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INTUITIONISTIC FALLING SHADOWS APPLIED TO
COMMUTATIVE IDEALS IN BCK-ALGEBRAS

R. A. BORZOOETI*, X. L. XIN AND Y. B. JUN

ABSTRACT. The notion of commutative falling intuitionistic fuzzy
ideal of a BCK-algebra is introduced and related properties are
investigated. We verify that every commutative intuitionistic fuzzy
ideal is a commutative falling intuitionisticfuzzy ideal, and pro-
vide example to show that a commutative falling intuitionistic
fuzzy ideal is not a commutative intuitionistic fuzzy ideal. Re-
lations between a falling intuitionistic fuzzy ideal and a commuta-
tive falling intuitionistic fuzzy ideal are considered, and a condition
for a falling intuitionistic fuzzy ideal to be a commutative falling
intuitionistic fuzzy ideal is provided.

1. INTRODUCTION

Goodman [1] pointed out the equivalence of a fuzzy set and a class
of random sets in the study of a unified treatment of uncertainty
modeled by means of combining probability and fuzzy set theory. Wang
and Sanchez [18] introduced the theory of falling shadows which
directly relates probability concepts with the membership function
of fuzzy sets. The mathematical structure of the theory of falling
shadows is formulated in [17]. Tan et al. [15, 10] established a the-
oretical approach to define a fuzzy inference relation and fuzzy set
operations based on the theory of falling shadows. Commutative ideals
in BCK-algebras are studied by Meng [12], and its fuzzification is
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discussed by Jun and Roh [10]. As a generalization of a fuzzy com-
mutative ideal in BC'K-algebras, Jun et al. [¢] studied its intuition-
istic fuzzy version. Based on the theory of falling shadows and fuzzy
sets, Jun and Kang [0] introduced a falling fuzzy commutative ideal
in a BC K-algebra, and studied related properties. The notion of an
intuitionistic random set and an intuitionistic falling shadow are in-
troduced by Jun et al. [I1]. Using these notions, they introduced
the concept of falling intuitionistic subalgebras and falling intuitionis-
tic ideals in BCI/BC K-algebras, and investigated related properties.
They also discussed relations between falling intuitionistic subalgebras
and falling intuitionistic ideals, and established a characterization of
falling intuitionistic ideal.

As a generalization of the paper [0], in this paper, we introduce the
commutative falling intuitionistic fuzzy ideal of a BC K-algebra, and
investigate related properties. We show that every commutative intu-
itionistic fuzzy ideal is a commutative falling intuitionistic fuzzy ideal,
and provide example to show that a commutative falling intuitionistic
fuzzy ideal is not a commutative intuitionistic fuzzy ideal. We provide
relations between a falling intuitionistic fuzzy ideal and a commutative
falling intuitionistic fuzzy ideal. We consider a condition for a falling
intuitionistic fuzzy ideal to be a commutative falling intuitionistic fuzzy
ideal.

2. PRELIMINARIES

In this section, we describe the basic concepts used in this article.
A set X with a special element 0 and a binary operation * is called
a BCT-algebra if

(D) ((zxy)* (zx2))* (zxy) =0,
(I) (zx (z*y))*y =0,
(III) x xz =0,
(IV) If x xy =0, and y *x x = 0, then z = y,

for all x,y,z € X. A BCI-algebra X with the following identity:
(V) Oxx=0forallz € X
is said to be a BCK -algebra. In any BC1/BC K-algebra X, we have
rx0=ux, (2.1)
<y = xxz<y*z, 2xy<zxT (2.2)
(xxy)*xz=(x*2)xy, (2.3)
(xxz)*x(yxz2)<zxy (2.4)
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for all z,y,2 € X, where x < y if and only if z xy = 0. Let S be
a nonempty subset of a BCI/BCK-algebra X. Then S is called a

subalgebra of X if zxy € S forall z,y € S. A subset J of a BCI/BCK-
algebra X is called an ideal of X if it satisfies:

0eJ (2.5)
yeld, xxyed = xeJ (2.6)

for all z,y € X. Let J be a subset of a BC K-algebra X. Then J is
called a commutative ideal of X if the condition (2.5) is valid and

zeJ, (zxy)xzed = xx(y*x(yxx)) € J (2.7)

for all z,y,2 € X. Recall that any commutative ideal is an ideal, and
an ideal may not be a commutative ideal (see [13]).

We refer the reader to the books [5, 13] for further information
regarding BC'I/BC K-algebras.

