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FALTINGS’ LOCAL-GLOBAL PRINCIPLE FOR THE
MINIMAXNESS OF LOCAL COHOMOLOGY
MODULES DEFINED BY A SYSTEM OF IDEALS

A. HAJIKARIMI AND F. DEHGHANI-ZADEH*

ABSTRACT. Let R be a commutative Noetherian ring and ¢ a
system of ideals of R. We prove that, in certain cases, there
are local-global principles for the finiteness and minimaxness of

generalized local cohomology module H},(M, N).

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with
non-zero identity, a is an ideal of R and M, N are R-modules. The i-th
generalized local cohomology functor H(M,N) is defined by
H{(M,N) = liglExtlé(M/a”M, N) for all i € N.

Let ¢ be anggn—empty set of ideals of R. We say that ¢ is a system
of ideals of R if a;,as; € ¢, then there is an ideal b € ¢ such that
b C ayay. In such a system, for every R-module N, one can define
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I'y(N)={z € N|az = 0 for some a € ¢}. For each i > 0, the i-th right
derive functor of I'y(—) is denoted by Hj(—). Some basic properties of
the local cohomology modules with respect to ¢ were shown in [3], [1].

Another generalization of local cohomology functor was given by
Bijan-Zadeh [3]. For each i > 0, Hj(—,—) is the functor defined by
Hi(M,N) = ligExt%(M/uM, N) for all R-modules M, N and i € Ny.

acp
The functor Hj(—, —) is R-linear which is contravariant in the first

variable and covariant in the second variable. If ¢ = {a"|n € N},
then H)(—,—) is naturally equivalent to Hi(—,—). An important
theorem in local cohomology is Faltings' local-global principle for the
finiteness Dimension of local cohomology modules [[3], satz 1], which
states that for a positive integer 7, then the R,-module Hyp (M,) is
finitely generated for all i« < r and for all p € Spec(R) if and only if
the R-module H:(M) is finitely generated for all i < r.

Faltings' local-global principle for the finiteness of local cohomology
modules has been studied by several authors (for example see [7], [¢]).

Aghapournahr et al. ([1], Theorem 2.8) studied the concept of the
local-global principle for the minimaxness of ordinary local cohomology
modules. The purpose of the present paper is genealization of Faltings’
local-global principle of ordinary local cohomology to generalized lo-
cal cohomology modules with respect to a systems of ideals. More

precisely, we shall prove the following:

Theorem 1.1. Let M, N be two finitely generated R-modules and
t € N. If ST'¢ = {S7'ala € ¢}, then consider the following
statements:

(i) Hi(M,N) is finitely generated for all i < t;

(ii) There is an ideal ¢ € ¢ such that cHi(M,N) =0 for all i < t;
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(iii) There is an ideal ¢ € ¢ such that ¢ € Rad(0 :g H}(M, N)) for
all i < t.

(iv) H§ 1,(S™"M,S™IN) is finitely generated S~' R-module for all
i <t, where S =R —p for all p € Spec(R).

Then the following implications are true.
(a) (i) < (i) & (iii) = (iv).
(b) (iv) = (i), if Max(¢) is finite.

Theorem 1.2. Let (R,m) be a local ring and M, N be two finitely
generated R-module and t > 1 be an integer. Consider the following
statements:
(i) Hy(M,N) is a minimaz R-module for all i < t;
(i) There exists a € ¢ such that al (M, N) is a minimaz R-module
for alli < t;
(iii) H;p(Mp, N,) is a finitely generated Ry-module for all i <t and
p € Spec(R) — {m}.
Then,
(a) (1) & (i) = (iii),

(b) (iii) = (i), If Max(¢) is finite set.

For any unexplained notion and terminology is eferred to [5] and [0].

2. MAIN RESULTS

In this section, we investigate the finiteness and minimaxness of
local cohomology modules with respect to a system of ideals of R.
In particular, we prove that there is a Falthings' local-global principle
for the minimaxness of local cohomology modules with respect to a

system of ideals.
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Remark 2.1. Let ¢ be a non-empty set of ideals of R.

