Journal of Algebraic Systems
Vol. 10, No. 2, (2023), pp 345-359

A GRAPH ASSOCIATED TO FILTERS OF A LATTICE

S. EBRAHIMI ATANI, M. KHORAMDEL*, S. DOLATI PISH HESARI, AND
M. NIKMARD ROSTAM ALIPOUR

ABSTRACT. Let L be a lattice with the least element 0 and the
greatest element 1. In this paper, we associate a graph to filters
of L, in which the vertex set is being the set of all non-trivial
filters of L, and two distinct vertices F' and E are adjacent if and
only if FNE # {1}. We denote this graph by G(L). The basic
properties and possible structures of G (L) are studied. Moreover,
we characterize the planarity of G (L).

1. INTRODUCTION

The study of algebraic structures, using the properties of graph
theory, tends to an exciting research topic in the last decade. There
are many papers on assigning a graph to a ring, a semiring and a
lattice, see for example [1, 2, 5, 6, 7, 9, 12, 11]. One of these graphs
is the intersection graph. Bosak [5] in 1964 defined the intersection
graph of semigroups. In 1969, Csakany and Polldk studied the graph of
subgroups of a finite group, in [7]. In 2009, the intersection graph of
ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and
Sen [6]. By using this idea, in [11], the authors investigated the inter-
section graph of co-ideals of a semiring. In this paper, we introduce
intersection graphs of lattices with respect to filters. The intersection
graph of filters of a lattice L, denoted by G (L), is a graph with all
elements of
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V(L) ={F : {1} # F is a proper filter of L}

as vertices and two distinct vertices F; and Fy are adjacent if and only
if [1NFy # {1}. Let L be a distributive lattice with 1 and 0. In this
paper, we are interested in investigating intersection graphs of filters
of lattices and associate which exist in the literature as laid forth in
[6]. Here is a brief outline of the article. Among many results in this
paper, Section 2 lists some results, and it is proved that G(L) is empty
if and only if V(L) = Max(L) = {P, P2} or L = {0,1} and we find
independence number of G(L) by using minimal filters of L. Also, if G
(L) is connected, then diam(G(L)) < 2 and gr(G(L)) € {3,00}. It is
shown that G (L) is finite if and only if w(G(L)) is finite. Moreover, we
characterize the filters of L, when G (L) has a vertex with degree 1.
Section 3 is devoted to investigate the planarity of G (L).

Now, we recall some definitions of graph theory from [1] which are
needed in this paper. For a graph G by £ (G) and V (G), we denote
the set of all edges and wertices, respectively. A graph G is said to
be connected if there exists a path between any two distinct vertices.
Otherwise, G is called disconnected. The distance between two distinct
vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting them (if such a path does not exist, then d(a,b) = oo,
also d(a,a) = 0). The diameter of a graph G, denoted by diam(G), is
equal to

sup{d(a,b) : a and b are distinct vertices of G'}.

A graph is complete if it is connected with diameter less than or equal
to one. We denote the complete graph on n vertices by K,,. A complete
bipartite graph with part sizes m an n is denoted by K, ,. Also, we
say that G is totally disconnected if no two vertices of GG are adjacent.
A clique of a graph is a complete subgraph of G and the number of
vertices in the largest clique of graph G, denoted by w(G), is called
the clique number of G. In a graph G = (V,€), a set S C V is an
independent set if the subgraph induced by S is totally disconnected.
The independence number o(G) is the maximum size of an independent
set in GG. Note that a graph whose vertices-set is empty is a null graph
and a graph whose edge-set is empty is an empty graph.

