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PERFECTNESS OF THE ANNIHILATOR GRAPH OF
ARTINTAN COMMUTATIVE RINGS

M. ADLIFARD AND SH. PAYROVI*

ABSTRACT. Let R be a commutative ring and Z(R) be the set of
its zero-divisors. The annihilator graph of R, denoted by AG(R)
is a simple undirected graph whose vertex set is Z(R)*, the set of
all nonzero zero-divisors of R, and two distinct vertices = and y
are adjacent if and only if anng(zy) # anng(x) Uanng(y). In this
paper, perfectness of the annihilator graph for some classes of rings
is investigated. More precisely, we show that if R is an Artinian
ring, then AG(R) is perfect.

1. INTRODUCTION

One of the most important and active areas in algebraic combina-
torics is study of graphs associated with rings. This field has attracted
the attention of many researchers during the past 20 years. There are
many papers on assigning a graph to a ring, see for instance [1, 2, 1, 5].
Let R be a commutative ring with nonzero identity. The annihilator
graph of R, denoted by AG(R) is a simple undirected graph whose
vertex set is the set of all nonzero zero-divisors of R and two distinct
vertices x and y are adjacent if and only if

anng(zy) # anng(x) Uanng(y).
The annihilator graph was first introduced in [4], and some of its
properties have been studied. In [10], it was proved that if R is
a finite direct product of integral domains, then AG(R) is weakly
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perfect. Morover, in [¢], for a nonreduced ring R it is shown that
AG(R) is perfect. In this article, we show that if R is a finite direct
product of integral domains or if R is an Artinian ring, then AG(R) is
perfect.

We use the standard terminology for graphs following [12]. Let
G = (V,E) be a graph, where V' = V(G) is the set of vertices and
E = E(G) is the set of edges. By G, we mean the complement graph
of G. We write u ~ v, to denote an edge with ends u,v. The open
neighborhood of a vertex u is defined to be the set

N(u) ={v e V(G) : uis adjacent to v}

and the closed neighborhood of w is the set Nju| = N(u) U {u}. A
graph H = (Vj, Ey) is called a subgraph of G if V; CV and Ey C F.
Moreover, H is called an induced subgraph by V4, denoted by G[Vq],
if Vo € V(G) and Ey = {{u,v} € E|u,v € Vp}. For a graph G a
subset S C V(@) is called a clique if the subgraph induced on S is
complete. The number of vertices in a largest clique of graph G is
called the clique number of G and is often denoted by w(G). For a
graph G, let x(G) denote the chromatic number of G, i.e., the minimal
number of colors which can be assigned to the vertices of GG in such a
way that every two adjacent vertices have different colors. Clearly, for
every graph G, w(G) < x(G). A graph G is said to be weakly perfect
if w(G) = x(G). A perfect graph G is a graph in which the chromatic
number of every induced subgraph equals to the size of a largest clique
of that subgraph.

Throughout this paper, all rings are assumed to be commutative
with nonzero identity. We denote by Z(R) the set of all zero-divisor
elements of R. The set of nilpotent elements of R is denoted by
Nil(R). For every element = of R, we denote the annihilator of = by
anng(z) ={r € R:rx =0}. For A C R we let A* = A\ {0}. Some
more definitions, properties and notation about commutative rings can
be found in [3, 9, L1].

2. THE ANNIHILATOR GRAPH OF ARTINIAN RINGS IS PERFECT

Let R be an Artinian ring, in this section we show that AG(R) is
perfect. We start with the following lemma, which has a fundamental
role in proving the results of this section.

Lemma 2.1. Letn be a positive integer and let R = Ry X- - - X R,,, where
R; 2 Zy, foreveryl <i<n. Letx = (x1,...,2,) andy = (Y1,- -, Yn)
be two nonzero zero-divisors of R. Then the following statements are
true:
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(1) If Rt € Ry and Ry € Rx, then x ~ y is an edge of AG(R).

(2) If x ~y is an edge of AG(R) and either Rx C Ry or Ry C Rz,
then for some 1 <i <n, z; =y; € Nil(R;)*.

(3) If Rx C Ry and Rx Nanng(y) # 0, then x ~ y is an edge of
AG(R).

