regular, then there exists b € R such
that aba — a € P and abP C P, so a = aba + pg for some py € P. Let
p € P, then
(a+p)bla+p) = (ab+ pb)(a + p)
= aba + abp + pba + pbp
= a — po + abp + pba + pbp
= (a+p) + (—=p — po + abp + pba + pbp)
= (a+p)+7,
where, p’ = —p — po + abp + pba + pbp € P. So
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(a+p)bla+p)—(a+p) €P.
For every t € P, (a + p)bt = abt + pbt € abP + pR C P, thus
(a+p)P CP.
This shows that a + p is P—regular. 0

Let R be a ring and M»(R) be the ring of all 2 x 2 matrices over a
ring R. It is clear that the sets:

P—{[g 8]:a,beR} and Q—{B 2]:@,()61%}

are right ideals in My(R) such that P # My(R), Q # Ms(R).

Proposition 3.2. Let R be a ring. Then the following hold:
(1) If e € R is an idempotent, then for every x,y € R the element

a=|" Y| is P—idempotent in Ms(R).

(2) An el:eome(;:t e € R is idempotent in R if and only if the element
o= g ‘z is P—idempotent in Ms(R), for some x,y € R.

(3) Ife € R is an idempotent, then for every x,y € R the element
a = ; 2 is Q—idempotent in My(R).

(4) An element e € R 1is idempotent in R if and only if the element
o= ; 2 is Q—idempotent in My(R), for some x,y € R.

Proof. (1) Suppose that e € R is idempotent. Let z,y € R, then

2 2
2 |z wy+tye| Tz Yyl _ |v°—T zYyt+ye—y
“ O‘_{o : } [0 e]_[ 0 0 €F

xa yb

For every p = 0 0

8 8} € P, ap = [
shows that a is P—idempotent.

(2) If e € R is idempotent in R, then by (1) the element « is
P—idempotent. Conversely, suppose that « is P—idempotent for some

z,y € R. Since a® — a € P,
[mQ :Eerye]_{x y}:{xQ—x xy+ye—y}ep

} € P, thus aP C P. This

0 e? 0 e 0 e?—e
Thus e? = e. Similarly, we can prove (3) and (4). O]
Proposition 3.3. For any element a € R the following hold:
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(1) If a is a regular element in R, then for every x € R, the

elements: )
oz 0 , |0 =
=10 o’ T |a 0]

are P—regular in My(R).
(2) If for some © € R, the element o =
Ms(R), then a is regular in R.

2] is P—regular in

(3) If for some x € R, the element o« = g} is P—regular in

Ms(R), then a is regular in R.
(4) If a is a regular element in R, then for every x € R, the ele-

ments: i
_la O , |10 a
=10 2" T |z 0]

are Q—reqular in My(R).
(5) If for some x € R, the element o =

a 0| . .
0 x} is Q—reqular in
Ms(R), then a is regular in R.

(6) If for some x € R, the element o = {2 8]

is Q—regular in My(R), then a is reqular in R.

Proof. (1) Suppose that a is a regular element in R, then a = aba for
some b € R. For every z1,y; € R,

o= %] e anr)

such that
_ |rmx el |z O _ |zmz—x wya
aﬁa—a—[ 0 aba] {0 a]_{ 0 aba—a}ep
a v
and for every t = {O 0} € P where o/, € R
ary xy| |d V| |azd xagl
O‘ﬁt—{o abHO 0]—{0 0o |€F

this shows that afP C P. Thus, a is an P—regular element in Ms(R).
Similarly, we can prove that for every x’,y € R, the element:

g = {0 b} € Ms(R)

r1 W
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such that o/f'a/ — o' € P and o/f'P C P. ie., o is a P—regular
element in Ms(R).
(2) Suppose that a is P—regular in Ms(R), then there exists

z
8= [i{ b} € Ma(R)
where y, z,7, b € R such that afa — a € P, so

TYyr xza z 0 ryr —xr  xZa

- = eP
arr  aba 0 a arr  aba —a

This shows that aba = a. i.e., an element a is regular. (3) It is proved

in the similar way as in the proof of (2). (4) It is proved in the similar

way as in the proof of (1). (5) and (6) It is proved in the similar way

as in the proof of (2) and (3). O

4. r—CLEAN RINGS RELATIVE TO RIGHT IDEAL

Recall that an element x of a ring R is r—clean if x = a + e, where
a € R is regular and e € R is idempotent, [3]. A ring R is r—clean if
every element « € R is r—clean, [3].

