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ON DETERMINING THE DISTANCE SPECTRUM OF
A CLASS OF DISTANCE INTEGRAL GRAPHS

R. KOGANI AND S. M. MIRAFZAL∗

Abstract. The distance eigenvalues of a connected graph G are
the eigenvalues of its distance matrix D(G). A graph is called
distance integral if all of its distance eigenvalues are integers. Let
n and k be integers with n > 2k, k ≥ 1. The bipartite Kneser
graph H(n, k) is the graph with the set of all k and n− k subsets
of the set [n] = {1, 2, ..., n} as vertices, in which two vertices are
adjacent if and only if one of them is a subset of the other. In this
paper, we determine the distance spectrum of H(n, 1). Although
the obtained result is not new [12], but our proof is new. The
main tool that we use in our work is the orbit partition method in
algebraic graph theory for finding the eigenvalues of graphs. We
introduce a new method for determining the distance spectrum of
H(n, 1) and show how a quotient matrix can contain all distance
eigenvalues of a graph.

1. Introduction and Preliminaries

In this paper, a graph G = (V,E) is considered as an undirected
simple graph where V = V (G) = {v1, . . . , vn} is the vertex-set and
E = E(G) = {e1, . . . , em} is the edge-set. For all the terminology and
notation not defined here, we follow [1, 2, 3].
The distance between the vertices vi and vj, denoted by d(vi, vj), is
defined as the length of a shortest path between vi and vj. The distance
matrix of G, denoted by D(G), is the n× n matrix whose (i, j)-entry
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is equal to d(vi, vj) for 1 ≤ i, j ≤ n. The characteristic polynomial
of D(G) is defined PD(t) = PD(G)(t) = Det(tI − D(G)), where I is
the n × n identity matrix. It is called the distance characteristic
polynomial of G. Since D(G) is a real symmetric matrix, all its
eigenvalues, called distance eigenvalues of G, are real. The spectrum
of D(G) = D is denoted by Spec(D) = {λ1, λ2, . . . , λn} and indexed
such that λ1 ≥ λ2 · · · ≥ λn, is called the distance spectrum of G. If
the eigenvalues of D are ordered by λ1 > λ2 > · · · > λr, and their
multiplicities are m1,m2, . . . ,mr, respectively, then we write,

Spec(D) =
(

λ1,λ2,...,λr

m1,m2,...,mr

)
or Spec(D) = {λm1

1 , λm2
2 , . . . , λmr

r }.

From matrix theory, since D is an irreducible, non-negative, real and
symmetric matrix [1, 2, 3], it follows that λ1 is a simple eigenvalue
and satisfies λ1 ≥ |λi|, for i = 2, 3, . . . , n, and there exists a positive
eigenvector corresponding to λ1. The largest eigenvalue λ1 is called the
distance spectral radius or distance index of the graph G.

Let n be a positive integer and [n] = {1, 2, . . . , n}. Let V be the
set of all k-subsets and (n − k)-subsets of [n]. The bipartite Kneser
graph H(n, k) has V as its vertex set, and two vertices A and B are
adjacent if and only if A ⊂ B or B ⊂ A. If n = 2k, then H(n, k) is
a null graph hence, we assume that n ≥ 2k + 1. It follows from the
definition of H(n, k) that it has 2

(
n
k

)
vertices and the degree of each of

its vertices is
(
n−k
k

)
=

(
n−k
n−2k

)
. Thus, H(n, k) is a regular graph. It is

clear that H(n, k) is a bipartite graph. In fact, if Vk = {v ∈ V ||v| = k}
and Vn−k = {v ∈ V | |v| = n − k}, then {Vk, Vn−k} is a partition of
V and every edge of H(n, k) has a vertex in Vk and a vertex in Vn−k

and |Vk| = |Vn−k|. Also, it is easy to show that the graph H(n, k)
is a connected graph. Some of the symmetry properties of the graph
H(n, k) have been already determined in [5, 7, 8, 9]. In particular, the
following facts can be found in [5, 7].

Proposition 1.1. H(n, k) is a vertex-transitive graph.

Proposition 1.2. H(n, k) is a symmetric (or arc-transitive) graph.

Proposition 1.3. The connectivity of the bipartite Kneser graph H(n, k)
is maximum, namely,

(
n−k
k

)
.

Proposition 1.4. The bipartite keneser graph H(n, 1) is a Cayley
graph.