Let us recall some notions and notations of lattice theory from [3].
By a lattice L we mean a poset (L, <) in which every couple elements
z,y has a g.l.b. (called the meet of x and y, and written z A y) and
a L.u.b. (called the join of z and y, and written = V y). A lattice L
is complete when each of its subsets X has a L.u.b. and a g.l.b. in
L. Setting X = L, we see that any nonvoid complete lattice contains
a least element 0 and greatest element 1 (in this case, we say that L
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is a lattice with 0 and 1). A lattice L is called a distributive lattice
if (aVb)ANe= (aNc)V (bAc)forall a,b,cin L (equivalently, L is
distributive if (a Ab)Ve= (aVe)A(bVe) for all a,b,cin L). A lattice
L is called 1-distributive (resp. 0-distributive) if aVb=1and aVe =1
(resp. aAb=0and aAc=0), thenaV(bAc) =1 (resp. aA(bVc) =0)
for all a,b,c € L. A non-empty subset F' of a lattice L is called a filter,
ifforae F,be L,a<bimpliesbe F,and x Ay € F for all x,y € F
(soif L is a lattice with 1, then 1 € F and {1} is a filter of L). A proper
filter F of L is called primeif xVy € F,thenx € Fory € F. If Fisa
filter of a lattice L with 0, then 0 € F'if and only if F' = L. Let H be a
subset of a lattice L. Then the filter generated by H, denoted by T'(H)
is the intersection of all filters that is containing H. A lattice L with 1
is called L-domainifavb=1 (a,b€ L), thena =1or b= 1. Let L be
a lattice. L is called semisimple, if for each proper filter F' of L, there
exists a filter £ of L such that L = T(FUFE) and FNE = {1}. A
filter F of L is minimal (simple) if it has no filters besides the {1} and
itself. We show the set of all simple (minimal) filters of L by Min(L).
A proper filter P of L is said to be maximal if E is a filter in L with
P G E, then E = L. The set of all maximal filters in L is denoted
by Max(L). If L is a lattice, then the Jacobson radical of L, denoted
by Jac(L), is the intersection of all maximal filters of L. Let F, E be
filters of L. Then we call E is a complement of F if FNE = {1} and E
is maximal with respect to this property. First we need the following
lemma proved in [3, 13].

Lemma 1.1. Let L be a lattice.

(a) A non-empty subset F' of L is a filter of L if and only if tVz € F
and x Ny € F for all x,y € F, z € L. Moreover, since
r=xzV(xAy),y=yV(xAy) and F is a filler, xt Ny € F
gives x,y € F for all x,y € L.

(b) If L is 1-distributive and x € L, then

{1} pzx)=1:2)={a€L:avVe=1}
is a filter of L.

Proposition 1.2. [10]

(i) If F is a non-zero proper filter of a lattice L, then F is contained
in a mazimal filter of L.
(ii) Let P be a mazximal filter of a distributive lattice L. If
T(PUF)=L and PNF = {1} for some filter F' of L, then F
is a minimal filter of L.
(iii) Assume that L is a distributive lattice and let Jac(L) = {1}. If
Max(L) is finite, then L is semisimple.
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Proposition 1.3. [¢]

(i) If L is a distributive lattice and Fy, Fy, F3 are filters of L with
F2 Q Fl, then F1 N T(F2 U F3) = T<F2 U (Fl N Fg))

(ii) Let H be an arbitrary non-empty subset of a lattice L. Then
T(H)={z € L: aiNaa\---Na, <z for somea; € H (1 <i<n)}.
Moreover, if F is a filter and A C F, then T(A) C F and
T(F)=F.

Let F' be a proper filter of a lattice L with 0 and 1. The filter-based
identity-summand graph of L with respect to F', denoted by I'r(L), is
the graph whose vertices are

Ip(L)={z € L\ F:xVye€F forsomeye L\ F},
and distinct vertices z and y are adjacent if and only if x Vy € F.
If F = {1}, then we put I';3(L) = I'(L). We need the following
proposition proved in [12, Proposition 2.3 and Theorem 3.14 (1)].

Proposition 1.4. (i) If L is 1-distributive and {F;};ca is the set
of all prime filters of L, then MieaF; = {1} (Take F = {1}).
(i) If L is a lattice, then w(I'(L)) = [Min({1})| = |Min(L)|.

2. BASIC PROPERTIES OF G (L)

Throughout this paper, we shall assume unless otherwise stated, that
L is a distributive lattice with 1 and 0. Our starting point is the
following definition:

Definition 2.1. Let L be a lattice. The intersection graph of filters of
L, denoted by G(L), is the graph with all elements of

V(L) = {{1} # F : F is a proper filter of L}

as vertices and two distinct vertices F; and F; are adjacent if and only
if i NFy #{1}.

Theorem 2.2. Let L be a lattice. Then the following statements hold:
(i) G(L) is an empty graph if and only if V(L) = Max(L) = { P, P»}
or L=4{0,1}.
(ii) G(L) is a complete graph if and only if L is L-domain.
(iii) If a(G(L)) is finite, then a(G(L)) = |[Min(L)].