Let X be a non-empty set. An intuitionistic fuzzy set in X (see [1])
is a structure of the form:

hi= {{z;ha(2), hs(z)) | 7 € X,0 < ho(z) + hg(z) <1} (2.8)

where h, : X — [0, 1] is a membership function and hg : X — [0,1] is
a nonmembership function. For the sake of simplicity, we shall use the
symbol h = (hq, hg) for the intuitionistic fuzzy set (2.8).

Given an intuitionistic fuzzy set h = (ha, hg) in a set X and
a, B € [0,1], we consider the following sets:

Ue(h;a) :={z € X | ho(x) > a},
Le(h; B) := {z € X [ hg(x) < f}.

We say Uc(h; o) and Le(h; B) are intuitionistic fuzzy €-subsets.
An intuitionistic fuzzy set h = (hq, hg) in a BC1/BCK-algebra X
is called an intuitionistic fuzzy subalgebra of X (see [7]) if it satisfies:

ha (2 y) = mintha(z), ha(y)} )
hg(w x y) < max{hs(z), hs(y)}

An intuitionistic fuzzy set h = (hq, hg) in a BC1/BCK-algebra X
is called an intuitionistic fuzzy ideal of X (see [7]) if it satisfies:

(Vo € X) ( ha(0) > ha(z),hs(0) < hg(x) ). (2.10)

(Vo,y € X) ( (2.9)

(2.11)

(Va.y € X) ( ho(z) > min{hg(z * y),ha(y)}} > '

hg(x) < max{hg(z xy), hs(y)
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An intuitionistic fuzzy set h = (hq, hg) in a BC' K-algebra X is called
a commutative intuitionistic fuzzy ideal of X (see [3]) if it satisfies (2.10)
and

ho(z * (y* (y*xx))) > min{h,((z *xy) x 2), ha(2)}
230 (0 0 o) < (e« (2 )
(2.12)
Let X be a BCI/BCK-algebra. For each z € X and D € 2% let
T:={Cec2¥|recCl, (2.13)
and
D :={z |z € D}. (2.14)

Consider an ordered pair (2%, B). If B is a o-field in 2% and X C B,
we say that (2%, B) is a hyper-measurable structure on X.

Let (U, A, P) be a probability space and let (2%,8) be a hyper-
measurable structure on X. We say that a couple & := (&,,£3) is an
intuitionistic random set on X, where &, and g are mappings from O
to 2% which are A-B measurables, that is,

EHC)={ea €U |&u(cn) €CL e A )
vC e B . 2.15
B ( Sy e iepeciea ) @
Given an intuitionistic random set £ = (&,,£3) on X, consider

functions:
Hy: X —[0,1], 24— Plea | Za € Ea(ca)),
Hg: X —[0,1], x5 1— P(eg | 25 € &a(2p)).

Then H := (H,, Hy) is an intuitionistic fuzzy set on X, and we call
it the intuitionistic falling shadow of the intuitionistic random set
€ = (&, €p), and & = (&, &p) is called an intuitionistic cloud of
i e (I 113).

For example, consider a probability space (U, .4, P) = ([0,1],.4,m)
with a Borel field A on [0, 1] and the usual Lebesgue measure m. Let
H := (H,, Hs) be an intuitionistic fuzzy set in X. Then a couple

€ = (&, &p) in which
&0 1 [0,1] = 2% a Ue(ﬁ;a),
&1 (0,1] = 2%, 8= Le(H; B)

is an intuitionistic random set and & := (&,,£3) is an intuitionistic
cloud of H := (H,, Hz). We will call £ := (&,,&s) defined above as the
intuitionistic cut-cloud of H := (H,, Hg).
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For a probability space (€2, A, P), let £ := (&4, &p) be an intuitionistic
random set on a BCI/BC K-algebra X. Then the intuitionistic falling
shadow F' := (F,, F3) of € := (&,,&5) is called a falling intuitionistic
subalgebra (resp., falling intuitionistic ideal) of X if £,(e,) and Eg(ep)
are subalgebras (resp., ideals) of X for all ¢,, 5 €  (see [9, 11]).

3. COMMUTATIVE FALLING INTUITIONISTIC FUZZY IDEALS

In this section, we introduce the notion of a commutative falling
intuitionistic fuzzy ideal of a BC K-algebra and related properties are
investigated. Also, we provide some examples to show the relation
between a falling intuitionistic fuzzy ideal and a commutative falling
intuitionistic fuzzy ideal.

In what follows, let X be a BC'K-algebra unless otherwise specified.