Proof. (1) Since Rx € Ry, we may assume that Rix; € Ryy;. Thus, if
z1 € U(Ry) = {1, 3}, then

y1 € Nil(Ry) = {0,2}
and if x; € Nil(R;)* = {2}, then y; = 0. Hence, clearly

annp, (yl) g annpg, (Il)

and so anng(y) € anng(x). Similarly, since Ry € Rx we can get
anng(z) € anng(y). Therefore, z ~ y is an edge of AG(R), by
[10, Lemma 2.2(1)].

(2) Suppose that Rx C Ry. Since x ~ y is an edge of AG(R), by
[10, Lemma 2.1], Rx Nanng(y) # 0 and Ry Nanng(x) # 0. Now, by
Rz C Ry and Rz Nanng(y) # 0, it follows that

Ry Nanng(y) # 0.
This implies that y; € Nil(R;)* = {2}, for some 1 < ¢ < n.

Without loss of generality, we may assume that y; € Nil(Ry)* = {2}. If
xy € Nil(Ry)* = {2}, then there is nothing to prove. Otherwise, z; = 0
and Ryz; Nanng, (y;) = 0. For other components of x, 2 < j < n, if
z; € U(R;) = {1,3}, then y; € U(R;) = {1,3} since Rz C Ry thus
Rjx; Manng,(y;) = 0. This means that Rz Nanng(y) = 0 which is a
contradiction. Hence, z; € Nil(R;)* = {2}, for some 2 < j < n.
Assume that xo € Nil(Ry)* = {2}. Then

ys € U(R,) UNIl(Ry)* = {1,2,3}.

If yo € U(Ry) = {1,3}, then Ryzy Nanng,(y2) = 0. If we continue
this procedure, then we obtain z; = y; € Nil(R;)* = {2}, for some
1< <n.

(3) By [10, Lemma 2.1], we need only to show that RyNanng(x) # 0.
Since Rx Nanng(y) # 0 and Rz C Ry so Ry Nanng(y) # 0. On the
other hand, since Rx C Ry we have anng(y) C anng(z). Hence,
Ry Nanng(z) # 0. O

Let n be a positive integer, R = Zgy X « -+ X Zg (n times) and z,y be
distinct elements of Z(R)*. By a similar argument to that of Lemma
2.1 we can show that x ~ y is an edge of AG(R) if and only if Rz € Ry
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and Ry ¢ Rx. Moreover, if Rz C Ry and Rz N anng(y) # 0, then
x ~y is an edge of AG(R).

Lemma 2.2. Let R be a ring and z,y € V(AG(R)) such that
anng(x) = anng(y). Then N(z) = N(y).

Proof. Suppose that x ~ a is an edge of AG(R). So for some r € R,
rax = 0, ra # 0 and rz # 0. Since anng(z) = anng(y), we deduce
that ry # 0 so we have ra # 0, ry # 0 and ray = 0. This means
that y ~ a is an edge of AG(R) and so N(x) € N(y). Similarly,
N(y) € N(z) and hence N(z) = N(y), as desired. Moreover, if z ~ vy,
then Nz] = N[y]. O

In 2006, M. Chudnovsky et al. settled a long standing conjecture
regarding perfect graphs and provided a characterization of perfect
graphs.

Theorem 2.3. [0, The Strong Perfect Graph Theorem| A graph G is
perfect if and only if neither G nor G contains an induced odd cycle of
length at least 5.

Theorem 2.4. Let m,n be positive integers and let

R=R; X -+ X Ry XRyy1 XX Ry,
where R; = Zy, for every 1 < ¢ < n, and R; = Zs, for every
n+1<i<n+m. Then AG(R) is perfect.

Proof. In view of Theorem 2.3, it is enough to show that AG(R) and
AG(R) contain no induced odd cycle of length at least 5. Indeed, we
have the following claims:

Claim 1. AG(R) contains no induced odd cycle of length at least
5. Assume to the contrary,

L1 ~Tg Y ~T ~ T

is an induced odd cycle of length at least 5 in AG(R). Since z; is not
adjacent to z3, by Lemma 2.1(1) and paragraph after it, we have either
Rxy € Rxs or Rxs C Rxy. Without loss of generality, we may assume
that Rx; C Rxs. We continue the proof in the following steps.