Definition 4.1. Let R be a ring and P # R be a right ideal of R.
We say that an element z of a ring R is r—clean relative to right ideal
P,it x = a+e, where e € R is P—idempotent and a € R is P—regular.
Also, we say a ring R is r—clean relative to right ideal P, if every
element x in R is r—clean relative to P.

Note that in previous definition, it is easy to see that for P = 0, a ring
R is a r—clean relative to P if and only if R is r—clean. Furthermore,
we have the following:

Lemma 4.2. Let R be a ring and P # R be a right ideal of R. Then
the following hold:

(1) Elements 1,—1,0 are r—cleans relative to P.
(2) Ewvery right invertible element of R is r—-clean relative to P.
(3) Ewvery invertible element of R is r—clean relative to P.

Proof. (1) It is obvious, because 1 =1+0,0=(—-1)+1, -1 = —1+40,
where 1,0 are P—idempotents and 1, —1 are P—regular elements.

(2) If a € R has a right inverse, then R = aR C aR+ P C R,
so R =aR+ P and so 1 = ab + py for some b € R, py € P. Thus,
a —aba = poja € PR C P. For every t € P, t = abt + pot, so
abt =t —pot € P, i.e., abP C P. This shows that a is P—regular and
a = a4+ 0. Thus a is r—clean relative to P.

(3) It is obvious by (2). O
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Lemma 4.3. Let R be a ring and P # R be a right ideal of R. Then
the following hold:

(1) Every right P—invertible element of R is r—clean relative to P.
(2) Every P—idempotent element in R is r—-clean relative to P.
(3) Every P—clean element in R is r—clean relative to P.

(4) Every P—regular element in R is r—-clean relative to P.

Proof. (1) Let a € R has a right P—inverse, then R = aR + P, so
1 = ax + po for some x € R and pg € P. Thus a = axa + ppa and so
axa —a = —poa € PR C P. For every t € P,

axt = (1 —pot) =t — pot € P,

so axP C P. This shows that a is P—regular. Thus we van write
a = a + 0, hence a is r—clean relative to P.

(2) Let e € R be a P—idempotent element, then ¢* — e € P and
eP C P, so e? = e + py for some py € P. Thus,

6662662:€<6+p0):€2+€p0:€+p0+ep0

so e’ —e =py+epy € Pand e?P C eP C P. This shows that e is
P—regular and so e is r—clean relative to P.

(3) Let € R be a P—clean element, then 2z = a+ ¢, where e € R is
P— idempotent and a € R has a right P—inverse, so R = aR + P and
so 1 = ax + pg for some x € R and pg € P, therefore

ara —a = —poa € PR C P.

For every t € P, art = (1 — po)t =t — pot € P, i.e., axP C P, this
shows that a is P—regular, thus z is r—clean relative to P.
(4) It is clear. O

Also, we have the following:

Lemma 4.4. Let R be a ring, P # R be a right ideal. Suppose that
x,y € R are such that x —y € P. Then y is r—clean relative to P if
and only if x is r—clean relative to P.

Proof. Let x,y € R such that v —y € P, then x = y + py for some
po € P. Suppose that y is r—clean relative to P, then y = a+ e, where
a € R is P—regular and e € R is P—idempotent. So

r=(a+p)+e=a+ (e+po),

where a € R is P—regular and e +py € R is P—idempotent by Lemma
2.1. Thus z is r—clean relative to P. We can prove the converse in the
similar way. 0
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Proposition 4.5. Let R be a ring, P # R be a right ideal of R and
x € R, then x is r—clean relative to P if and only if 1 — x is r—clean
relative to P.

Proof. Let x € R be an r—clean element relative to P. Then write
r = a+ e, where a € R is P—regular and e € R is P—idempotent.
Thus, 1 —x = (—a) + (1 — e). Since a € R is P—regular, aba —a € P
for some b € R and abP C P, so

(—a)(~b)(~a) — (—a) = —(aba — a) € P

and (—a)(—b)P = abP C P. This shows that —a € R is P—regular.
Also, since e € R is P—idempotent, 1 —e € R is P—idempotent. Thus,
1 — x is r—clean relative to P. Conversely, if 1 — x is r—clean relative
to P, write 1 —x = a + ¢, where a € R is P—regular and e € R is
P—idempotent. Thus, x = —a + (1 — e), like previous part, —a € R is
P—regular and 1 — e € R is P—idempotent. Therefore, x is r—clean
relative to P. 0

Theorem 4.6. Fvery ring R is r—clean relative to any maximal right

ideal of R.