Definition 3.1. Given a probability space (€2, .4, P) and an intuition-
istic fuzzy random set £ := (&, &s) on X, the intuitionistic fuzzy falling
shadow H := (H,, ﬁg) of £ := (&, &p) is called a commutative falling
intuitionistic fuzzy ideal of X if £,(c,) and Ez(ep) are commutative
ideals of X for all ,, €5 € (2.

Example 3.2. Consider a set X = {0,1,2,3,4} and define the binary
operation *x by Table 1.

TABLE 1. Cayley table for the binary operation “x”

=W N = O %
=W+ OO
= W = O O
=W OO O
= o NN = Ol W
O W N~ O

Then (X;%,0) is a BC'K-algebra (see [13]). Consider
(Qa A7 P) = ([Oa ]-]7 A) m)

and let £ := (&4, &s) be an intuitionistic fuzzy random set on X which
is given as follows:

(0,3} ifxel0,0.25),
' (0,4} ifx€[0.25,0.55),
Sot (0.1 = PX) 2= 90 vg'1 v it 2 e [0.55,0.85),
{0,3,4} ifz €[0.85,1],
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and
{0} if x € (0.9,1],
(0,3} if 2 € (0.7,0.9],
£3:10,1] = P(X), z+— ¢ {0,4} if z € (0.5,0.7],
{0,1,2,3} if z € (0.3,0.5],
X if z € [0,0.3].
Then &,(t) and &s(t) are commutative ideals of X for all ¢t € [0, 1].
Hence the intuitionistic fuzzy falling shadow H := (H,,Hp) of
€ = (£, &p) is a commutative falling intuitionistic fuzzy ideal of X,
and it is given as follows:
1 if x =0,
)03 ifze{12,
Ha(z) =19 o4 if £ =3,
0.45 if x =4,
and
. 0 if v =0,
Hs(x) =< 0.5 ifze{l,24},
0.3 ifx=3.
For a probability space (9, A,P), let H := (H,,Hs) be an

intuitionistic fuzzy falling shadow of an intuitionistic fuzzy random
set € := (€4,&p). For v € X let

Dx; &) :i={ea € Q| z €&u(ca)},
Q(z;83) = {ep € Q| z € Eplep) )
Then Q(x;&,), Ux; &p) € A (see [L1]).
Proposition 3.3. Let H := (H,, }N][g) be an intuitionistic fuzzy falling

shadow of the intuitionistic fuzzy random set & := (€,,&3) on X. If
H:= (Ha, Hg) is a commutative falling intuitionistic fuzzy ideal of X,

then
( O (x# y) * 23 6a) N Q25 &) € Qa (v * (Y *2)); &) ) (3.1)
Q(z*y) * 2;65) N2 8p) S QU (y* (y*2));&p) )7 '
(Q(x*(y*(y*:r));fa) C Q(zxy) * 2, &) ) (3.2)
Qz* (y*(y*x));€s) CQA(xxy) *x2;65) ) '

forall z,y,z € X.
Proof. Let €, € Q((x xy) * 2;&,) NQ(2;&,) and
ep € Q(z x y) * 2:§5) N Qz; Ep)
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for all z,y, 2 € X. Then

(x*xy) *x 2z € €u(eq) and z € &4(eq),
(xxy)*z € &p(ep) and z € Eu(ep).
Since &,(,) and Es(eg) are commutative ideals of X, the condition
(2.7) implies that
v x (y* (y* x)) € Lalea) N Ep(es)
and so that ¢, € Q(x*x (y* (y*x));&,) and g5 € Q(z* (y* (y*x)); Ep).
Hence (3.1) is true. Now let e, € Q(z * (y * (y x x));&,) and
g5 € Qw x (y* (y * 2)); €p)
for all z,y,z € X. Then z * (y x (y * x)) € &4(ea) NEs(e). Note that
(@xy)xz)x (xx(yx(y*2)) = ((zxy)«(@x(y*(y*2)))) *2
< ((yx(yxz))xy)*z
= ((yxy)*(yxa))*z
=0 (yxx))*xz
=0x*xz
-0,
which yields

(@ xy)x2)x (x5 (y* (y*x2))) =0 € &alea) N Es(ep).