Proposition 1.5. The bipartite keneser graph H(n, 1) is a distance-
transitive graph.
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Proposition 1.6. Let H(n, k) be a bipartite kneser graph. Then
Aut(H(n, k)) ∼= Sym([n])× Z2,

where Z2 is the cyclic group of order 2.
In this paper, we are interested in the distance spectrum of H(n, 1).

This graph is also known as the crown graph in literature. Although
the distance spectrum of H(n, 1) has been already found [12], here we
re-determine it by a new method which is completely different from
what is appeared in [12]. The method that we use is the orbit partition
method in algebraic graph theory. This method has been introduced
in [3] for finding the adjacency eigenvalues of graphs. It is a powerful
tool in spectral graph theory. Recently, using this method, the eigen-
values of the graph L(B(n, 1)) [6] and the distance eigenvalues of the
graph B(n, k) [4] have been determined, where the graph B(n, k) is a
graph with the vertex-set V = {v | v ⊂ [n], |v| ∈ {k, k + 1}} and the
edge-set E = {{v, w} | v, w ∈ V, v ⊂ w or w ⊂ v}. Also, the distance
eigenvalues of the line graph of the crown graph and a class of design
graphs have been determined in [10, 11] by the orbit partition method.

Here we give a brief description of the orbit partition method. Let
A = (aij)n×n be a real matrix. We recall that every eigenvector f with
the eigenvalue θ for A is a real function such that∑n

j=1 aijf(j) = θf(i),

for each i ∈ [n]. Let G = (V,E) be a graph on n vertices and
D(G) = D, be its distance matrix. Let Aut(G) be the automorphism
group of the graph G. Let H ≤ Aut(G) and

π = {wH
1 = C1, . . . , w

H
m = Cm}

be the orbit partition of H, where {w1, . . . , wm} ⊂ V . Let
Q = Qπ = (qij)m×m

be the matrix in which the rows and columns are indexed by π such
that,

qij =
∑
w∈Cj

d(v, w),

where v is a fixed element in the cell Ci. It is easy to check that this
sum is independent of v, that is, if u ∈ Ci, then

qij =
∑

w∈Cj
d(v, w) =

∑
w∈Cj

d(u,w).

Hence, the matrix Q is well defined. We call the matrix Q the quotient
matrix of D over π. We claim that every eigenvalue of Q is an eigenvalue
of the distance matrix D. In fact, we have the following fact.
Theorem 1.7. [10] Let G = (V,E) be a graph with the distance matrix
D. Let π be an orbit partition of V and Q be a quotient matrix of D
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over π. Then, every eigenvalue of Q is an eigenvalue of the distance
matrix D.

By Theorem 1.7, we can find some of the distance eigenvalues of the
graph G, but we can not determine all the distance eigenvalues, since
it is possible that G has a distance eigenvalue θ such that θ is not an
eigenvalue of the quotient matrix Q over π. Next theorem provides a
sufficient condition for avoiding this situation.
Theorem 1.8. [10] Let G = (V,E) be a graph with D as a distance
matrix for G. Let f ̸= 0 be an eigenvector with the eigenvalue θ for D.
Let H be a subgroup of Aut(G) and π be its orbit partition on V and Q
be a quotient matrix of D over π. If θ is not an eigenvalue of Q, then
the sum of the values of f on each cell of π is zero.

In the next theorem, we give another condition that guarantees the
eigenvalue θ to be an eigenvalue of Q.
Theorem 1.9. [10] Let G = (V,E) be a vertex-transitive graph with
the distance matrix D. Let H be a subgroup of Aut(G) with the orbit
partition π on V such that π has a singleton cell {x}. Let Q = Qπ be
a quotient matrix of D over π. Then the set of distinct eigenvalues of
D is equal to the set of distinct eigenvalues of Q.

In the next section, we will see how these facts enable us to find the
distance spectrum of graph H(n, 1).

2. Main results

Let n ≥ 3 be an integer. We recall that the graph H(n, 1) is a
bipartite graph with the vertex set V = V1 ∪ Vn−1, where V1 is the set
of 1-subsets of [n] and Vn−1 is the set of (n− 1)-subsets of [n], in which
two vertices X and Y are adjacent if and only if X ⊂ Y or Y ⊂ X.
Now it follows that this graph has 2n vertices and the degree of each
of its vertices is n − 1. It is easy to show that H(n, 1) is a connected
vertex-transitive graph [5, 8].