Proof. (i) Let G(L) be an empty graph. If Max(L) = { P}, then Lemma
1.2 (i) gives F' C P for each filter F' of L; so F N P # {1}. Now since
G(L) is an empty graph, P is the only filter of L. Hence by Proposition
14 (i), P={1}. Let 1 #a € L (soa ¢ P). Since P G T({1,a}) C L,
T({l,a}) = L gives a = (1 A a) < 0; hence a = 0, and so L = {0,1}.
Suppose that [Max(L)| > 2. Since G(L) is empty, P,NP; = {1} for each
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P;, Pj € Max(L). As P, G T(P,UP;) C L, we get L = T(P;UP;) which
implies that P; and P; are minimal filters of L by Proposition 1.2 (ii).
It is enough to show that Max(L) = {P;, P;}. Suppose to the contrary
that P, P; # P, € Max(L). Therefore P, N P, = P, N P; = {1}. Let
a € P. If v € Pj, then x Va € P,NP; = {1} which implies that
z € (1:a);so P C(1:a). Similarly, P, C (1 : a). It follows that
P; = (1:a) = P, a contradiction. Thus Max(L) = {P;, P;}. As P,
and P; are minimal, we get V(L) = Max(L). The other implication is
clear.

(ii) At first we show that if a,b € L with a # b and a V b = 1, then
T({a}) NT({b}) = {1} and T({a}) # T({b}). It w € T({a}) N T({b}),
then a < x and b < x which implies that 1 = a V b < x; hence x = 1.
If T({a}) = T({b}), then a € T({b}) and b € T'({a}) gives a < b and
b < a, a contradiction. Hence T'({a}) # T'({b}). Assume that G (L) is
a complete graph and let a,b € L such that a Vb= 1. If a = b, then
we are done. So we may assume that a # b. Let a # 1 and b # 1. Now
aVb=1gives T({a}) # T({b}) and T({a}) NT({b}) = {1} that is a
contradiction. The other implication is clear.

(iii) By Proposition 1.4 (ii), w(I'(L)) = |Min(L)|. It is enough to
show that a(G(L)) = w(I'(L)). Let {F}, Fs, ..., F,} be an independent
set in G(L); so for every i,j with i # j, F; N F; = {1}. Let a; € F;
(1 <i<mn). Then {ay,as,...,a,} is a vertex set of complete subgraph
in I'(L). So w(I'(L) > a(G(L)). Now, let {ay,as,...} be a clique in
I'(L). Then {T'({a1}),T({az}),...} is an independent set in G(L). So
a(G(L)) > w(['(L)). Hence a(G(L)) = w(I'(L)). O

Example 2.3. Let L = (P(T),U,N, C), where P(T) is the power set
of T' = {t,z}. Then Max(L) = {Py, »}, where P, = {T,{t}} and
Py, ={T,{z}}. It is clear that G (L) is empty.

A cycle of a graph is a path such that the start and end vertices are

the same. For a graph G, it is well-known that if G contains a cycle,
then gr(G) < 2diam(G) + 1.

Theorem 2.4. (i) If L is a lattice such that G(L) is not empty,
then G(L) is connected and diam(G(L)) < 2.
(ii) If L is a lattice, then gr(G(L)) € {3, 00}.

Proof. (i) Let F} and Fy be distinct elements of V(L). We need to show
there is a path connects Fy and Fy, if Fy N Fy # {1}, then we are done.
So we may assume that F; N Fy, = {1}. By Proposition 1.2 (i), there
exist maximal filters P, P, of L such that F; C P, and F;, C P,. If
Fy N Py, # {1}, then F} — P, — F, is a path between F; and Fy. If
F, N Py # {1}, then F; — P, — F, is a path between F; and Fy. If
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FiNP,={1}and FoN P, = {1}, then F} and F, are minimal filters of
L by Proposition 1.2 (ii) since T(Fy U Py) = L = T(F, U P;). We show
that T'(Fy U Fy) # L. Assume to the contrary, T'(F; U Fy) = L. Then
by Proposition 1.3 (i),

PL=PNL=PNT(FUFR)=T(F,UPNE))=T(F)=F.

Similarly, P, = F,. If p € Py, then P, C (1:p); thus P, = (1:p) = P,
a contradiction. So T'(Fy U F3) is a proper filter of L and

F—T(FLUFR) - F

is a path between F; and Fy. Hence diam(G(L)) < 2.

