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Abstract

The spatio-temporal (ST) clustering is a relatively new field in data
mining with a great popularity, especially in the geographic
information. The moving objects are a type of ST data where the
available information on these objects includes their last position. The
strategy of performing the clustering operation on all-time sequences
is used for clustering the moving objects. The problem with density-
based clustering, which uses this strategy, is that the density of
clusters may change at any point in time due to the displacement of
points. Hence, the input parameters of an algorithm like DBSCAN
objective Optimization, Clustering used to cluster the moving objects will change, and have to be
Moving Objects, Cluster Validity determined again. The DBSCAN-based methods have been proposed
Index. so far, assuming that the value of the input parameters is fixed over
time and does not provide a solution for their automatic
determination. Nonetheless, with the objects moving and the density
of the clusters changing, these parameters have to be determined
appropriately again at each time interval. This work uses a dynamic
multi-objective genetic algorithm in order to determine the
parameters of the DBSCAN algorithm dynamically and automatically
to solve this problem. The proposed algorithm in each time interval
uses the clustering information of the previous time interval to
determine the parameters. The Beijing traffic control data is used as a
moving dataset in order to evaluate the proposed algorithm. The
experiments show that using the proposed algorithm for dynamic
determination of the DBSCAN input parameters outperforms
DBSCAN with fixed input parameters over time in terms of the
Silhouette and Outlier indices.
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1. Introduction

The spatio-temporal (ST) clustering refers to the
process of grouping objects based on their spatial
and temporal similarities. Indeed, ST data
clustering does not much differ from spatial data
clustering. All the related studies try to introduce
the concept of time as a threshold into data or
algorithms either by distance functions or even to
transform the problem of ST clustering into a
multi-stage spatial data clustering. The strategy of
performing clustering operations on all-time
sequences is used for clustering the moving

objects [1]. The problem with density-based
clustering that uses this strategy is that the density
of clusters may change at any point in time due to
the displacement of points (Figure 1). Hence, the
input parameters of these algorithms change and
need to be reset. The DBSCAN algorithm is a
widely used algorithm among the density-based
clustering algorithms. The algorithm needs two
input parameters, Eps and MinPts, and can detect
clusters with various shapes and outliers.
However, determining the input parameters of this
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algorithm is hard, and the value of the parameters
has a significant effect on the clustering result. An
automated method called MOGA-DBSCAN has
been presented in [2] in order to determine these
parameters in a static environment. In this
method, the DBSCAN clustering is considered as
a multi-objective optimization problem. To this
end, a multi-objective genetic algorithm is used,
with each chromosome consisting of two genes
representing the values of the parameters Eps and
MinPts. Nonetheless, no method has been
presented to determine the input parameters in
dynamic environments, and in all solutions for
clustering in dynamic environments, the input
values of the parameters have been considered
constant over time. For instance, performing the
DBSCAN algorithm on all-time sequences is used
in [3] to cluster the moving objects. In this
method, an incremental technique is used to
reduce the computational cost. In this method,
first, the DBSCAN algorithm is performed, and
the position of the points is stored in the memory.
In the following time intervals, the points are
checked, and only those that have moved are
placed in one of the clusters according to their
distance from the clusters. Nevertheless, this
method considers the DBSCAN parameters
constant over time, and does not provide a
solution for their automatic determination.
However, these parameters have to be determined
again appropriately in each period by moving the
points and changing the density of the clusters.

Figure 1. Changing density of clusters related to
moving objects.