(i) We call ¢ a system of ideals of R whenever a;,ay € ¢, there is
an ideal b € ¢ such that b C a;a,. Define the relative < on ¢ as
follows; a < b if and only if b C a. It is clear that this relation
is a partial order on ¢.

(ii) Using Zorn's Lemma ¢ has maximal element, we use Max(¢)
to denote the set of all maximal elements of ¢. Moreover, if
Mazx (o) is finite set, it has a unique maximal element.

(iii) The ¢-torsion submodule I'y(N) of N is defined as follows:
I'y(N) = {z € N|az = 0for somea € ¢}.

It is straightforward to see tat I'y(N) = Uaey(0 13 a).
(iv) For each i > 0, the functors Hy(M,—) and limH(M,—) are

acp
naturally equivalent.

(v) H)(M,N) = Homp(M,T'4(N)). If '4(N) = N, then
HI(M, N) = Extiy(M, N),
see [3].

The following elementary lemmas are needed in the proof of our main

theorems.

Lemma 2.2. Let T be a ¢-torsion finitely generated R-module. Then,
there exists b € ¢ such that bT = 0.

Proof. The assertion follows immediately from definition. OJ

Lemma 2.3. Let L — M — N be an exact sequence of R-modules

and R-homomorphisms, and suppose that there exist a,b € ¢ such that
al =0 and bN = 0. Then, cM =0 for some ¢ € ¢.

Proof. 1t is clear. 0
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In the following theorem, we generalized the main theorem of
Bahmanpour and Naghipour ([2], Theorem 2.3) for local cohomology

modules with respect to a system of ideals of R.

Theorem 2.4. Let (R,m) be a commutative Noetherian local ring. Let
M and N be two finitely generated R-modules. Let t be a
nonnegative integer such that Hé(]\/[, N) be minimaz for all i < t.
Then, Hompg(R/a, Hi(M, N)) is finitely generated for all a € ¢ and
Assp(HL(M,N))(V(a) is finite.

Proof. We use induction on ¢. By Remark 2.1, we have

HQ(M, N) = Hompg(M,T4(N)),

and the assertion is true for ¢t = 0. Let t > 1 and suppose that the

claim has been proved for t — 1. From the exact sequence
0 —T4(N) — N — N/Ty(N) —0
we earn the exact sequence
Extly(M,Ty(N)) =5 H (M, N) —% H! (M, N/T4(N)).
So, Imf is finitely generated. From exact sequence
0— Imf — H;(M, N) — H;(M, N/Ly(N)),

it is enough to show that Hompg(R/a, Hi(M, N/T4(N))) is finitely
generated. Thus, we can assume that I'y(N) = 0. Let a € ¢. Then, a

contains an N-regular element x. Consider the exact sequence
0— N - N— N/zN — 0.

This short exact sequence yields the exact sequence

_ h _ k T
HS Y (M,N) — H{'(M,N/xN) — HL(M,N) = H}(M,N).



250 HAJIKARIMI AND DEHGHANI-ZADEH

We split the above exact sequence into the following two exact

sequences
0 — Imh — Hy ' (M, N/zN) — Imk — 0

and 0 — I'mk — H\(M,N) — H(M, N) then we get the following

exact sequences:
0 — Homg(R/a, Imh) — Homp(R/a, H; (M, N/xN))
— Hompg(R/a, Imk) — ExtL(R/a, Imh) (2.1)
and
0 — Hompg(R/a, Imk) — Hompg(R/a, H (M, N))
— Hompg(R/a, H,(M,N)). (2.2)

Moreover, by the induction hypothesis, Homg(R/a, H;_I(M, N/xN))
is finitely generated. Hence, by the exact sequence (2.1) the R-module
Hompg(R/a, Imh) is finitely generated. It is clear that the R-module,
x Hompg(R/a, Hi (M, N)) = 0 it follows that

Homp(R/a, Hi(M, N)) = Homg(R/a, Imk).