(ii) Suppose that G(L) contains a cycle. We may assume that
gr(G(L)) < 5. Suppose that gr(G(L)) = n, where n € {4,5} and
let Fy — Fy...F, — F; be a cycle of minimum length in G(L). Since
F} is not adjacent to F3, F; N Fy = {1}. We show that Fy N Fy, # Fy.
Otherwise, Fy C Fy gives Fo N F3 C Fy N F3 = {1}, a contradiction. If
F1 N Fg 7é Fl, then F1 — F1 N F2 — F2 — F1 is a cycle in Q(L) that is a
contradiction. So we may assume that F} N Fy, = F}. Hence F; C Fs.
Since Fy, Fy are not adjacent, F, N Fy = {1}. Clearly, F; N F3 # F3.
If 5N F3 # Fy, then Fy — Fy N Fy — F3 — Fy is a cycle in G(L) which
is a contradiction. So Fy N F3 = F5; hence F, C F3. It follows that
FiNF; = Fy # {1}, a contradiction. Therefore, there must be a shorter
cycle in G(L) and gr(G(L)) = 3. O

The following example shows that the condition “distributive” is not
superficial, in Theorem 2.4.

Example 2.5. Let L be the lattice as in Figure 1.

1

FIGURE 1.

Since a A (bV d) # (a Ab)V (a Ad), L is not distributive. Set
S1 =Aa,c, 1}, Sy = {b,c,1} and S35 = {1,d}. Then Si, S and S; are
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maximal filters of L. It is clear that another filter of L is Sy = {1, ¢}
and G(L) is not connected.

The degree of a vertex a in the graph G is the number of edges of G
incident with a and denoted by deg(a).

Theorem 2.6. Let L be a lattice. Then G(L) is finite if and only if
deg(P) is finite for some mazximal filter P of L.

Proof. At first we show that there is at most one filter F' of L such
that P is not adjacent to F. Let F; and F; be filters of L such that
FiNP=TFRNP=1{1}. Then T(FUP) = L = T(F, U P); so
Fy, Fy are minimal filters of L by Proposition 1.2 (ii). So there exist
a € Fy,be Fyand pi,ps € P such that a Ap; < 0 and b A py < 0;
hence a Ap; = 0 and bApy = 0. Since a Vb € Fi N F, = {1},
a Vb= 1. By assumption, (p; Aps) Aa =0 and (p; A p2) Ab=0 gives
(p1 Ap2) A(aVb) =pi Aps =0 € P which is a contradiction. It follows
that deg(P) = |G(L)| — 1 or deg(P) = |G(L)| — 2; hence G(L) is finite
if and only if deg(P) is finite. O]

Theorem 2.7. Let L be a lattice. Then G (L) is finite if and only if
w(G (L)) is finite.

Proof. By assumption, it suffices to show that if w(G(L)) is finite, then
G (L) is finite. At first we show that if F}, F5 and F3 are minimal
filters of L, then T'(F} U Fy) # T(F; U F3). Assume to the contrary,
T(Fl U FQ) = T(Fl U Fg) Let 1 7£ a € FQ. Then a € T(Fl U Fg)
givesa = (bAc)Va <aVband a = (bAc)Va < aVc for some
b € F; and ¢ € F3 which implies that ¢V a,b V a € F; since F} is
a filter; hence cVa € FoNF3 = {1} and bVa € Fo,NF = {1}.
Thus b,c € (1 : a) gives bAc € (1 : a) since (1 : a) is a filter; so
a= (bAc)Va=1,a contradiction. Thus T(Fy U Fy) # T(F, U F3).
Now we claim that the number of minimal filters of L is finite. Assume
to the contrary, let {F;};cn be an infinite set of minimal filters of L.
Clearly, T'(F;UF;) # T(F;UFy) for i, j, k € A. Hence for minimal filter
F; of L we have the infinite complete subgraph {T'(F; U Fj)},ea which
is a contradiction. Therefore L contains only finite number of minimal
filters. Since w(G (L)) is finite, each filter of L contains a minimal filter.
Now if G(L) is infinite, then there are infinite filters which contain
common minimal filter which is a contradiction. O

Proposition 2.8. Let L be a lattice. If Max(L) = {P, Ps,...,P,}
with N, P, = {1}, then each filter of L is of the form MieaP;, where
AC{1,2,...,n}.
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Proof. Let F be a filter of L. If there exists exactly one filter, say P,
of L such that FF ¢ Py, then T(FUP;) = L and F C N, ;. Therefore