Step 1. For every 3 < i < k—1, Rr; C Rx;. Since Rr; C Ruxs,
for i = 3 it is clear. Since x; is not adjacent to x4, by Lemma 2.1(1)
and paragraph after it, we have either Rz; C Rx4 or Rry C Ruy.
If Rxy € Ruxq, then since Rxry C Rxs, we have Rry C Rxs. By
RxsNanng(z3) # 0 and Rxy C Rz it follows that RzqNanng(zs) # 0.
This, together with Lemma 2.1(3) imply that x, z3 are adjacent that
is a contradiction. So Rz; C Rx, and thus the Step 1 is true for
i = 4, also. Again, for i = 5 we have Rry C Rxs or Rrs C Rxy. If
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Rxs C Rxp, then we have Rxs C Rxy since Rxy € Rxy. Now, from
RxsNanng(zy) # 0 and Rxs C Rz it follows that RxyNanng(z4) # 0.
This fact together with Lemma 2.1(3) imply that z1, 2z, are adjacent
that is a contradiction. So Rxy C Rzs. By a similar argument on can
show that Rz C Rx;, for every 6 < i < k — 1.

Step 2. For every 4 < 1 < k, Rrs C Rx;. By the Step 1 we
have Rx; C Rxy and Lemma 2.1(1) shows that either Rzy C Rz, or
Rzy C Rxs. If Rry C Ruzy, then we have Rxy Nanng(xs) # 0 since
Rzy C Rxy and Rxy Nanng(zs) # 0. This fact together with Lemma
2.1(3), imply that x5 is adjacent to z4, a contradiction. So Rzy C Rxy.
Next, we show that Rzy C Rxs. If Rrs C Rxa, then RroNanng(zy) # 0
because Rzs N anng(zy) # 0 also by Rzy C Rxy it follows that zy is
adjacent to x4 that is a contradiction. Hence, Rxy C Rxs. Similarly,
Rxy C Rz, for every 4 <1 < k.

Step 3. Rzxs C Rz;. By Lemma 2.1(1), we have either
Rx3 C Rxs or Rrs C Rxs. If Rrs C Ruxg, then Rxs Nanng(zs) # 0
since RxsNanng(z3) # 0 and by the Step 2, Rz C Ruxs this contradicts
to Lemma 2.1(3). Hence, Rxs C Rxs. Now, we show that Rrs C Ruwg.
If Reg C Rxs, then Rxg N anng(xs) # 0 since Rry N anng(xs) # 0
and Rzs C Rxg that is a contradiction. Hence, Rx3 C Rxg. Similarly,
we can show that Rxs C Rux;, for every 7 < ¢ < k. Now, suppose
that Rxy C Rxs. Then since for every 5 < i < k, Rx3 C Rx;, we have
Rzxy; C Rxs C Rxy. Since RryNanng(xy) # 0 thus RrsNanng(zy) # 0,
a contradiction. So Rx3 C Rz, and by the Step 1, Rxs = Rx;. This
implies that anng(x3) = anng(z;) so by Lemma 2.2, N(z3) = N(x1).
Thus x4 € N(x3) = N(z1) and 1 ~ x5 ~ x3 ~ x4 ~ 17 1S a cycle of
length 4 that is a contradiction. Therefore, AG(R) contains no induced
odd cycle of length at least 5.

Claim 2. AG(R) contains no induced odd cycle of length at least
5. Assume to the contrary,

T~ Lo~ ~YTp ~ T

is an induced odd cycle of length at least 5 in AG(R). In view of
Lemma 2.1, we may assume that Rz; C Rxy. If Rxy C Rxs, then
since Rxy Nanng(xs) # 0, we have Rxe Nanng(zs) # 0. Thus z, is
adjacent to z3 in AG(R), a contradiction. So

Rxiy € Rxy and Rxs C Rus.