At first, we compute the distance between any two vertices in H(n, 1).
Proposition 2.1. Let n ≥ 3 be an integer and G = H(n, 1). Then the
distance between any two distinct vertices in this graph is 1, 2 or 3.
Proof. We consider three cases below:

(i) Let A,B ∈ V1. Hence there are x, y ∈ [n] such that A = {x} and
B = {y}. Let C ⊂ [n] be such that |C| = n − 1 and x, y ∈ C. Thus
A ↔ C and B ↔ C, and hence d(A,B) = 2.
(ii) Let A,B ∈ Vn−1. Thus |A ∩ B| = n − 2. Let c ∈ A ∩ B and

C = {c}. Hence A ↔ C ↔ B and thus d(A,B) = 2.
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(iii) Now let A ∈ V1 and B ∈ Vn−1 are non adjacent. There is a
vertex C in V1 such that C is adjacent to B. Now by (i) we have
d(A,B)=3 □
Remark 2.2. Let Sn be the symmetric group on the set [n]. For each
ω ∈ Sn, let

ω̂ : V (H(n, 1)) −→ V (H(n, 1))

be the mapping defined by the rule ω̂(A) = {ω(a)|a ∈ A} for every
A ∈ V (H(n, 1)). Let Ŝn = {ω̂|ω ∈ Sn}. It is easy to check that ω̂ is an
automorphism of the graph H(n, 1) and Ŝn is a group isomorphic with
Sn. Thus we have Ŝn ≤ Aut(H(n, 1)).

We now construct a distance orbit partitions for H(n, 1).

Lemma 2.3. Consider the graph H(n, 1) with the vertex-set
V = V1 ∪ Vn−1

and the distance matrix D. Then ∆ = {V1, Vn−1} is a distance orbit
partition for V (H(n, 1)) with the quotient matrix

D∆ =

(
δ11 δ12
δ21 δ22

)
over ∆, where δ11 = 2(n− 1), δ12 = n+ 2, δ21 = n+ 2, δ22 = 2(n− 1).

Proof. It is easy to check that the sets V1 and Vn−1 are orbits of the
group Ŝn on the set V (H(n, 1)). Therefore, ∆ is a distance orbit parti-
tion for the graph H(n, 1). Let A ∈ V1 and B ∈ Vn−1, be fixed vertices
of the graph H(n, 1). Then from the definition of the matrix D∆ and
Proposition 2.1, we have,

δ11 =
∑

S∈V1
d(S,A) = 0 +

∑
S∈V1\{A} 2 = 2(n− 1),

δ12 =
∑

S∈Vn−1
d(S,A) =

∑
S∈Vn−1,A⊆S 1 +

∑
S∈Vn−1,A⊈S 3 = (n− 1) + 3

= n+ 2,
δ21 =

∑
S∈V1

d(S,B) =
∑

S⊆B,S∈V1
1+

∑
S⊈B,S∈V1

3 = (n−1)+3 = n+2,
δ22 =

∑
S∈Vn−1

d(S,B) = 0 +
∑

S∈Vn−1\{B} 2 = 0 + 2(n− 1) = 2(n− 1).

Hence, we have

D∆ =

(
2(n− 1) n+ 2
n+ 2 2(n− 1)

)
.

□
It is easy to see that each of the functions (vectors) f1 = (1, 1)t

and f2 = (1,−1)t are the eigenvectors for the matrix D∆ with the
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eigenvalues 3n and n − 4, respectively. Hence, from Theorem 1.7, we
have the following result.

Proposition 2.4. Both of the numbers 3n and n − 4 are distance
eigenvalues of H(n, 1).

Remark 2.5. Concerning Proposition 2.4, the eigenvector correspond-
ing to the eigenvalue 3n for the distance matrix D of H(n, 1) is the
function e1, defined by the rule e1(v) = 1, for every

v ∈ V1 ∪ Vn−1 = V (H(n, 1)).

Also, the eigenvector corresponding to the eigenvalue n − 4 for the
distance matrix D of H(n, 1) is the function e2, defined by the rule
e2(v) = 1, for every v ∈ V1, and e2(v) = −1, for every v ∈ Vn−1

[10, Theorem 2.1].

Let G1 = {σ ∈ Sn|σ(1) = 1} be the stabilizer subgroup of 1 ∈ [n] in
the symmetric group Sn. Thus Ĝ1 = {σ̂|σ ∈ G1} ≤ Ŝn ≤ Aut(H(n, 1)).
It is easy to see that V1,1,V1,n−1,V0,1 and V0,n−1 are orbits of Ĝ1 on V ,
where

V1,1 = {S ∈ V1|1 ∈ S} = {{1}},
V1,n−1 = {S ∈ Vn−1|1 ∈ S},
V0,1 = {S ∈ V1|1 /∈ S},

V0,n−1 = {S ∈ Vn−1|1 /∈ S}.