NP, =N, P,NT(FUP) =T(FU(M_,PNP)) =T(F)=F

by Proposition 1.3 (i). So we may assume that there exist at least two
maximal filters P;, P; of L such that F ¢ P;, P;. Let F' C M;eaP; and
F ¢ Uy Py, where A C {1,2,...,n} and A" = {1,2,...,n} \ A. At first
we show L = T(F U (Niea B;)). Clearly, 0 € L = T(F U B;) for each
i € N'. So for each i € A’, there exist a; € F' and p; € P; such that
((li Apz) S O, SO a; /\pz =0.If N = {il,ig, ...,it}, then

ail/\aiQ/\---/\ait/\pil:O,...,ail/\aig/\---/\ait/\pit:O;

hence (a;; A ay, A~ ANai,) N (piy Vi, V---Vp;,) = 0. This implies
0 € T(FU (NiearPy)); thus L = T(F U (NiearP;)). Then F C Miep P
gives

mz'eAPi = T(F U (mieA'Pi)) N (miEA]Di)
=T(F U ((Nieal?) N (Nien F1)))
=T(F)
=F
by Proposition 1.3 (i). O

Theorem 2.9. Let L be a lattice. If Max(L) = {P, P, ..., P,} with
N, P = {1}, then w(G(L)) =21 — 1.

Proof. Let A; = {Py,...,Pi_1,Pi41,...,P,} and P(A;), the power set
of A; (1 <i <mn). For each D; € P(A;), set Sp, = Vpep,B (so it is a
filter of L). Then the subgraph of G (L) with vertex set {Sp,}p,cpr(a,)
is a complete subgraph of G(L) (if Sx and Sy are two non-adjacent
filter of L for X, Y € P(A;), then there is a maximal filter which is not
adjacent to more than one filter of L that is a contradiction). Since
|P(A)\{}| = 2" =1, w(G(L)) > 2"~ — 1. By Proposition 2.8, L
has 2™ — 2 proper filter. An inspection will show that all filters of L
has complement. Now, let

QO={FR F,. ..}

be a complete subgraph of G(L). We partition the filters of L in parts
Vi,Va, ..., Von—1_1 such that each part contains the filter F' and its
complement. Now if |Q2] > 277! — 1, then at least two of the elements
of €2 are in the same part which is a contradiction. So

w(G(L)) =271 — 1.
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Theorem 2.10. Let L be a lattice. Then the following hold:

(i) If G(L) contains a vertex F' with degree 1, then F' is maximal
if and only if | V(L)| = 2.

(i) If G(L) contains a vertex F with degree 1, then F is not
mazximal and Max(L) = {P} if and only if V(L) = {F, P}
or V(L) ={F,E, P}, where P € Max(L) and F, E € Min(L).

(iii) IfG(L) contains a vertex F' with degree 1, then F' is not mazximal
and |Max(L)| # 1 if and only if V(L) = {F, E, P, P'}, where
P, P € Max(L) and F, E € Min(L).

Proof. (i) Let F be a vertex of L with degree 1. At first we show
that |Max(L)| < 2. Suppose to the contrary that F, P, P, € Max(L).
Since F' is a maximal filter, there is at most one filter ' of L such
that £ N F = {1}. If E is maximal, then F and F are minimal
filters by Proposition 1.2 (ii); hence G(L) is an empty graph which
is a contradiction. So we may assume that E is not maximal. So
FNP # {1} and FN P, # {1} which makes the degree of F' more
than 1 and it is a contradiction. Thus |Max(L)| < 2. If |Max(L)| = 2,
then F"N P # {1} for some maximal filter P of L; so F' is adjacent
to P and P N F which is a contradiction. Thus Max(L) = {F'}. Now
deg(F) = 1 gives | V(L)| = 2. The other implication is clear.