Proof. Let R be a ring and M be a maximal right ideal of R. Let
a € R, then:

Case 1. If a € M, then a — axa € M for every x € R. Also, for every
m &€ M, axm € M, ie., arM C M, this shows that a is M —regular.
Since a = a + 0 and 0 is M —idempotent, a is r—clean relative to M.
Case 2. If a ¢ M, then R =aR + M, so 1 = ax + po for some x € R
and pg € M. So a — axa = ppa € M. Also, for every t € M we have
axt = (1 — po)t =t — pot € P, this shows that a is M —regular. Since
a = a+ 0 and 0 is M—idempotent, a is M—regular. Therefore R is
r—clean relative to M. O

Let R be a ring and P # R be a right ideal of R. A ring R is
called P—local if for every element x € R, either x or 1 — x has a right
P—inverse, [6].

Proposition 4.7. Let R be a ring and P # R be a right ideal of R. If
R is a P—local ring, then R is r—clean relative to right ideal P.

Proof. Suppose that R is a P—local ring. Let x € R, then either x or
1 — z has a right P—inverse.

Case 1. If z has a right P—inverse, then R = 2R+ P, so 1 = zy + po
for some y € R, pg € P. Thus x — zyx = pox € PR C P. On the other
hand, for every t € P we have t = xyt + pot and so xyt =t — pot € P,
therefore zy P C P. This shows that x is an P—regular element. Since
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xr =240 and 0 is P—idempotent, x is r—clean relative to P.
Case 2. If 1 — x has a right P—inverse, then R = (1 — z)R + P, so
1= (1—x)z+ p; for some z € R, p; € P. Thus,

l—z=(1-2)z(1—2)+pi(1—2x)
r—1=(@—-1)(-2)(z—-1)+p(z—1)
(x—1)—(x—=1)(=2)(x—1)=pi(x—1) € PRCP
Also, for every t € P we have
t=1—2z)zt+pit = (z—1)(—2)t + pit
and so (r —1)(—z)t =t —pyt € P. This shows that (x —1)(—z)P C P.

Thus « — 1 is a P—regular element. Since x = (z — 1) + 1, implies that
x is r—clean relative to P. Thus a ring R is r—clean relative to P. [

Theorem 4.8. Let R be a ring and P # R be a right ideal of R. Then
the following statements are equivalent:
(1) R is P—local.
(2) R is r—clean relative to P and the set of P—idempotents in R
is {0,1,p, 1+ p} for every p € P.

Proof. (1) = (2) Suppose that R is P—local, then by Proposition 4.7
R is r—clean relative to P. Let e € R be a P—idempotent. If e =0
or e = 1, our proof is completed. Suppose that e # 0, e # 1, then by
assumption either e or 1 — e has a right P—inverse.

If e has a right P—inverse, then R = eR+ P, so 1 = ex + p; for some
xr € R and p; € P, thus e = €2z + ep;. Since e is P—idempotent, then
e? = e + po for some py € P. So

e =e’r + ep1
= (e+po)r +ep
= ex + pox + epy
=1—pi1+pox+ep
=1+p
where, p = —p; + pox +ep; € P. Thuse=1+p.

If 1 — e has a right P—inverse, then R = (1 — e¢)R + P, so
1= (1—e€)y+ps for some y € R, py € P, thus e = (e — €*) + epy € P.
Our proof is completed.

(2) = (1) Let « € R, by assumption © = a + e, where a € R is a
P—regular element and e € R is P—idempotent. Since a is P—regular,
there exists b € R such that a —aba € P and abP C P, so a = aba+ py
for some py € P. By assumption eithere =0,e=1,e =pore= 1+p,
where p € P.
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If e =0, then x = a. Since ab € R is P—idempotent, either ab = 0,
ab=1,ab=1p or ab=p + 1, where p’ € P.
I)-If ab=0, then z = a = py € P, so