Among the clustering methods related to the
clustering of moving objects, trajectory clustering
and incremental clustering can be cited.
Trajectory clustering refers to the clustering of
moving objects that behave similarly over time
(similar paths or similar destinations) and differs
from the clustering of moving objects that occurs
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at any given time interval. In other words, in
trajectory clustering, a cluster is a fixed set of
objects over their lifetime, whereas in the moving
object clustering, the contents of a cluster may
change over time. The incremental clustering
algorithms are used to cluster the moving objects
[3, 4]. In these algorithms, in order to reduce the
computational cost and increase the speed, the
clustering algorithm is usually fully performed in
the first time interval, and in the subsequent time
intervals, the same initial clusters are used to
cluster the moving objects so that each data object
is placed inside one of the clusters according to its
new location; these algorithms are practical only
when a small percentage of objects are moved,
and this is not true of the problem of moving
objects where all points can potentially move. In
the following, we review a number of proposed
solutions that use incremental clustering. In [5], a
DBSCAN-based incremental clustering method is
proposed. In this method, first, the DBSCAN
algorithm is performed, and in the next time
intervals, the dataset is checked incrementally so
that each point is located in one of the clusters
according to the DBSCAN algorithm. The paper
has assumed that removing or adding a new object
only affects data objects that are in its vicinity.
Updating is done in batches, and it is assumed that
these updated items are a small percentage of the
dataset. Hence, the density of the clusters is not
affected, and there is no need to determine the
DBSCAN parameters again. However, this
assumption is not true for moving objects. In [6],
an incremental clustering method based on
DBSCAN provided that instead of adding new
data to the clusters each time, some new data are
first clustered, and the new clusters are merged
with the previous clusters. This is used where a
large number of new data is entered at any one
time. This method, like the previous method,
assumes that the data movement consists of only a
small percentage of data, and the density of the
clusters does not change much. In a sharp change
in density, the DBSCAN algorithm must be
performed again. However, it does not offer a
solution to determine the parameters of the
DBSCAN algorithm. In [7, 8], the authors have
used the search space segmentation to place the
new object in the appropriate cluster. For doing
so, the search space is divided into k parts, the
DBSCAN clustering algorithm is performed in
each part, the dense regions are merged, and a
new point is added to the nearest part cluster. This
method increases the clustering speed. In this
method, too, it is assumed that the DBSCAN
parameters do not change over time. In [9], first,
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the EPS parameter values are determined, and
multi-density clustering is performed. The new
points then join the created clusters. In the
incremental methods, it is assumed that the
DBSCAN parameters do not change over time,
and it is necessary to re-implement the DBSCAN
and reset its parameters if there is a large change
in the structure of the clusters. Reference [10]
presents a parallel method for the incremental data
flow clustering according to the DBSCAN
algorithm. The segmentation technique is used in
this method, and each part is incrementally
clustered. This method relies on the parameters of
the DBSCAN algorithm, determined by the user at
the beginning of the clustering, and is assumed
not to change until the end of the clustering.

The solutions proposed for clustering the moving
objects based on the DBSCAN algorithm
presented so far do not provide a solution for the
automatic and dynamic determination of the input
parameters. In this paper, a method for automatic
determination of the DBSCAN algorithm
parameters in dynamic environments is presented
so that it can be used in conjunction with moving
object clustering methods when there are
significant changes in the environment. The
dynamic multi-objective genetic algorithm is used
to determine the parameters of the DBSCAN
algorithm dynamically and automatically to solve
this problem in the proposed solution. The
dynamic multi-objective optimization algorithms
have the opportunity to find optimal solutions at
that time before changes occur (t7). After the
changes in the problem, the values of the
objective functions of the solutions change and
the algorithm once again has the opportunity to
find the optimal solutions before the changes
occur. The process goes on up to the last
generation of the algorithm. The proposed method
will use the information of the previous clustering
to determine the parameters, which reduces the
calculations such as redefining the parameter
range. In the proposed solution, the clustering
problem is considered as a dynamic multi-
objective optimization problem. By using this
algorithm, new responses are generated in each
period based on the changes in the environment.
The advantage of wusing a multi-objective
optimization algorithm is to generate a set of
responses instead of a single one that enables the
user to select the proper clustering for the dataset
about which there is no prior knowledge.
Simultaneous optimization of more than one index
increases the quality of clustering outcomes too.
The rest of the paper is organized as what follows.
Section 2 describes the related concepts such as
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the DBSCAN algorithm, ST data, multi-objective
optimization, Delaunay Triangulation, and the
MOGA-DBSCAN algorithm. Section 3 shows the
proposed algorithm for determining the DBSCAN
parameters in dynamic environments. The
implementation results are evaluated in Section 4,
and Section 5 presents the conclusions.