(ii) Clearly, ' C P (so FNP # {1}). Since deg(F) =1, F is a
minimal filter of L. We claim that [Min(L)| < 2. If F, E,G € Min(L),
then FNE = {1} and FNG = {1}. Now FF C T(F U E) and
F C T(F UG) gives a contradiction since deg(F) = 1. Thus
IMin(L)| < 2. If Min(L) = 1 (so Min(L) = {F}), then we show
that the graph G(L) has two vertices F' and P. Suppose G is another
filter of L. If FF C G, then G = F or G = P since deg(F') = 1; hence
V(L) = {F,P}. If F € G, then Min(L) = {F} implies E & G for some
filter £ of L. Since F' is minimal, 'V F' = {1}; so there is an element
x € E such that x ¢ F. So x € FFUFE and

FCFUECT(FUE)CP
gives T'(FU E) = P since deg(F) =1. As E C G,
G=GNP=GNT(EUF)=T(EU(GVF)=T(E)=FE

by Proposition 1.3 (i), a contradiction. Therefore FF' C G and
V(L) = {F,P}. Now suppose that Min(L) = {F,E}. Clearly,
T(EUF) = P. We claim that for each filter H of L, H adjacent
to For E. If HVF = {1}, then F & HUF C T(HUF) which implies
that deg(F') # 1, a contradiction. Thus F'V H # {1} or EN H # {1}.
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Since deg(F) = 1 and F' is minimal, we get H V F' = {1}; hence
E Vv H # {1}. Since E C H, Proposition 1.3 (i) gives
H=HNP=HNT(EUF)=T(EU(FNH))=E,

hence V(L) = {F, E, P}. Conversely, if V(L) = {F, P}, then F C P;
sodeg(F)=1. If V(L) ={F,E, P}, then F;E C Pand EV F = {1};
so deg(F) = 1 = deg(F).

(iii) At first we show that if F' is a minimal filter of a lattice L, then
there is at most one maximal filter P such that F' is not adjacent to P.

Suppose the result is false. Assume that there are two maximal filters
P and P, such that PyNF = {1} and P, N F = {1}; so

T(FUP) =L=T(FUDP,).

Then there exist a,b € F, py € P, and py € P, such that a Ap; <0
and b A py < 0 which implies that a A p; = 0 = b A ps. Therefore
aANbAp=0and a ANbA py =0 gives

(@aNb)N(prVp2)=0eT(FN(PNP);
hence T'(F'N (P, N Py) = L. By Proposition 1.3 (i), since PN P, C Py,

we have
P =PNT(FU(P,VP))

=T(PNP)

=P Nk
which is a contradiction. Hence |Max(L)| = 2. Let Max(L) = { P, P»}
and FF C P;. Clearly, F NP, = {1}. We claim that for every
non-maximal filter G of L, T(G U F') # L. Assume to the contrary, let
T(GUF) = L. Then F C P, gives P, = P,NT(GUF) = T(FU(GNP,)).
If G C Py, then P, = L which is a contradiction. If G C P,, then

P=PNT(FUG) =T(GU(FNR))=T(G) =G,

a contradiction. Thus T'(G U G) # L. Now since deg(F) =1, F C P,
and FF C T(FUG), we get T(FUG) = P, for each non-maximal filter
G of L. Take G C P,. Again G C P; gives

PNP=PNT(PLUG)=T(GU(PNG)) =G;

hence V(L) = {F, P, P,, PiNP,}. Conversely, let V(L) = {F, E, P', P}.
If PN P = {1}, then P and P’ are minimal filters of L; hence G(L) is

an empty graph (since F and F are minimal filters), a contradiction.
Thus PN P’ # {1} is a filter of L such that it is either F' or E. We may
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assume that PN P’ = F; so ' C P, P'. On the other hand £ C P, so
E ¢ P'. Therefore EN P" = {1}; hence deg(E) = 1. O

Theorem 2.11. Assume that L is a lattice and let G(L) be a complete
r-partite graph. Then at most one part has more than two vertex. In
particular, |V(L)| =r orr+ 1.

Proof. Suppose Min(L) = {F;}iea. As F;NF; = {1}, all minimal filters
of L are in the same part, say ;. We claim that there is at most two
minimal filters in this part. Assume that Fj, F; and Fj are distinct
minimal filters of L and let ¢ € T(F; U Fj) N Fi. Then

(anb)Ve=c=(aVc)N(bVc) € Fy

for some @ € F; and b € F;. By Lemma 1.1 (a), aVc e F,NF, = {1}
and bV c € F; N F, = {1}; hence ¢ = 1. Thus T'(F; U F;) N Fy, = {1}.
But G(L) is complete r-partite implies T'(F; U F;) N F; = {1} which is a
contradiction. Hence there is at most two filters in the part V;. Now we
show that other parts contain only one filter. Let E be a non-minimal
filter of L. Since G(L) is complete r-partite, £ contains a minimal
filter, say FE;. If there exists a minimal filter F5 such that Ej Q E,
then £ N Ey = {1} implies £ € V; which is a contradiction. Hence all
non-minimal filters contain all minimal filters in the part V;. Therefore
for all filters £, F' which are not minimal ENF # {1}. Hence the only
part which has more than one vertex is V;. The in particular statement
is clear. 0J

3. PLANARITY OF G (L)

In this section, we characterize all planar graph G(L). Recall that
a planar graph is a graph that can be embedded on the plane, that
is, it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. Kuratowski provided a nice characterization
of planar graphs, which now is known as Kuratowski’s Theorem: A
graph is planar if and only if it does not contain a subdivision of K5 or
K3,3.