Assume that Rry C Rzs. Then since Rxy N anng(xs) # 0 we have
RxszNanng(zy) # 0. So by Lemma 2.1, x5 is adjacent to z3 in AG(R), a
contradiction. Thus Rxs C Rxy. If Rxy C Rxs, then since Rxs C Rxy
and Rxs Nanng(zs) # 0 we have Rxy Nanng(zs) # 0 so x4, x5 are
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adjacent in AG(R), a contradiction. Thus
Rx3 C Rxy and Rxs C Ruay.
Since k is odd, if we continue this procedure, then we obtain
Rxi_o C Rxp_1 and Rz, C Rxjp_q.

Now, assume that Rz; C Rxy. Then we get Rxp Nanng(xg_1) # 0
since Rx; Nanng(zg—1) # 0. Thus by Lemma 2.1, z; is adjacent to
zr—1 in AG(R), a contradiction. So Rxy C Rxy. But in this case from
Rz Nanng(zy) # 0 it follows that Rx; Nanng(xs) # 0. Hence, x; is
adjacent to xy in AG(R), a contradiction. Therefore, AG(R) contains
no induced odd cycle of length at least 5. 0

Let G be a graph and x be a vertex of G and let G’ be obtained from
G by adding a vertex z’ and joining it to x and all the neighbors of x.
We say that G’ is obtained from G by expanding the vertex z to an
edge x ~ x’. Hence, V(G') = V(G) U {2’} and

E(G")=EG)U{s' ~y:ye Nx]}.

Lemma 2.5. ([7, Lemma 5.5.5]) Any graph obtained from a perfect
graph by expanding a vertex is again perfect.

Lemma 2.6. Let G be a graph z,y € V(G) such that N(z) = N(y).
Then G is perfect if and only if G\ {x} is perfect.

Proof. Let G be a graph and z,y € V(G) such that N(z) = N(y). We
show that, G is perfect if and only if G\ {z} is perfect. One side is
obvious. So we may assume that G \ {z} is perfect and show that G
is perfect. Suppose that G is not perfect and look a contradiction. By
Theorem 2.3, there is an induced odd cycle of length at least 5 in G
such as

L1~ Lo~ Ty ~ .
If x; # x, for all 1 <7 < n, then

Ty~ Ty~ Ip I

is an induced odd cycle of length at least 5 in G\ {z}, a contradiction.
So we may assume that xy = x. This implies that

3,2 € N(z) = N(y)
and hence we get
yNQj2N--~NInNy
is an induced odd cycle of length at least 5 in G \ {z}, again a

contradiction. Note that y # x;, for all 2 < ¢ < n, otherwise we
get a cycle of length less than n. So G contains no induced odd cycle
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of length at least 5. As above, by a similar argument one can show
that G contains no induced odd cycle of length at least 5. Therefore,
G is perfect. Now, let N[z] = N[y]. In this case G is obtained from G’
by expanding the vertex y to an edge x ~ y. So by Lemma 2.3, GG is
perfect if and only if G' = G \ {z} is perfect. O

Remark 2.7. Let G be a graph x1,y; € V(G) such that either
N(z1) = N(y1) or N[x1] = N[y1]. Then, according to Lemmas 2.5, 2.6,
G is perfect whenever G\ {z;} is perfect. Also, for x5, ys € V(G)\{x1},
if either N(z3) = N(y2) or N|xo] = N[ys], then G \ {z1} is perfect
whenever G \ {z1,x2} is perfect. So for y € V(G), A C V(G) and
r € A. [If either N(z) = N(y) or N[z] = Nly|, then G \ A is
perfect whenever G'\ (A \ {z}) is perfect. Hence, G is perfect whenever
G\ (A\ {z}) is perfect.

Using these results, we show that if R is an Artinian ring, then
AG(R) is perfect.

Theorem 2.8. Let R be an Artinian ring. Then AG(R) is perfect.

Proof. If R is local, then in view of [1, Theorem 3.10], AG(R) is
complete and so is perfect. Now, assume that R is not local. Thus

R:Rlx...xRann+1x...XRn+m7

where R; is a non-reduced Artinian local ring, for every 1 <i < n, and
is a field, for every n +1 < i < n + m, see [3, Theorem 8.7]. Note
that for

= (T1, . Tp, Tps1 - Tpem) € R,

z; € Nil(R;) UU(R;), for all 1 <4 <n and x; € {0} UU(R;), for every
n+1 <1i <n+m. Define the relation ~ on V(AG(R)) as follows: for

T = (1,0 Ty Tyt -y Tppm),s
Yy = (?/17 v Yns YUn41 - - - 7yn+m) € V(AG(R))

we say x ~ y whenever the following three conditions hold:

(1) ; = 0 if and only if y; = 0, for every 1 <i < n+m.