On the other hand, since I'mh is minimax there exists two R-modules

Ty, T3 such that T} is finitely generated and T5 is Artinian and
0—T1, — Imh—1T,—0
is exact. This exact sequence induces the following exact sequence
0 — Homg(R/a,Ti) — Hompg(R/a, Imh) — Hompg(R/a,Ts)
— Extp(R/a, T1) — Extyp(R/a, Imh) — Exty(R/a,Ty) (2.3)

which implies that the R-module Hompg(R/a,T5) is of finite length and

since
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Supp Ty C V(m) C V(a).

By ([12], Proposition 4.1) Ext’(R/a, T5) is finitely generated. From the
exact sequence (2.3) we get the R-module Extp(R/a, Imh) is finitely
generated. It follows from the exact sequence (2.1) that the R-module
Hompg(R/a, Imk) is finitely generated. Now, we use the exact sequence

(2.2) to obtain the result. O

Theorem 2.5. Let M, N be two finitely generated R-modules and
t € N. Then, the following statements are equivalent.
(i) H{(M,N) is finitely generated for all i < t;
(i) There is an ideal ¢ € ¢ such that cHi(M,N) =0 for all i < t;
(iii) There is an ideal ¢ € ¢ such that ¢ C Rad(0 :g H(M, N))for

all i < t.

Proof. The conclusion (ii) <= (iii) is obviously true.

To prove (i) = (ii), in view of the Theorem 2.2, there exists ¢; € ¢,
such that ciH;(M, N) = 0. Since ¢ is a system of ideals, there is ¢ € ¢
such that ¢ C ¢; for i =1,...,¢ — 1. Tt follows that ¢cH} (M, N) = 0 for
all © < t.

In order to show the implication (ii) = (i) we use induction
on t. When t = 1, there is nothing to prove. Now, suppose
inductively ¢ > 1 and that the assertion holds for ¢ — 1. By this
inductive assumption, H;S(M ,N) is finitely generated for all i < ¢ — 2
and it only remains to prove that H(';_l(M , N) is finitely generated.

Since
Hé)(M, Ly(N)) — H;(M, N) — H;(M, N/Ly(N))

is exact for all i« > 0, we assume I'y,(/N) = 0. Therefore, I';(N) = 0

for all a € ¢. Therefore, in view of hypothesis there exists € a such
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that x is N-sequence and xH(’;’l(M ,N) = 0. Using the exact sequence

0— N — N — N/zN — 0, we obtain the exact sequence
0 — H)(M,N) — H)(M,N) — -+ — H;*Q(M,N)
— H(’;;Q(M7 N/xN) — Héfl(M, N) — Héfl(M, N). (2.4)
Now, use the exact sequence (2.4) together with Lemma 2.3 to see
that there is ¢ € ¢ such that ¢ C a and ¢H}(M,N/xN) = 0 for
i < t—1. Therefore, by inductive hypothesis H(’;’Q(M , N/xN) is finitely

generated R-module. Again, using the long exact sequence (2.4), the

result follows. O

Definition 2.6. Let M, N be two finitely generated R-modules.
Using Theorem 2.5 and Remark 2.1, we define the finiteness dimen-
sion f,(M, N) relative to ¢ by
fo(M,N) =inf{i € NJH,(M,N) is not finitely gencrated}
= inf{i € N|aH}(M,N) # 0 for all a € ¢}

= inf{i € N|a € Rad(0 : H;(M, N))}.
At this stage the following remark is needed.