2. Related Concepts

This section describes the algorithms and concepts
used in the proposed method to determine the
DBSCAN parameters automatically in dynamic
environments.

2.1. DBSCAN clustering

The DBSCAN algorithm relies on a density-based
notion of the cluster, and is the most prevalent
density-based clustering algorithm [11]. This type
of clustering, which has been designed to detect
clusters of arbitrary shapes, is also capable of
finding outliers. The DBSCAN algorithm has the
following two parameters:

e Eps: the radius of the neighborhood
around a point x

e MinPts: the minimum number of
neighbors within the “Eps” radius

Some concepts of DBSCAN are defined as
follows:

e Core point: a point that has at least
the minimum number of points
(MinPts) in the neighborhood radius

(Eps).

o Directly density-reachable: a point p
is directly density-reachable from a
point q with regard to the parameters
Eps and MinPts if p is within the
neighborhood radius of g, and g is a
core point.

e Density-reachable: a point p s
density-reachable from a point q with
regard to Eps and MinPts if there is a
chain of points p;...p, where p, = q
and p, = p such that p;. is directly
density-reachable from pi.

The DBSCAN algorithm comprises the following
steps:

e Selection of an arbitrary point p.

e Retrieval of all points that are density-
reachable from p with regard to Eps and
MinPts.

e If pisacore point, the cluster is created.

e If pis not a core point, no points are
density-reachable from p, and DBSCAN
visits the next point in the database.
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e This process is continued until all points
are processed.

The points that are not included in clusters are
considered outliers. The time complexity of
DBSCAN is O(n?), where n is the number of
points. If a spatial index is used, the time
complexity will be O(nlogn). If the Eps and
MinPts parameters are adjusted appropriately, the
algorithm will effectively determine the clusters
of arbitrary shapes.

2.2. ST data

ST clustering is a relatively new field in data
mining with a great popularity, especially in
geographic information, because of the prevalence
of all types of location-based devices that
instantly ~ record the location, time or
environmental characteristics of an object. In real
applications, several different types of ST data
exist. In [1], a possible classification of data
objects is shown based on two temporal and
spatial dimensions. In the following, we briefly
describe the main classes of data types obtained
for the data objects.

e ST events: A basic sample of ST
information is ST events like earthquakes
gained by sensors or geographically
referenced records of an epidemic.

e Geo-referenced variables: When it is
possible to see the evolution of a
phenomenon over time in a fixed location.

e Geo-referenced time series: In a more
complex situation, it is possible to store
the whole history of an evolving object.
Hence, it is possible to provide time series
(with geo-reference) for the measured
variables.

e Moving objects: When the spatial location
of a data object changes over time, we
face the moving objects. In its simplest
form, the information available about
these objects includes their last position,
and does not maintain a sequence of
previous positions like instantaneous
monitoring of vehicles for security uses.
Clustering is applied to any time sequence
in the problem of clustering moving
objects. The clustering algorithms are
commonly used to cluster the actual
data such as a group of migrating
animals and the number of cars
moving in a city [3].

o Trajectories: When the entire history of a
moving object is stored and available for
analysis. Trajectories explain the mobility
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behavior of objects, and so clustering can
be used to identify the objects that behave
similarly.

2.3. Multi-objective optimization
Multi-objective algorithms provide a set of non-
dominated solutions in the target space. This set
of non-dominated solutions prepares valuable
information about the problem such that,
depending on the designer’s or decision maker’s
needs, the best solution is selected in the end.

A formal definition of the multi-objective
optimization problem is presented as follows [12,
13]:

Q:[xl,xz, ,xn]T

gi<§)20, i=12,...,m

h(X)=0, i=12..,p @
F(0)=[ LX) (X £ (%)

A solution X is a vector of n decision variables,
which satisfies the m inequality (g, (})) and the p
equality constraints (h( X)) and optimizes the

vector function (f_( K)) as a maximization or
minimization.