R=aR+(1-a)RC(1—a)R+PCR

Therefore R = (1 —a)R + P, this shows that 1 —x = 1 — a has a right
P—inverse.
IT) - If ab = p/, then

a=aba+py=pa+p, € PR+PCP

and so
R=aR+(1-a)RC(1—a)R+ P CR.
Therefore R = (1 —a)R + P, this shows that 1 —2z = 1 — a has a right
P—inverse.
III) - If ab =1, then R = aR+ (1 — ab) = aR and so R = aR+ P
this shows that z = a has a right P—inverse.
IV) - If ab =1+ p/, then

R=aR+ (1—ab)=aR+ (—p)R=aR+ P

and so R = aR + P, this shows that = a has a right P—inverse.
If e = p, then

r=a+e=(aba+py)+p=aba+ (po+ p) =aba+p",

where, p”’ = po+p € P.
I) - If ab= 0, then x = aba +p" =p" € P, so

R=zR+(1—2)RC(1—2)R+ P CR.

Therefore R = (1—x)R+ P, this shows that 1 —x has a right P—inverse.
IT) - If ab = p/, then

a=aba+py=pa+p, € PR+ PCP,
sor=a+e=a+pe P, thus
R=z2R+(1—-2)RC(1—2)R+PCR.

Therefore R = (1—x) R+ P, this shows that 1 —x has a right P—inverse.
III) - If ab = 1, then

r=a+e=(aba+py)+p=a+ (po+p)=a+pi,

where, py = po+p € P. Since R=aR+ (1 —ab)R =aR, R = aR and
SO

R=aR=(a+p+(-p)RC(a+p)R+(-p)RCzR+PCR.
Thus R = xR + P, this shows that x has a right P—inverse.
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IV) - If ab= 1+ p/, then
r =a+e
= (aba + po) + p
= (L+p)a+ (po+p)
=a+pa+tp+p
= a + P2,
where, py = p'a + po+ p € P. Thus,
R=aR+ (1—ab)R=aR+ (—p)RCaR+ P CR.
So R =aR + P, therefore,
R =aR+ P
=(a+ps—p2)R+ P
Cla+p)R+(—p)R+P
CzR+ P
CR
so R = xR + P, this shows that x has a right P—inverse.
Ife=1,thenx=a+e=a+1.
I) - If ab = 0, then a = aba + py = po, so © = 1 + py. Thus
R=(1+po—p)RC(1+p)R+(—=p)RCzR+PCR

So R = xR + P, this shows that = has a right P—inverse.
IT) - If ab = p/, then a = aba+py = p'a+py € P,sox = a+e =a+1,
thus
R=(1+a—a)RC(l+a)R+(-a)RCzR+PCR
therefore R = xR + P, this shows that x has a right P—inverse.
II) - If ab = 1, then z = a+e =a+ 1,80 a = x — 1 and so
—a=1—x. Thus R=aR+ (1 —ab)R = aR = (—a)R = (1 — 2)R,
therefore R = (1—x)R+ P, this shows that 1 —x has a right P—inverse.
IV) - If ab=1+p/, then
a=aba+py=(1+pla+p=a+pa+p=a+ps,
where, ps =p'a+py € P. Sincex =a+e=a+1, —a=1—x. Thus,
R=aR+ (1—ab)R=aR+ (—p )R CaR+ P CR.
So
R=aR+P=(—a)R+P=(1—-2)R+ P
this shows that 1 — x has a right P—inverse.
Ife=1+p, thenxz=a+e+ 1.
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I) - If ab =0, then a = aba + py = po, SO
r=a+e=py+p+1=1+ps,
where, py = po +p € P. Thus,
R=1+ps—ps)RC(1+py)R+ (—ps))RC 2R+ P C R.

So R = xR + P, this shows that = has a right P—inverse.

IT) - If ab = p/, then a = aba+py = p'a+py € P. Suppose that a = t,
wheret € P. Thenz =a+e=1t+1+p = 1+p; where p; =t+p € P.
Thus,

R=(1+ps—ps)RC(1+ps)R+(—ps) RCaR+PCR

Therefore R = xR + P, this shows that = has a right P—inverse.
II)-Ifab=1,thenx =a+e=a+1+p,s0 1 —x = —a—p. Since

R=aR+ (1 —ab)R = aR,

R=aR = (—a)R = (—a—p+p)R C (—a—p)R+pR C (1—x)R+P C R.