Proposition 3.1. Assume that L is a lattice and let G(L) is a planar
graph. Then |max(L)| < 3. Moreover, if lmax(L)| = 3, then L is
semi-simple with | V(L) | = 6.

Proof. Suppose on the contrary, Py, Py, P3, Py € Max(L). If for each
filter F' of L, F N P # {1}, then PPN P, N Py # {1} and
P,N P; # {1} for each P,, P; € Max(L); so the induced subgraph G(L)
on {Py, Py, Py, PLNP,, PLNP,NPs} is isomorphic to K5, by Kuratowski’s
Theorem G(L) is not planar which is impossible. If there exists a filter
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F such that FF'N P, = {1}, then T(F U P,) = L gives F is minimal.
As a minimal filter, F' is not adjacent to at most one maximal filter, so
we may assume that F'N P, = {1}. Thus {F, P, P5, P;, P, N P3N Py}
makes K5 in G(L) that is a contradiction.

Let Max(L) = { P, P», Ps}. If Jac(L) # {1}, then

{P17P27P37P1mPQ?-lePQmP-?)}

makes Kj in G(L) which is impossible. So we may assume that
Jac(L) = {1}; hence L is a semi-simple lattice by Proposition 1.2
(iii). Now for each ¢ (1 < ¢ < 3), there exists a filter F; such that
T(P,UF;) =L and P,N F; = {1}; thus F; is simple for i = 1,2,3. As
T(FyUF,UFs) ¢ P for each P; € Max(L), we get T(Fi1UF,UFs) = L
(because every filter must be contained in a maximal filter). We can
assume that F1 Q PQ, F2 Q P3 and F3 Q Pl. Since F1 N P1 = {1}7
PN Fy # {1}. Now F5 is simple gives, F, C P;. By Proposition 1.3
(i), F5 C Py gives

P =P NT(FU(FLUF))
=T(FU(FLUF)NPR))
=T(F3U((PLNF)U(PLNFEFy)))
=T(F3UF).

So P, = T(F3U F,). Similarly, P; = T(F; U Fy,) for k,j # i. Now
let E be a filter of L which is not minimal and maximal. Since G(L)
is planar, E' contains a simple filter, say Fj. Clearly if F, C E, then
F1 U F2 Q E giVGS T(Fl U FQ) Q E. But T(Fl U FQ) = Pg 1mphes
E = Mj which is a contradiction. Similarly, if F3 C F, E = M, a
contradiction. So FoNE = F5sNE = {1}. Let x € ENT(F, U F3).
Then

r=(aANb)Ve=(xVa)AN(zVb) eFE

for some a € F, and b € Fj5. It follows that xVa,xVb € E which implies
that zVa = 1 = zVb; hence x = 1. Thus ENT(FyUF;) = ENP, = {1}.
Now by Proposition 1.2 (ii), F is simple which is a contradiction. Thus

V(L):{F17F27F37P17P27P3}' ]

Theorem 3.2. Assume that L is a lattice and let G(L) be a planar
graph. Then |V(L)| < 7.

Proof. Since G(L) is a planar, [Max(L)| < 3 and if |[Max(L)| = 3, then
|[V(L)| = 6 by Proposition 3.1. So we may assume that Max(L)| < 2.
Now we split the proof into two cases. .
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Case 1. Max(L)| = 2. At first we show that |Min(L)| < 2. Suppose
the result is false and let Min(L) = {F, E,G}. Then T(FUE), T(FUQG)
and T'(F U @) are proper filters of L and

T(FUE)#T(FUG)#T(EUQG)

(see Theorem 2.7). Let Max(L) = { Py, P»}. Since every proper filter of
L is contained in a maximal filter, without lose of generality, Suppose
T(FUE)and T(F UG) contained in Pi; so F, E,G C P;. Also, we
know that for a maximal filter P,, there is at most one minimal filter
which is not contained in P,. Let F, E C P,. Then

{P,,T(FUE), Py, E,F,T(FUK)}

makes K33 as a subgraph of G(L), which is impossible.  Thus
IMin(L)| < 2. Now we show that |V(L)] < 5. Assume to the
contrary, |V(L) | > 6. If Min(L) = {F'}, then G(L) is a planar gives
F C H for each filter H of L; hence G(L) is a complete graph, which
is a contradiction. So we may assume that Min(L) = {F, E'}.