Lemma 2.6. The partition ∆1 = {V1,1, V1,n−1, V0,1, V0,n−1} is also a
distance orbit partition for the vertex-set of H(n, 1) with the quotient
matrix,

D∆1 =


0 n− 1 2(n− 1) 3
1 2(n− 2) n+ 1 2
2 n+ 1 2(n− 2) 1
3 2(n− 1) n− 1 0

 . (∗)

Proof. Note that |V1,1| = 1, |V1,n−1| = n − 1, |V0,1| = n − 1 and
|V0,n−1| = 1. Let the distance quotient matrix be the following
matrix,

D∆1 =


δ11 δ12 δ13 δ14
δ21 δ22 δ23 δ24
δ31 δ32 δ33 δ34
δ41 δ42 δ43 δ44

 .

Let A1 ∈ V1,1, A2 ∈ V1,n−1, A3 ∈ V0,1 and A4 ∈ V0,n−1 be fixed vertices.
Now we have,
δ11 =

∑
S∈V1,1

d(S,A1) = 0;
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δ12 =
∑

S∈V1,n−1
d(S,A1) = n− 1;

δ13 =
∑

S∈V0,1
d(S,A1) = 2(n− 1);

δ14 =
∑

S∈V0,n−1
d(S,A1) = 3;

δ21 =
∑

S∈V1,1
d(S,A2) = 1;

δ22 =
∑

S∈V1,n−1
d(S,A2) = 0 +

∑
A2 ̸=S∈Va,n−1

2 = 2(n− 2);
δ23 =

∑
S∈V0,1

d(S,A2) =
∑

S∈V0,1,S⊆A2
+
∑

S∈V0,1,S⊈A2
3 = n− 2 + 3

= n+ 1;
δ24 =

∑
S∈V0,n−1

d(S,A2) = 2;
δ31 =

∑
S∈V1,1

d(S,A3) = 2;
δ32 =

∑
S∈V1,n−1

d(S,A3) =
∑

S∈V1,n−1,A3⊈S 3 +
∑

S∈V1,n−1,A3⊆S

= 3 + n− 2 = n+ 1;
δ33 =

∑
S∈V0,1

d(S,A3) = 0 +
∑

A3 ̸=S∈V0,1
2 = 2(n− 2);

δ34 =
∑

S∈V0,n−1
d(S,A3) = 1;

δ41 =
∑

S∈V1,1
d(S,A4) = 3;

δ42 =
∑

S∈V1,n−1
d(S,A4) = 2(n− 1);

δ43 =
∑

S∈V0,1
d(S,A4) = n− 1;

δ44 =
∑

S∈V0,n−1
d(S,A4) = 0. □

It follows from Theorem 1.7, that every eigenvalue of the matrix D∆1

is a distance eigenvalue for H(n, 1). Hence, in the first step, we must
find the eigenvalues of D∆1 .

Theorem 2.7. The set of distance eigenvalues of the bipartite Kneser
graph H(n, 1) is E1 = {3n, n− 4, 0,−4}.

Proof. Consider the distance quotient matrix D∆1 defined in (∗). Let
e1 and e2 be the functions that are defined in Remark 2.5. Hence e1
is an eigenvector of graph H(n, 1) with the eigenvalue 3n. Since the
sum of the values of the function e1 on each cell of the partition ∆1

is not zero, hence by Theorem 1.8, the number 3n is an eigenvalue
matrix D∆1 . From a similar argument, it follows that the number
n − 4 is also an eigenvalue of the distance quotient matrix D∆1 . Let
Ri, 1 ≤ i ≤ 4, be the i-th row of the matrix D∆1 . It is easy to check
that R1 + R4 = (3, 3n − 3, 3n − 3, 3)=R2 + R3. Thus the matrix D∆1

is not non-singular. Hence λ0 = 0 is an eigenvalue of the matrix D∆1 .
Let λ be an eigenvalue of D∆1 distinct from each of 0, 3n, n− 4. Note
that

trace(D∆1)=4(n− 2) = the sum of the eigenvalues of D∆1 .