Based on the given constraints, a feasible space F
that includes all acceptable solutions is defined.
MOGA tries to promote the convergence of
solutions toward the Pareto optimal front. After
considering the optimization as a minimization

problem, a decision vector X" can be regarded as a
part of the Pareto optimal front if and only if there

is no vector X that can dominate X :
Viel2,.. .k f (%)= 1, (I)

_ — 2
Bie12...k,(X)> (X

where K is the number of objective functions.

The optimization problems are divided into static
and dynamic classes [14]. The objective functions
do not change over time in static optimization
problems, yet the objective functions change over
time in the dynamic optimization problems.
Unlike the static multi-objective optimization
problems, the optimal solutions change over time
in  dynamic  multi-objective  optimization
problems, and the dynamic multi-objective
optimization algorithm must adapt to these
changes. In better words, dynamic optimization
tries to follow the optimal solutions. The dynamic
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multi-objective optimization algorithms could find
the optimal solutions before the changes happen,
and the values of the solutions' objective functions
change after changes in the problem, and the
algorithm once again could find the optimal
solutions before changes happen. This goes on
until the last generation of the algorithm. The
parameters of  dynamic multi-objective
optimization algorithms are used to adjust their
performance. These parameters are defined as
follows:

e 1 This parameter indicates the generation
number of the current population.

e 1t1: This parameter is called “change
frequency” and the environment changes
once for each tr generation. In other
words, the dynamic multi-objective
optimization algorithm could find optimal
solutions up to tr generation, and then the
environment changes, and the dynamic
multi-objective optimization algorithm
has the opportunity to find optimal
solutions again up to the t generation.
For instance, if tl is the first generation
and tr is ten, then the environment
changes in the eleventh generation, the
dynamic multi-objective  optimization
algorithm has the chance to search for
optimal solutions up to the eleventh
generation.

® Tmae This is the maximum number of
generations that a dynamic multi-
objective optimization algorithm
generates. In other words, this parameter
determines the end condition of the

dynamic multi-objective  optimization
algorithm.
Non-Sorting Genetic  Algorithm—II  (NSGA-II

algorithm) [15], one of the most successful multi-
objective optimization algorithms and a reference
algorithm  for  multi-objective  optimization
researchers, was developed by Deb et al. for the
dynamic multi-objective optimization problems.
In a dynamic state, this algorithm re-evaluates the
entire population by detecting the occurrence of a
change in the environment, and one of the
following two approaches is adopted to increase
the diversity:

e The percentage of the population is
replaced by random solutions (Dynamic
NSGA-II-A).
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e Some members of the population are
randomly selected and mutated (Dynamic
NSGA-II-B).

2.4 Delaunay triangulation
In mathematics and calculus geometry, a
Delaunay triangulation is denoted by D(S) for a
set S of points in a plane so that no point in S is
inside the circumcircle of any triangle in D(S) [16,
17]. This triangulation developed by Boris
Delaunay and is used in different applications of
geographic information systems (GIS).

{xeR* IV, d(x p)<d(x p,) 3)
If there is a set of points S = {po, P1,..., Pr.i} ON @
plane, the VVoronoi re2qi0n of the point p;e Sis a
set of points in the R“ where p; is in their nearest
neighbor. In Equation 3, d is the distance function.
The Voronoi diagram is formed by n Voronoi
regions of S. These regions are convex polygons
with separate inner spaces. Based on the Voronoi
diagram, the Delaunay triangulation is defined as
a planar graph as follows: the nodes of D(S)
include the data points of S, and the two nodes pi
and p; are connected by an edge if the borders of
their Voronoi regions have a shared line. Figure 2
shows the Delaunay triangulation of 15 points.

Figure 2. Delaunay triangulation of 15 points [17].