Since &,(e,) and Es(e) are commutative ideals and hence ideals of X,
it follows that (zxy)*z € {,(c0) NEp(ep). Hence e, € Q((x*xy) *2; &)

and €5 € Q((z x y) * 2;&3). Therefore (3.2) is valid. O
Given a probability space (2, A, P), let
F(X):={f|f:Q— X is a mapping}. (3.3)
Define a binary operation ® on F(X) as follows:
(Vw € Q) ((f ® g)(w) = f(w) * g(w)) (3.4)

for all f,g € F(X). Then (F(X);®,0) is a BCI/BCK-algebra

(see [9]) where 6 is given as follows:
0:Q0— X, w—0.
Given a subset A of X and g¢,, g1, g3 € F(X), consider the followings:
Af = {ea € Q2 galea) € A},
Aj = {ep € Q| gs(ep) € A}
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and
o : Q= P(F(X)), o {90 € F(X) | gu(ea) € A},
§p - 1= P(F(X)), es > {gs € F(X) | gslep) € A}.
Then A, A} € A (see [11]).
Theorem 3.4. If K is a commutative ideal of X, then

ga(ga) = {goc € F(X) | ga<5a) € K}a
s(es) = {95 € F(X) | gs(ep) € K}

are commutative ideals of F(X).
Proof. Assume that K is a commutative ideal of X. Since
O(en) =0€ K

and f(ez) =0 € K foralle,, ez € Q, wehave 0 € £,(s,) and 0 € E5(ep).
Let fay Ga, ha € F(X) be such that (f, ® go) ® ha € &a(eq) and
he € €a(ca). Then

(fa(a) * gal€a)) * ha(2a) = ((fa @ ga) ® ha)(ca) € K

and h,(g,) € K. Since K is a commutative ideal of X, it follows from
(2.7) that

(fo ® (9o ® (9o ® fa)))(€a) = fa(ea) * (dala) * (9a(ea) * falca))) € K,

that is, fo ® (9o ® (ga ® fa)) € alca). Hence &,(e,) is a commutative
ideal of F(X). Now, let fs, g3, hg € F(X) be such that

(fs ® gs) ® hg € Ep(ep)
and hg € £s(ep). Then
(fa(es) * gs(ep)) * hg(ep) = ((fs ® gs) ® hg)(es) € K
and hg(eg) € K. Then
(f5® (95 ® (98 ® [)))(e5) = falea) * (9s(ep) * (gs(cp) * fs(ep))) € K,

and so f3 ® (g5 ® (95 ® f3)) € {3(e3). Hence E5(gp) is a commutative
ideal of F(X). This completes the proof. O

Theorem 3.5. If we consider a probability space
(Qa Aa P) = ([07 1]7 Aa m)7

then every commutative intuitionistic fuzzy ideal is a commutative
falling intuitionistic fuzzy ideal.
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Proof. Let H := (H,, g) be a commutative intuitionistic fuzzy ideal
of X. Then UE(I:I ), Ic(H; 8) and Le(H; ) are commutative ideals
of X for all & € (0,1] and 8 € [0,1). Hence a pair £ := ({,,&p) in
which

€01 [0,1] = P(X), a Uc(H; ),
&5 :[0,1] = P(X), B — Le(H; )

is an intuitionistic fuzzy cut-cloud of H := (H,,Hs), and so
H := (H,, Hy) is a commutative falling intuitionistic fuzzy ideal of
X. O

The converse of Theorem 3.5 is not true as shown by the next
example.

Example 3.6. Consider a set X = {0,1,2,3,4} and define the binary
operation x on X by Table 2

(( 7

TABLE 2. Cayley table for the binary operation

=W N = O %
W = OO
=N O O
=~ = O = O
_ O O O OoOlWw
O W~ O

Then (X;%,0) is a BC'K-algebra (see [13]). Consider

(Qa A, P) = ([O’ 1]’ A, m)
and let £ := (&,, &) be an intuitionistic fuzzy random set on X and it
is given as follows:
{0,1} if x €10,0.2),
{0,2} if x € [0.2,0.55),
{0,2,4} if x € [0.55,0.75),
{0,1,2,3} if z € [0.75,1],

€a i [0,1] = P(X), x—

and
{0} if x € (0.87,1],
{0,2} if x € (0.76,0.87],
£3:[0,1] - P(X), z— ¢ {0,4} if z € (0.58,0.76],
{0,2,4} if x € (0.33,0.58],
X if x € 0,0.33].
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Then &,(t) and £s(t) are commutative ideals of X for all ¢t € [0, 1].
Hence the intuitionistic fuzzy falling shadow H := (H,, Hj) of
¢ = (&, &p) is a commutative falling intuitionistic fuzzy ideal of X,
and it is given as follows:

1 if v =0,
045 ifx=1,
Hy(z)=4¢ 08 ifz=2,
025 ifx=3,
0.2  ifa=4,

and

0 if v =0,
)06 itee{13),
He(x) =9\ 031 ifz—2

024 ifz =4,

But H := (H,, H 3) is not a commutative intuitionistic fuzzy ideal of

X since (3%4) %2 € Uc(H;0.4) and 2 € Uc(H;0.6), but
3% (4% (4%3) =3¢ Uc(H;0.4).