Thus, R = (1 — )R+ P, this shows that 1 — z has a right P—inverse.
IV) -If ab=1+p/, then

R=aR+(1—ab)R=aR+ (-p)RCaR+PCR
So R=aR+ P. Sincex=a+e=a+ (1+p), 1l —x=—a—p. Thus

R =aR+P
=(—a)R+ P
=(—a—p+pR+P
C(-a—p)R+pR+P

C(l—z)R+P

CR
Therefore R = (1 — )R + P, this shows that 1 — z has a right
P—invertible. So the proof is completed. O

Lemma 4.9. Let R be a ring, P # R be a right ideal of R. If R is a
P—clean ring, then R is r—clean relative to P.

Proof. Suppose that R is a P—clean ring. Let x € R, then x = a + ¢,
where a € R has a right P—inverse and e € R is P—idempotent. So
R = aR + P and therefore 1 = ab + pg for some b € R, py € P, so
a — aba = ppa € PR C P. Also, for every t € P, abt =t — pot € P,
i.e., abP C P, thus a is P—regular. Therefore R is r—clean relative to
P. O
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Theorem 4.10. Let R be a ring, P # R be a right ideal of R. If R is
a r—clean ring relative to P and the P—idempotents of R are the only
0,1,p and 1 + p for every p € P, then R is a P—clean ring.

Proof. Let x € R, then © = a+ e, where a € R is a P—regular element
and e € R is P—idempotent, so €2 = e + py, eP C P for some py € P
and a = aba 4 py, abP C P for some p; € P. Now we consider several
cases.

If a =0, then x = e = (26 — 1)+ (1 —e¢), where 1 —e € R is
P— idempotent and 2e — 1 € R has a right P—inverse, hence

(2e —1)(2e — 1) =4e® —de+1=4(e +py) —4de+1=1+4p,

ie,1—(2¢—1)(2e —1) € P. Thus, x = e is a P—clean element.
Suppose that a # 0. Since ab € R is P—idempotent, by assumption
either ab=0, ab=1, ab=p or ab= 1+ p where p € P.
If ab =0, then a = aba + p; = p; € P and so

r=a+e=pt+te=R2e—1)+(1—e)+p=2e—1)+((1—e)+p1)

Since e € R is P—idempotent, 1 — e € R is P—idempotent and by
Lemma 2.1, (1 —e) + p; € R is P—idempotent. Thus z is P—clean,
hence 2e — 1 has a right P—inverse.

If ab=1, then R =aR+ (1 —ab)R = aR,s0 R =aR+ P, ie., a
has a right P—inverse, thus x is P—clean.

If ab = p, then a = aba + p1 = pa + p1 € P. Suppose that a = po,
where py, € P. Then

r=at+e=pate=Q2e—1)+(1—e€e)+p=2e—1)+((1—¢€)+po)

Since e € R is P—idempotent, 1 — e € R is P—idempotent and by
Lemma 2.1, (1 —e) + py € R is P—idempotent. Thus z is P—clean,
hence 2e — 1 has a right P—inverse.

If ab=1+ p, then

R=aR+(1—ab)R=aR+ (-p) RCaR+PCR
so R = aR+ P, This shows that a has a right P—inverse. Thus x = a+e

is P—clean. Therefore a ring R is P—clean. 0

From Theorem 4.8 and Theorem 4.10, we can obtain the following;:

Corollary 4.11. Let R be a ring and P # R be a right ideal of R.
Then the following statements are equivalent:
(1) R is P—local.
(2) R is r—clean relative to P and the set of P—idempotents in R
is {0,1,p, 1+ p} for every p € P.
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(3) R is P—clean and the set of P—idempotents in R is
{0,1,p,1 + p} for everyp € P.

Proof. (1) < (2) It is clear by Theorem 4.8.
(2) = (3) It can be obtained by Theorem 4.10.
(3) = (2) It follows from Lemma 4.9. O

Proposition 4.12. Let R be a ring and P # R be a right ideal of R.
Then the following statements are equivalent:

(1) R is r—clean relative to right ideal P.
(2) For every v € R, x = a — e, where a € R is P—regular and
e € R is P—idempotent.

Proof. (1) = (2) Suppose that R is a r—clean ring relative to P. Let
xr € R, then —x € R and —x = a + e, where a € R is an P—regular
clement and e € R is P—idempotent, so + = (—a) — e. Since a is
P—regular, there exists b € R such that aba —a € P and abP C P.
Thus,

(—a)(=b)(—a) — (—a) = —aba + a = —(aba — a) € P

and (—a)(—b)R = abP C P, this shows that —a € R is a P—regular
element.