2.5. MOGA-DBSCAN
Algorithm 1 shows the steps in the MOGA-
DBSCAN [2]. In step 1, the initial population is
randomly determined in the bounds specified by
the Delaunay triangulation algorithm. The Eps
and MinPts bounds are determined as follows
using the Delaunay triangulation:

1. The length of the shortest edge < Eps <
the average length of edges

2. For every point, the number of neighbors
in a radius equal to the average length of edges is
obtained, and subsequently, the minimum and
maximum numbers of neighbors are regarded as
the MinPts bounds.

In step 2, the DBSCAN algorithm is first run by
each member of the initial population, which are
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the parameters of the DBSCAN algorithm, and the
clustering results are evaluated by internal
validation indices used as the objective functions,
and the fitting values are obtained for the initial
population. In step 5, the mutation and cross-over
operators are used for generating new solutions.
These solutions are generated to optimize the
objectives. The objectives to be optimized might
express various features of the clusters such as
compactness, separation, and connectedness. The
simultaneous optimization of multiple indices is
more useful for attaining different features. This is
because no cluster validity index operates in the
same way for various types of datasets. As there is
no need to know the accurate clustering in the
internal cluster validity indices, they are used as
the objective functions of MOGA. In each
generation, the DBSCAN algorithm is run with
new solutions. Subsequently, every solution
vector includes the two DBSCAN parameters.
Then the clustering result is evaluated by the
objective functions (step 6). The different values
of the DBSCAN parameters and the validity
indices form the search space.

Algorithm 1: Pseudo-code of MOGA- DBSCAN [2]

/I P and PF are outputs of Function //
/I P = Parent Population, Q = Offspring Population, PF = Pareto
Front, S= Input Dataset//
Function MOGA-DBSCAN

1 Initialize the P randomly within the minimum and maximum
bounds;

2 Old_PF=NULL; // Old_PF = Old Pareto Front //

3 Run objective functionl and objective function2 over the results
of DBSCAN(S,P) );

4 For i=1 to Max_Generation

5 Q= Union(Mutation(P), Crossover(P) );

6  Run objective functionl and objective function2 over the results
of DBSCAN(S,Q) ;

7 [P PF] = Selection(Q,P);

8  If Old_PF is Empty

9 Old_PF=PF;

10 End-if

11 If (i mod n) == 0// n = the interval between two generation to
check stopping conditions

12 Hypothesisl = T-test(PF.f1,0ld_PF.f1); // f1= fitness of
objective functionl //

13 Hypothesis2 = T-test(PF.f2,0ld_PF.f2); // f2= fitness of
objective function 2 //

14 If (Hypothesisl = null hypothesis) And (Hypothesis2 = null

hypothesis)
15 Break;
16  Else
17 Old_PF=PF;
18 End-if
19 End-if
20 End-For

21 End-Function

At the end of the MOGA run time, the final set of
the near-Pareto-optimal solutions includes a
number of non-dominated solutions (step 7).
There is no interaction with the user in this
algorithm to determine the solutions. A small set
of the best solutions according to the indices used

as the objective function is provided at the end of
the algorithm. The users can select the appropriate
solutions (DBSCAN parameters) depending on
the requirements of the problem. Furthermore, the
t-test is used to decrease the number of iterations
and terminate MOGA [18, 19]. Also in [2], a new
index based on the outliers detected by a
clustering algorithm is presented as follows:

0s; :minlgjgm(dii)

Outlier —index = % @
where dj is the distance of the outlier i from
cluster j, n is the number of outliers, and m is the
number of clusters. Outlier-index is the average of
the minimum distance of outliers to the clusters.
This index shows the similarity of the detected
outliers to the clustered points. The higher value
of the outlier-index shows that the detected
outliers have a greater distance and less similarity
to clustered points, and the outliers are more
appropriately detected. In the proposed algorithm,
two internal cluster validity indices, Silhouette
[20] and outlier, are used as the objective
functions. The Silhouette index is defined as
follows:

Assume g; is the average distance of a point X;
from the other points of the same cluster, and b; is
the minimum of the average distances of this point
from the other clusters. Subsequently, the
silhouette width of the point (s;) can be defined as
follows:

__b-g

 max{a;,b,} ®)
The silhouette index is the average silhouette
width of all the data points.