If P, N P, is a minimal filter of L, we put P, N P, = F. Then
ENF = {1} gives cither EZ Pyor EZ P,. Let EZ P, (so E C P).
Then P, G T(E U P,) gives T(EU P,) = L. Since E C Py, we get

P=PNT(EUPR)=T(EU(PPNP))=T(EUF).

Let H be a filter of L which is not minimal and maximal. We claim
that £ ¢ H. Assume to the contrary, E C H. Then H ¢ P»; hence
HCP andT(PLUH) = L. If LNH = {1}, then H is minimal
by Proposition 1.2 (ii), a contradiction. Thus P, N H # {1}. Also
HNP,=(HNP)NP,=HnNF # {1} which implies that F C H.
Then FUF C H gives P, =T(EUF) C H; hence H = Py, which is
impossible. Thus E ¢ H. since G (L) is a planar graph and H is not
minimal, H contains minimal filter F'. We show that T(EUH) # Py, L.
If T(EUH) = Py, then HC P, gives

P =T(HU(P,NP))=T(HUF)=T(H)=H,

a contradiction. If T(EU H) = L, then H G Py (for if H C Py, then
FEUH C P;;80 T(EUH) =L C Py, a contradiction). Thus H C P,
and T(HUP, = L. As H C Py,

P=RNT(HUP)=T(HN(P,NP))=T(HNF)=H,
which is impossible. Therefore T(E' U H) # Py, L. Hence
V(L) = {F,H, Fy, T(H U E), P,, P>}



358 EBRAHIMI, KHORAMDEL, DOLATI AND NIKMARD

makes K5 in G(L), which is a contradiction.

So we may assume that P; N P is not a minimal filter. Then there
is a simple filter F' such that F* C P, N P,. Let G be another filter
of L. Let E C P, N P,. Since (G is not simple, it contains a simple
filter. If FF C @G, then {F,G, P, N Py, P;, P,} makes K5, which is a
contradiction. If £ C G, then {E, G, P, N Py, P, P,} makes K5, which
is a contradiction. So we may assume that £ G PiN P,. Then E G Py
or EG P,. We may assume that £ G Py; hence E C Py. As E S P,
T(FUE)# P NP, Also, T(FUFE) # P, (if T(FUEFE) = Py, then
F C P, gives

PiNP,=PNT(EUF)=T(FU(ENR))=T(F)=F,

a contradiction. Hence {F, Py, P,, T(EUF'), PN Py} makes K5 in G(L),
which is a contradiction. Thus |V(L)| < 5.

Case 2. Max(L) = {P}. If Min(L) = {F, E'}, then we show that
V(L) | <5 IfT(FUE) = P, then V(L) = {F, E, P} and we are done.
So we may assume that T(F' U E) # P. Let G, H be another filters
of L. If F C G,H, then {F,G,H, T(FUE), P} makes K5 in G(L), a
contradiction. Suppose E € G, F & H. So F C G, E C H. Clearly,
T(EUG) # T(FUH) # P. Hence {F,G,T(F U H),T(F U E), P}
makes K5, a contradiction. If Min(L) = {F, E, G}, then show that
V(L) | <7. U T(FUEUG) % P, then

{IT'(FUE), T(FUG), T(FUEUQG), P, F}

makes K5 in G(L) which is a contradiction. So we may assume that
T(FUEUG) = P. Let H be a filter of L. Since G(L) is a planar, H
contains a minimal filter, say F. If HN E = {1} = H N G, Then

H=HnNP

=HNT(FUEUQG)

=T(FUHN(FUG)))

=T(F)

=F
If F,E C H with HNG = {1}, then by the similar way H = T(FUE).
Similarly, if F, ;G C H, then H = P. Hence

V(L)={F,E,G,T(FUE), T(FUG), T(EUQG), P}.
O
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