Remark 2.7. (i) Let f : R — R’ be a ring homomorphism. For any
ideal a of R we denote its extension to R’ by a®. If ¢ is a system of
ideals of R, then the set ¢¢ = {a®: a € ¢} is a system of ideals of R’
Moreover, suppose that S is a multiplicatively closed subset of R
and ¢ is a system of ideals of R. Let S~'¢ = {S~'ala € ¢}. Then,
the connected right sequences of covariant functors, from category
R-modules to category S™'R-modules and {S™'R'T4(—)};>0 and
{RTs-14(57(=))}izo

are isomorphic. In particular, for any R-module NV,



FALTINGS’ LOCAL-GLOBAL PRINCIPLE 253
STLRIT4(N) & RiTg14(S~1(N))

for all 7 > 0. For Example,

W(I,J)={a|ais an ideal of R and I"™ C a + J, for some n > 0},
is system of ideals and
STYW(I,J)={S"alaec W(I,J)} #W(S™'I,5'J).

(ii) Let R — R’ be a flat extension of rings, M and T’ be R-modules.

If M is finitely generated, then
Ext’(M,T) @ R’ = Extl (M @ R\, T ® R')
is finitely generated for all i > 0 (see [11]).

(iii) Suppose that R — R’ is faithfully flat. Then, T'® R’ is finitely
generated as an R'—module if and only if 7" is finitely generated as an
R-module.

(iv) Let (R, m) be a local ring and R its completion with respect to
m, and 7" an R-module. If T" has support only at m, Then T"® R’ has
support only at mR.

(v) Let (R, m, k) be a complete local Noetherian ring and let T" be
an R-module. Then 7" is Artinian if and only if Supp7 = {m} and
Hom(K,T) is finitely generated (see [10]).

Theorem 2.8. Let M, N be two finitely generated R-modules and
teN. If S7'¢ = {S'a|a € ¢}, consider the following statements:
(i) Hi(M,N) is finitely generated for all i < t,
(i) Hg1,(S™'M,S7IN) is finitely generated S~ R- module for all
i <t, where S = R—p and p € Spec(R). Then, the following
implications are true.
(a) (i) = (ii).
(b) (ii) = (i), if Max(¢) is finite.



254 HAJIKARIMI AND DEHGHANI-ZADEH

Proof. (i) = (ii) Using Remark 2.7, shows that
Hi 1, (S™'M,S7'N) = S~L(Hi(M, N))

for all i € N and p € Spec(R), this implication is clear. In order
to show that (ii) implies (i), we proceed by induction on t. If t = 1
there is nothing to show. Suppose that ¢ > 1 and the case t — 1 is
settled. By inductive hypothesis the R-module Hj}(M,N) is finitely
generated for all ¢ < t—1, and so it is enough to show that the R-module
H;_I(M, N) is finitely generated. Using 2.4, Homg(R/a, H;_I(M, N))
is finitely generated. In other hand Ass H;f)_l(]w7 N) C Ugepv(a), the
Ass H;_l(M , N) is finite set, by assumption. Let

Ass Hy ' (M, N) = {p1,pa, .- ps -

Since (H;_I(M ,N))p, is finitely generated R,-module for all
p; € Spec(R), it follows from Theorem 2.5 and Remark 2.7 that there
exists b; € ¢ such that bipiH;_l(M, N)p, = 0. Hence, thereis ¢ € ¢ such
that ¢, C (b;), for all i = 1,...,s. It follows that ¢, H, (M, N),, = 0
for all ¢ = 1,...,s. Therefore {py,ps,...,ps} & Supp(cH(’;’l(M, N)).
On the other hand,

AsscHy ' (M,N) C Ass H,"'(M, N),

then AsscHj '(M,N) = 0 and ¢Hy '(M,N) = 0. Now, the result

follows from Theorem 2.5. O

Lemma 2.9. Let R be a Noetherian ring, a an ideal of R and T an
R-module. Then, T/(0:,T) is isomorphic to a submodule (aT')" for

some n € N.

Proof. Suppose a = (z1,...,x,) and define f : T — (aT)™ by
f(m) = (xym,...,z,m). Since ker(f) = (0 :, T), as required. O
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Theorem 2.10. Let (R, m) be a local ring and M, N be two finitely
generated R-modules and t > 1 an integer. Consider the following

statements:

(i) Hy(M,N) is a minimaz R-module for all i <t;
(i) There exists a € ¢ such that aH(M, N) is a minimaz R-module
for alli < t;
(i) (HS(M, ),
p € Spec(R) — {m}.

is a finitely generated Ry,-module for all i <t and

Then,

(a) (i) & (ii) = (iii),
(b) (iii) = (i), if Max(¢) is a finite set.