Hence, we have 4(n − 2) = 0 + 3n + (n − 4) + λ. Now it follows that
λ = −4.
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On the other hand, ∆1 is an orbit partition of the vertex-set of
H(n, 1) with a singleton cell V1,1 = {1}. Now since H(n, 1) is a vertex-
transitive graph, it follows from Theorem 1.9, that the set of distance
eigenvalues of H(n, 1) is E1 = {3n, n− 4, 0,−4}. □

Theorem 2.8. Let n be a positive integer. Then for the distance
spectrum of H(n, 1) we have

Spec(D(H(n, 1)) = {(3n)1, (n− 4)1, 0n−1, (−4)n−1}.

Proof. All distinct distance eigenvalues of H(n, 1) are obtained in
Theorem 2.7. Now, we determine the multiplicities of these eigen-
values. Let D be the distance matrix of H(n, 1). In the first step, we
calculate the diagonal entries of D2. For A ∈ V1, let d(2)(A,A) denote
the diagonal entry of D2 corresponding to A. Hence, we have

d(2)(A,A) =
∑

S∈V (H(n,1))

d(A, S)d(S,A)

=
∑

S∈V (H(n,1))

d(A, S)2

=
∑

S∈V1,1

d(A, S)2 +
∑

S∈V0,1

d(A, S)2

+
∑

S∈V1,n−1

d(A, S)2 +
∑

S∈V0,n−1

d(A, S)2

= 1× 0 + (n− 1)× 4 + (n− 1)× 1 + 1× 9

= 5n+ 4,

where V1,1, V0,1, V1,n−1, V0,n−1 are the orbits which are defined before
Lemma 2.6. Similarly, for B ∈ Vn−1, the diagonal entry of D2

corresponding to B is

d(2)(B,B) = 5n+ 4.

Therefore, the trace of D2 is

tr(D2) = |V1|d(2)(A,A) + |Vn−1|d(2)(B,B)

= n(5n+ 4) + n(5n+ 4)

= 10n2 + 8n.

Now, assume that the multiplicities of n − 4 and −4 are m1 and m2,
respectively. Note that the distance spectral radius 3n is simple, i.e.,
with multiplicity 1. Thus, we have the following equation.

(3n)2 +m1(n− 4)2 + 16m2 = tr(D2) = 10n2 + 8n. (1)



ON DETERMINING THE DISTANCE SPECTRUM OF A ... 307

Now, by using the trace of the distance matrix of the graph H(n, 1),
we have:
3n+m1(n−4)+m2(−4) = tr(D) = 0 ⇒ m1(n−4)−4m2 = −3n. (2)

By solving the following equations obtained in (1) and (2),{
m1(n− 4)2 + 16m2 = n2 + 8n

m1(n− 4)− 4m2 = −3n
,

we have m1 = 1 and m2 = n− 1.
Now, the multiplicity of 0 is

|V (H(n, 1))| − 1−m1 −m2 = 2n− 1− 1− n+ 1 = n− 1.

□
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صحیح فاصله گراف های از رده ای فاصله ای طیف تعیین برای روشی

میرافضل٢ مرتضی سید و کوگانی١ رویا

ایران آباد، خرم لرستان، دانشگاه علوم، دانشکده ریاضی، گروه ١,٢

یعنی گراف این فاصله ماتریس ویژه مقادیر با برابر ،G مانند همبند گراف یک فاصله ای ویژه مقادیر
صحیح آن فاصله ای ویژه مقادیر همه هرگاه نامیم، صحیح فاصله را G گراف می شود. تعریف D(G)

صورت این در .k ≥ ١ و n > ٢k که طوری به باشند مثبتی و صحیح اعداد k و n کنید فرض باشد.
عضوی k مجموعه های زیر همه با برابر آن، رئوس مجموعه که است گرافی H(n, k) دوبخشی کنسر گراف
و اگر مجاورند رأس دو گراف این در و می باشد [n] = {١, ٢, . . . , n} مجموعه از عضوی n − k و
H(n, ١) گراف فاصله ای طیف مقاله، این در باشد. دیگری زیرمجموعه رأس دو این از یکی اگر فقط
ابزار است. جدید شده ارائه برهان اما ،[١٢] نیستند جدید آمده دست به نتایج اگرچه کرده ایم. تعیین را
مقادیر تعیین برای که است، گراف جبری نظریه در مداری افراز روش مقاله این در شده استفاده اصلی
ویژه مقادیر همه شامل می تواند قسمت خارج ماتریس چگونه که داده ایم نشان می رود. کار به گراف ویژه

باشد. گراف یک فاصله ای

کنسر. گراف مداری، افراز فاصله ای، طیف فاصله ، ماتریس کلیدی: کلمات


	1. Introduction and Preliminaries
	2. Main results
	References