(2) = (1) Let € R, then —v € R and —x = a — e, where a € R
is a P—regular element and e € R is P—idempotent, so z = (—a) + e.
Since a is P—regular, there exists b € R such that aba —a € P and

abP C P. Thus,
(—a)(=b)(—a) — (—a) = —aba + a = —(aba — a) € P

and (—a)(—b)R = abP C P, this shows that —a € R is a P—regular
element. Thus, R is r—clean relative to P. 0

Theorem 4.13. Let R be a ring and P # R be a right ideal of R. If
the set of P— idempotents in R is {0,1,p,1+p} for everyp € P. Then
the following conditions are equivalent:

(1) R is r—clean relative to P.
(2) For every x € R, either x or 1 — x is a P—regular element.

Proof. (1) = (2) Suppose that R is r—clean relative to P. Let © € R,
then x = a+e, where a € R is P—regular and e € R is P—idempotent.
So by assumption:

If e =0, then x = a is P—regular.

If e = p, then £ = a+p. Since p € P and a is P—regular, by Lemma
3.1, x = a+ pis P—regular.



220 HAKMI AND ALHUSSEIN

Ife=1,thenx=a+1,s01—x = —a. Since a is P—regular then
aba —a € P and abP C P for some b € R, so

(—a)(=b)(—a) — (—a) = —aba + a = —(aba — a) € P,
(—a)(=b)P = abP C P.

This shows that —a € R is a P—regular element, therefore 1 —x = —a
is P—regular.

Ife=1+4p,thenz =a+e=a+1+p,sol—x = —(a+p). Since a is
P—regular, by Lemma 3.1, a+p is P—regular and so 1 —x = —(a+p)
is a P—regular element.

(2) = (1). Let z € R, by assumption, either x or 1 —x is P—regular.
If z is P—regular, then x = x + 0 is r—clean relative to P. Suppose
that 1 — z is P—regular, x — 1 is P—regular and so x = (x — 1) + 1 is
r—clean relative to P. Thus, R is a r—clean ring relative to P. 0J

Let R be a ring and S = Ms(R) be the ring of all 2 x 2 matrices over
a ring R. It is clear that the sets:

P:{[g g]:a,beR} and Q:{B 2]:a,beR}

are right ideals in S such that P # S, @@ # S. Now we provide the
connection between the r—clean elements in R and r—clean elements
relative to P (relative to @) in S, in the following:

Theorem 4.14. For any element a € R the following hold:
(1) If a is a r—clean element in R, then for every z,y € R, the

element o = "g Z] is r—clean relative to P in S.

(2) If for some z,y € R the element o = {3 Z] is r—clean relative

to P in S, then the element a is r—clean in R.
(3) Let a be a r—clean element in R, then for every x,y € R, the

element a = {Z 2] is r—clean relative to Q) in S.

(4) If for some x,y € R the element o = [Z 2] is r—clean relative
to Q in S, then the element a is r—clean in R.

Proof. (1) Suppose that a is r—clean in R, then a = u+e¢e, where u € R
is a regular element and e € R is idempotent. So, for every z,y € R

-f-F bRy
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0 wu
is P—regular in S. Also, since e € R is idempotent, by Proposition

[8 Zé] is P—idempotent in S. Thus, the element

Since u € R is regular, by Proposition 3.3, the element § = x O]

3.2, the element v =

a = [+ is r—clean relative to P in S.

(2) Suppose that for some z,y € R, the element o = g z is
r—clean relative to P in S. Then o = f+, where g € S is P—regular
and v € S is P—idempotent.
T2 Y2

e

Suppose that v = € S, where xs,y2,29,6 € R. Since

v is P— idempotent, then v C P which implies that z, = 0. So
7= {xoz y(j and by Proposition 3.2, ¢ € R is idempotent in R.

Suppose that g = El %ﬂ € S, where 1,1, 21, u € R. Since
1
o . . . - . T Y.
a = [+ v implies that z; = 0 and a = v+ e. Since = 0 ul®

P— regular in S, by Proposition 3.3, u € R is regular. This shows
that an element a is r—clean.

(3) It is proved in the similar way as in (1).