We provide relations between a falling intuitionistic fuzzy ideal and
a commutative falling intuitionistic fuzzy ideal.

Theorem 3.7. For a probability space (Q, A, P), let H := (H,, Hg) be
an intuitionistic fuzzy falling shadow of an intuitionistic fuzzy random
set & == (&a,&p) on X. If H := (1{[&,1{[5) is a commutative falling
intuitionistic fuzzy ideal of X, then it is a falling intuitionistic fuzzy
ideal of X.

Proof. Let H := (ﬁa, H 3) be a commutative falling intuitionistic fuzzy
ideal of X. Then &, (g,) and &g(ep) are commutative ideals of X for all
Eas € € Q. Thus &,(e,) and &g(ep) are ideals of X for all g,, €5 € €.
Therefore H := (H,, Hg) is a falling intuitionistic fuzzy ideal of X. O

In the next example, we know that the converse of Theorem 3.7 is
not true in general.

Example 3.8. Consider a set X = {0,1,2,3,4} and define the binary
operation x on X by Table 3.
Then (X;%,0) is a BC'K-algebra (see [13]). Consider

(Q, A, P)=([0,1], 4,m)
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TABLE 3. Cayley table for the binary operation “x”

= W N = Of %
= wNn = oo
B Wk oo -
=W O O O
= O NN = O W
O WO OO

and let & := (&,,£3) be an intuitionistic fuzzy random set on X that is
given by

{0,3} if z € [0,0.27),
£, :[0,1] = P(X), 2~ < {0,1,2,3} if z € [0.27,0.66),
{0,1,2,4} ifz € [0.67,1],

and
(0} if 2 € (0.84, 1],
' {0,3} if z € (0.76,0.84],
0.1 = PX) 229 10194y it e e (0.58,0.76),
X if 2 € [0,0.58].

Then &,(t) and &s(t) are ideals of X for all ¢ € [0,1]. Hence the
intuitionistic fuzzy falling shadow H := (Hg, Hj) of € 1= (£4,&5) is
a falling intuitionistic fuzzy ideal of X. But it is not a commuta-
tive falling intuitionistic fuzzy ideal of X because if « € [0,0.27) and
S € (0.76,0.84], then &,(a) = {0,3} and 3(8) = {0,3} are not com-
mutative ideals of X, respectively.

Since every ideal is commutative in a commutative BC'K-algebra,
we have the following theorem.

Theorem 3.9. For a probability space (Q, A, P), let H := (H,, 1:15) be
an intuitionistic fuzzy falling shadow of an intuitionistic fuzzy random
set € = (Eq,&3) on a commutative BCK -algebra. If H := (H,, Hg) is
a falling intuitionistic fuzzy ideal of X, then it is a commutative falling
intuitionistic fuzzy ideal of X.
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Corollary 3.10. Let (2, A, P) be a probability space.  For any
BCK -algebra X which satisfies one of the following assertions

Ve,ye X)(x <y = xz<y=x*(y*x)), (3.5)
Vr,ye X)(x <y = x=yx(yxx)), (3.6)
(Vo,y € X)(zx (xxy) =y (y* (zx*(zxy)))), (3.7)
(Ve,y,z € X)(z,y < z,zxy <zxzx = x<y), (3.8)
(Ve,y,ze€ X)(r <z,zxy<zxx = x<y), (3.9)

let H = (]:Ia, ]:15) be an intuitionistic fuzzy fallmg shadow of an
intuitionistic fuzzy random set € = (&, &3) on X. If H := (H,, Hp) is
a falling intuitionistic fuzzy ideal of X, then it is a commutative falling
intuitionistic fuzzy ideal of X.

4. CONCLUSION

The notion of commutative falling intuitionistic fuzzy ideal of a
BC K-algebra is introduced and is verified that every commutative
intuitionistic fuzzy ideal is a commutative falling intuitionistic fuzzy
ideal and by example is showed that the converse may not be true.
Then the relations between different kinds of falling intuitionistic fuzzy
ideals are investigated, and is provided a condition to make a falling
intuitionistic fuzzy ideal to be a commutative one.
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