Proof. The implication (i) = (ii) is obviously true.

In order to show (ii) = (i), we proceed by induction on t. If t = 1,
there is nothing to show, because HJ(M,N) = Hom(M,['4,(N)) is a
minimax R-module. Suppose that ¢ > 1 and that the desired result
has been proved for ¢ — 1. By the inductive hypothesis, the R-module
Hé)(M, N) is minimax for all i < t—1, and it is enough to show that the
R-module H;_l(]\/[ , N) is minimax. By assumption there exists a € ¢
such that aH;’l(M ,N) is a minimax R-module. In one hand, using
Theorem 2.4 (0 :, H;’I(M, N)) is finitely generated for all a € ¢. On
the other hand, since aH;_l(M , N) is minimax R-module, Lemma 2.9
implies that H;f)_l(]W7 N)/(0 4 H;_I(M, N)) is minimax R-module. We

consider the exact sequence

0 — (0: Hy '(M,N)) — Hi '(M, N)

— HL WM, N)/(0:q Hy ' (M,N)) — 0. (2.5)
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Since (0 4 H;’I(M, N)) and H;’I(M, N)/(0 :4 H;’I(M, N)) are mini-
max, it follows that H;_I(M , N) is minimax, as required.

(i) = (iii) As H (M, N) is a minimax R-module, there is an exact
sequence of R-modules 0 — T — H(;(M, N) — T" — 0, such
that T is a finitely generated and 7" is an Artinian R-module. Since
Ty, = 0 for all p € Spec(R) — {m}, then T, = (H}(M,N)), for all
p € Spec(R) — {m}, the result follows.

(iii) = (i) We use induction on t¢. If t = 1, then the assertion holds
by assumption. So assume that ¢ > 1 and the result has been proved
for t — 1. By the inductive hypothesis Hé(M , N) is minimax R-module
for all i < t — 1. Using Theorem 2.4 (0 :, H};l(M, N)) is finitely
generated for all a € ¢. On the other hand, use the

Ass Hi {(M,N) C UgesV (a)
in conjunction with the assumption Ass H};‘l(M , N) is finite set. Let

Ass Hy '(M, N) = {m} = {p1, P2, ..., s}

By assumption (H;_I(M, N))p, is finitely generated for all i =1,...,s.
Using Theorem 2.5 and Remark 2.7, there exist ¢; € ¢ such that
(¢;Hy(M,N))p, = 0 forall i =1,...,s. It follows that, there is b € ¢
such that b C ¢; and (bH(M,N)),, =0 for alli =1,...,s. Therefore
AssbH)(M,N) C {m} and Supp bH (M, N) € {m}. Hence in view of

Lemma 2.9,
Supp H;fl(]\/[, N)/(0 H;fl(]\/[, N)) C {m}.
We may consider the exact sequence

0 — (0 Hy '(M,N)) — H, ' (M, N)

— H, WM, N)/(0 5 Hy (M, N)) — 0, (2.6)
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to obtain the exact sequence
0 — (0 (05 HE (M, N))) — (05 HE (M, N)
— (0 HY(M,N)/(0:5 Hy (M, N))
s Exth (R/b, (0 HSH(M, N))). (2.7)
It follows from the exact sequence (2.5) that
(0 Hy (M, N)/(0 o Hy ' (M, N))
is a finitely generated R-module. Thus
(0:m HS (M, N)/(0: Hy '(M,N)))

is a finitely generated R-module. Therefore, in view of Remark 2.7,

H;’I(M, N)/(0 H;’I(M, N)) is an Artinian R-module. Now, by

virtue of the exact sequence (2.6) the result follows. O
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