(4) It is proved in the similar way as in (2). O

From Theorem 4.14, we can obtain the following:

Corollary 4.15. Let R be a ring, P # R be a right ideal of R and
a € R. Then the following statements hold:

(1) The element a is r—clean in R if and only if there exists v,y € R

such that the element ”g Z is r—clean relative to P in S.
(2) The element a is r—cle:an m R if and only if there exists x € R
such that the element 'g 2 is r—clean relative to P in S.
(3) The element a is r—cleén in :R if and only if there exists x,y € R
such that the element ; 2 is r—clean relative to Q) in S.
(4) The element a is T—cle:an m: R if and only if there exists v € R
such that the element 8 g is r—clean relative to Q) in S.

Lemma 4.16. Let R be a ring, P # R be a right ideal of R and a € R.
Then the following statements hold:
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(1) The element a is r—clean in R if and only if the element
o= {O a is r—clean relative to P in S.

(2) The element a is r—clean in R if and only if the element
o= [8 (1)] is r—clean relative to Q) in S.

Proof. (1)(=) Suppose that a is r—clean, then a = x + e, where z € R
is regular and e € R is idempotent, so x = xyx for some y € R. Thus,

5—[(1) 2},7—{3 2]65’
10 10 10 10 0 0
BVB_ﬁle x]{o y][O x]_[o x]:{o xyx—x} €r

and for any \ = € P, where u,v € R and Sy\ = {u 8] e P.

u v
00 0
This shows that gyP C P. Thus, § € S is a P—regular element is S.

8 2] € S is P—idempotent and

[t o] [t o'_1o+oo_6+6
70 a) T0 ate] T 0 2 T {0 ef T
where § € S is P—regular and § € S is P—idempotent, thus « is
r—clean relative to P in S.

Also, since e € R is idempotent, § = [

(<) Suppose that a = 0 is r—clean relative to P is S, then

0
a = 3+, where § € §is P—regular and § € S is P—idempotent.

u v .
. , where u,v,w,e € R, since 6P C P, w = 0,

Suppose that § =

u v

so 6 = [0 e] Also, since 62 — 6 € P, e = ¢, so e € R is idempotent.

Suppose that § = Zé ,

where z,y, 2,0 € R, since « = 349, 2 =0,

so = {g ﬂ and a = b+ e. Since § = g Zé] is P—regular in S,
so by Theorem 4.14 the element b € R is regular. Thus, a is a regular
element in R. Similarly, we can prove (2). O

Let R be a ring and S = Ms(R) be the ring of all 2 x 2 matrices over
a ring R. It is clear that the set

so={|o }]:ewer)
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is a subring in S with identity element. Also, the sets

Poz{[g 8]:%}%} and Qoz{{g 2}:@6]%}

are right ideals in Sy and Py # Sy, Qo # So. Then we have the
following:

Theorem 4.17. For any ring R the following hold:

(1) A ring R is a r—clean ring if and only if the ring Sy is a r—clean
ring relative to right ideal Fy.

(2) A ring R is a r—clean ring if and only if the ring Sy is a r—clean
ring relative to right ideal QQq.

(3) The ring Sy is a r—clean ring relative to right ideal Py if and
only if the ring Sy is a r—clean ring relative to right ideal Q).

Proof. (1)(=) Suppose that a ring R is r—clean. Let o = [g 2} € So,

where x,u € R. Since R is r—clean, then u = a 4+ e where a € R is a
P—regular element and e € R is idempotent. Then

a:[x O}:[a: 0 }:[x 0}{0 0]
0 u 0 a+e 0 a 0 e
Let 5 = {g 2} and v = [8 2},theno¢:6+7.
Since a € R is regular, by Proposition 3.3, g € Sy is a FPy—regular
element in Sy.
On the other hand, since e € R is idempotent, by Proposition 3.2,

v € Sy is P— idempotent. Thus « is a r—clean element relative to P,
in Sy. Therefore a ring Sy is r—clean relative to Fp.

(<) Let x € R, then a@ = [8 2} € Sp. Since Sy is a r—clean

Y

0 .
0 a} € Sy is Py—regular,

ring relative to Py, a = 8 + v where g = [

z

0 2] € Sy is Py—idempotent, for some

for some y,a € R and 7 = [

z,e € R.
Since [ is Py—regular in Sy, by Proposition 3.3 a is regular in R.
Since 7 is Py—idempotent in Sy, by Proposition 3.2 a is idempotent
in R. Thus x = a + e is a r—clean element, therefore a ring R is

r—clean. Similarly, we can prove (2).
(3) Follows immediately from (1) and (2). O
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