(2) z; € Nil(R;)* if and only if y; € Nil(R;)*, for every 1 <i < n.

(3) z; € U(R;) if and only if y; € U(R;), for every 1 <i < n+m.
It is easy to see that ~ is an equivalence relation on V(AG(R)). Let [z]
denote the equivalence class of x and let 2’ and z” be two elements of
[z]. Since 2’ ~ z” we have anng(z') = anng(z”) so Lemma 2.2 implies
that N(2') = N(2”) on V(AG(R))\ {2/, 2"}. Now, if 2’ is not adjacent
to 2”, then by Lemma 2.6, AG(R) is perfect if and only if AG(R)\ {2}
is perfect. If 2 is adjacent to ", then by Lemma 2.5, AG(R) is perfect
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if and only if AG(R) \ {2’} is perfect. We continue this procedure and
we obtain AG(R) is perfect if and only if AG(R)\ {[z]\{z'}} is perfect.
We do this for all equivalence classes and get AG(R) is perfect if and
only if AG(R)[A] is perfect, where A is a subset of V(AG(R)) such
that for every equivalence class [z], |A N [z]| = 1. Hence, AG(R)[A4] is
an annihilator graph with 3"2™ — 2 vertices.

Assume that S =57 X -+ X S, X Sp41 X -+ X Spim, Where S; = Zy,
for every 1 < i < n, S; & Zy, for every n+1 < i <n+m. By a similar
argument as above one can show that AG(S) is perfect if and only if
AG(9)[B] is perfect. Here

B = {(xl,...,xn,an e Tnam) € VIAG(S)) | zi € {0,1,2}

for1Signandxie{O,l}forn+1§i§n+m}
C Z(S)"

and AG(S)[B] is an annihilator graph with 3"2™ — 2 vertices. In view
of Theorem 2.4, AG(S) is perfect so AG(S)[B] is perfect. Now, we can
easily get the graph homomorphism ¢ : AG(R)[A] — AG(S)[B] by
the rule ¢((w1,- -+, 2, Trg1 - s Togm)) = (Y1, 5 Yns Ynt 1" > Yntm),
where z; = 0 if and only if y; = 0 and z; € U(R;) if and only if
y; € U(S;) = {1}, for every 1 < i < n+m, x; € Nil(R;)* if and only
if y; € Nil(S;)* = {2}, for every 1 < i < n, is an isomorphism. Hence,
AG(9)[B] = AG(R)[A]. Thus AG(R)[A] is perfect and so AG(R) is
perfect. This completes the proof. 0

Theorem 2.9. Let n be a positive integer and let R = Dy X --- X D,
where D; is an integral domain, for every 1 < i < n. Then AG(R) is
perfect.

Proof. Assume that * = (x1,...,2,) and y = (y1,...,yn) are two
vertices of AG(R). Define the relation ~ on V(AG(R)) as follows:

x =~ y whenever

x; = 0 if and only if y; = 0,
for every 1 < ¢ < n. It is easily seen that ~ is an equivalence
relation on V(AG(R)) so V(AG(R)) is a union of (2" — 2) distinct
equivalence classes. Let [x] denote the equivalence class of

r € V(AG(R))

and a,b € [z]. Then it is easy to see that anng(a) = anng(b) so
N(a) = N(b), by Lemma 2.2. This fact together with a not being
adjacent to b, implies that AG(R) is perfect whenever AG(R)\([z]\{a})
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is perfect, see Remark 2.7. We do this for all equivalence classes and
get AG(R) is perfect if and only if AG(R)[A] is perfect, where

A={(z1,...,2,) € V(AG(R))|z; € {0,1} forall 1 <i <n} C Z(R)".

In view of Theorem 2.4, AG(S) for S = Zy X Zy X - -+ X Zy (n times),
is perfect. Furthermore, it is easy to see that AG(S) = AG(R)[A].
Hence, AG(R)[A] is perfect and so AG(R) is perfect. O
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