5=23% ©)

where n is the number of all the data points. The
value of the Silhouette index changes between -1
and 1, and the higher values indicate better
clustering results.

Si

3. Proposed Algorithm for Determining
DBSCAN Parameters in Dynamic
Environments

The solutions proposed for clustering moving
objects based on the DBSCAN algorithm
suggested do not provide a solution for automatic
and dynamic determination of input parameters. A
dynamic  multi-objective  genetic  algorithm
(DMOGA) is used to determine the parameters of
the DBSCAN algorithm dynamically and
automatically to solve this problem in the
proposed solution. Figure 3 shows the flowchart
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of the proposed algorithm. At the beginning of
each period, it is necessary to determine the Eps
and MinPts bounds in DMOGA appropriately to
generate high-quality solutions. The Delaunay
triangulation is employed to determine the Eps
and MinPts bounds. In the next three steps, the
MOGA algorithm is used to determine the
appropriate value of the parameters. After T
generations, the current time period ends,

and the environment changes. At this time, the
determined parameters can be used by the
clustering algorithms. If the number of
generations has not reached t,,x, the DMOGA
algorithm goes back to the first step and tries to
determine new values for the parameters due to
changes in the environment.

Algorithm 2 shows the steps in the DMOGA-
DBSCAN. The environment changes Tpax/Tr
times. In step 5, selection of the initial population
is based on the type of dynamic bi-objective
optimization algorithm using the previous
clustering response set. In step 8, the dynamic bi-
objective optimization algorithm could find the
optimal solutions in that period before the changes
happen (tg). After the changes in the problem, the
values of the objective functions of the solutions
change, and the algorithm once again has the
opportunity to find the optimal solutions before
the changes occur. This process goes on till the
last generation of the algorithm (Tpax)-

Random Initialization to
generate a population, based on
the bounds obtained by the
Delaunay triangulation

[Twenty percentage of population
is replaced by random solutions
within the minimum and
maximum bounds obtained by the
Delaunay triangulation

Generating new solutions using
mutation and crossover e
operators

Running of DBSCAN applying 4
new solutions and evaluation of
clustering results using the
objective functions

v

Selection of the next-generation
population using non-dominated
sorting and crowding distance No

Sit the last generatio
of the time period?

No

Figure 3. Flowchart of DMOGA-DBSCAN.

New responses are generated in each period based
on the changes in the environment using this
algorithm. The advantage of using a multi-
objective optimization algorithm is to create a set
of responses instead of a single one, allowing the
user to select the appropriate clustering for the
dataset about which there is no prior knowledge.
The simultaneous optimization of more than one
cluster validity index enhances the quality of
clustering results.

Algorithm 2: Pseudo-code of DMOGA- DBSCAN
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/I P and PF are outputs of Function //
/I P = Parent Population, Q = Offspring Population, PF = Pareto
Front, S= Input Dataset //
Function DMOGA-DBSCAN

1  Forj=110 Tya/Tr

2 IfP isEmpty

3 Initialize the P randomly within the minimum and maximum
bounds;

4  Else

5  Twenty percentage of P is replaced by random solutions within
the minimum and maximum bounds

6 End-if

7 Run objective functionl and objective function2 over the results
of DBSCAN(S,P) );

8 Fori=ltoty

9 Q = Union(Mutation(P), Crossover(P) );

10 Run objective functionl and objective function2 over the
results of DBSCAN(S,Q) ;

11 [P PF] = Selection(Q,P);

12 End-For

13 End-For

14 End-Function

4. Implementation and Evaluation

In this work, NSGA-Il is used as a non-
dominated, sorting-based, multi-objective
evolutionary algorithm to implement MOGA-
DBSCAN, and DNSGA-II-A is used to determine
the DBSCAN parameters (DMOGA-DBSCAN)
dynamically. Also two internal cluster validity
indices, Silhouette and Outlier, are used as the
objective functions. The rates of mutation and
cross-over operators and population size in this
paper are, respectively, 0.5, 0.9, and 30, used in
all implementations. A synthetic dataset is
generated by 399 moving points [4] in order to
evaluate the proposed algorithm. In each time
interval, the points move at random speed and
direction using a uniform distribution. The
location of points in a square is considered to be
1000 x 1000 units, and 77 is considered 20
generations for relocation of points. The moving
speed of the points is from 1 to 10 m/s in the
second period, 10 to 15 m/s in the third period, 15
to 25 m/s in the fourth period, and 25 to 35 m/s in
the fifth period. The data generated is not a data
stream, and has no limitations. Moreover, we will
use the actual traffic control data presented in the
papers [21, 22] as a moving dataset to evaluate the
proposed algorithm. This dataset has a GPS route
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of 10,357 taxis from February 2 to February 8,
2008, in Beijing. In this experiment, on February
3, eight time intervals are considered. All
implementations are carried out in the MATLAB
software, and all the experiments are run on a
computer with a 3.7 GHz Core i3 processor and 8
GB RAM.

4.1. DMOGA-DBSCAN evaluation

In this section, we compare the results obtained
from the running of DMOGA-DBSCAN with the
case where the values of the DBSCAN parameters
are considered constant at different time intervals
(MOGA-DBSCAN). Each algorithm is run 30
times on each dataset. In all experiments, the t-test
is used as a statistical test in order to examine the
comparison accuracy of the two evaluated
algorithms. In general, if the t-test accepts the H;
hypothesis for the comparison of two algorithms,
the algorithm with a better average value in the
validity index will produce better results in
clustering. If the null hypothesis is accepted, then
the two algorithms exhibit the same clustering
operation regarding the validity index. A synthetic
dataset is considered as the primary data to
evaluate DMOGA-DBSCAN for the clustering of
moving objects, and is generated by moving
points in each time interval at random speed and
direction using the uniform distribution.
Additionally, the real data related to traffic control
has been used as a moving dataset to evaluate the
proposed algorithm. As the correct clustering
result is unknown for moving data, the Outlier and
Silhouette, internal cluster validity indices are
used to assess clustering.

Table 1. t-test accepted hypothesis on synthetic
dataset

Silhouette index
DMOGA-DBSCAN
Tl Tz T3 TA T5
T: Ho -
T2 - Ho -
T - - H -
T, - - - H -
Ts - - - - H,
Outlier index
DMOGA-DBSCAN
T: Ho
Tz - H() =
MOGA- Ts - - H, -
DBSCAN T, ) ) ) H,

MOGA-
DBSCAN

T - - - - H

In the case of moving data, it is supposed that
after 20 generations, the environment changes for
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the first time in the second period (T2), then
DMOGA-DBSCAN has 20 generations to
generate the appropriate response set for the next
period (T3), and this process continues. Using
MOGA-DBSCAN for the initial dataset (without
motion), the initial response set is generated, and
the same initial response set is used for clustering
at the next time intervals as the data moves.

According to Table 1 in the synthetic dataset, the
t-test accepts the H1 hypothesis for the results of
DMOGA-DBSCAN and MOGA-DBSCAN
algorithms in the third to fifth time intervals.

0g 074 071 ggg
x
%
2 0.6
2
B 0.4
3 = DMOGA-
= 0.2 DBSCAN
@ —B— MOGA-
5 0 DBSCAN
[<5)
2 1 2 3\4 5
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2
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. . -0.31
time intervals

Figure 4. Average of Silhouette index in 30 runs on
synthetic dataset.
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Figure 5. Average of Outlier index in 30 runs on

synthetic dataset.

As Figure 4 indicates, in the third period, when
the maximum speed is 1.5 times higher than the
second period, based on the silhouette index, the
performance of the DMOGA-DBSCAN algorithm
decreases by 4% compared to the second period.
Nonetheless, it performs 82% better than MOGA-
DBSCAN. In the fourth interval, the maximum
speed compared to the second time interval is 2.5
times, and based on the silhouette index, the
performance of the DMOGA-DBSCAN algorithm
is reduced by 50% compared to the second time
interval. However, it has a 174% better
performance than MOGA-DBSCAN. In the fifth
interval, the maximum speed compared to the
second time interval is 3.5 times, and based on the
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silnouette index, the performance of the
DMOGA-DBSCAN algorithm is reduced by 55%
compared to the second time interval. However, it
has 197% better performance than MOGA-
DBSCAN.

Based on Figure 5, the DMOGA-DBSCAN
algorithm has 42%, 31%, and 32% better
performance in detecting outliers than MOGA-
DBSCAN in the third to fifth periods,
respectively, in terms of the outlier index. Based
on Figures 4 and 5 in the synthetic dataset, the
results of the DMOGA-DBSCAN algorithm are
119% and 29% better than MOGA-DBSCAN in
terms of the silhouette and outlier indices in
different periods, respectively. As the results of
the experiments show, after the second period,
when the intensity of environmental changes
increases, the performance of DMOGA-DBSCAN
decreases slightly. However, it performs better
than MOGA-DBSCAN.

Based on Table 2 in the traffic dataset, the t-test
for the results of DMOGA-DBSCAN and
MOGA-DBSCAN algorithms accepts the null
hypothesis at 10 and 18 o'clock, and the null
hypothesis is rejected at the remaining hours. The
Pareto front of the DMOGA-DBSCAN algorithm

performed on the traffic dataset related to one of
the best outputs of the DMOGA-DBSCAN shown
in Figure 6. According to Figures 7 and 8 in the
traffic dataset, the results of the DMOGA-
DBSCAN algorithm are 24% and 8% better than
MOGA-DBSCAN in terms of the silhouette and
outlier indices in various periods, respectively. As
the results of the experiments show, the
displacement of the points changes the density of
the clusters and changes the environment, and the
MOGA-DBSCAN, which is performed with the
initial parameters, does not have the necessary
efficiency. In the third period and after that, when
the environment changes more, DMOGA-
DBSCAN performs better than MOGA-
DBSCAN. Therefore, the experiments show that it
iS necessary to re-define the parameters in
dynamic environments. It should be noted that the
proposed algorithm is based on the DBSCAN
algorithm, and its efficiency decreases in
environments where there are multi-density
clusters. Thus the proposed algorithm should be
developed to determine appropriate values for the
input parameters of the DBSCAN algorithm in
multi-density environments.

Table 2. t-test accepted hypothesis on traffic dataset

Silhouette index
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Outlier index
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Figure 6. Pareto front of DMOGA-DBSCAN algorithm on traffic dataset.
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5. Conclusion

In this paper, the DMOGA-DBSCAN algorithm
has been introduced for clustering moving objects,
which determines the parameters of the DBSCAN
algorithm in accordance with the spatial variations
of the points. The results obtained from running of
DMOGA-DBSCAN on the synthetic datasets and
traffic datasets were compared with the state
where the values of the DBSCAN parameters at
various intervals were considered constant
(MOGA-DBSCAN). According to the results
obtained in the synthetic dataset, the results of the
DMOGA-DBSCAN algorithm are, respectively,
119% and 29% better than MOGA-DBSCAN in
terms of the silhouette and the outlier indices at
various intervals. Moreover, in the traffic dataset,
the results of the DMOGA-DBSCAN algorithm
are, respectively, 24% and 8% better than
MOGA-DBSCAN in terms of the silhouette and
the outlier indices at the wvarious intervals.
According to the results obtained, the DMOGA-
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DBSCAN algorithm  outperforms MOGA-
DBSCAN in terms of both the silhouette and the
outlier indices.

For future studies, extending and developing the
DMOGA-DBSCAN algorithm to dynamically
determine the parameters of the DBSCAN

algorithm in data clustering that has short
response time and memory constraints s
recommended.
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