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 Optimizers are the vital components of deep neural networks that 

perform weight updates. This paper introduces a new updating method 

for optimizers based on a gradient descent called the whitened gradient 

descent (WGD). This method is easy to implement, and can be used in 

every optimizer based on the gradient descent algorithm. It does not 

increase the training time of the network significantly. This method 

smooths the training curve, and improves the classification metrics. In 

order to evaluate the proposed algorithm, we perform 48 different tests 

on two datasets, Cifar100 and Animals-10, using three network 

structures including densenet121, resnet18, and resnet50. The 

experiments show that using the WGD method in the  gradient 

descent-based optimizers improves the classification results 

significantly. For example, integrating WGD in the RAdam optimizer 

increases the accuracy of DenseNet from 87.69% to 90.02% on the 

Animals-10 dataset.   
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1. Introduction 

Today, artificial neural networks (ANNs) have 

become very widespread and diversified. It 

attempts to simulate the human brain's learning 

process on a computer and make the computers 

more intelligent. ANNs can be divided into two 

categories: shallow networks and deep networks. 

In shallow ANNs, the inputs are the feature 

vectors. These features are extracted using some 

handcrafted algorithms such as PCA, FFT, 

Wavelet, and HoG. This process is somewhat 

different from the human brain's learning process 

since the brain receives pure data without any 

changes, and completes the learning or 

experimentation process. Deep neural networks 

(DNNs) are another type of ANNs that typically 

work on images without a prior feature extraction 

phase. These networks benefit from the deep 

learning process. Although the basic idea of deep 

learning was introduced many years ago, it was 

not possible to implement these algorithms due to 

the weakness of the existing hardware systems at 

that time. The advancement of hardware 

technology made the implementation of these 

algorithms feasible. Recently, many deep learning 

algorithms have been proposed to solve the 

traditional artificial intelligence problems. 

The architecture of DNNs is hierarchical. A DNN 

uses this architecture for feature extraction. 

Today, these networks are used in many 

applications of artificial intelligence including 

semantic parsing [1-3], transfer learning [4-8], 

natural language processing [9-11], computer 

vision [12-15], and many more. The main reasons 

for the rapid development of these networks can 

be summarized in three things: significant 

increase in the hardware processing capabilities, 

especially GPUs, reduced cost of computer 

hardware, and significant improvements in 

machine learning algorithms [16].  

DNNs have been widely used in the recent years, 

and several models have been proposed for 

different applications. These models can be 

divided into five categories [17, 18]: Convolution 

Neural Networks (CNN), Restricted Boltzmann 

Machines (RBM), Autoencoders, Sparse Coders, 

and Recurrent Neural Networks. The back-
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propagation (BP) [19] algorithm is used in the 

feed-forward neural networks. Forward structure 

means that the artificial neurons are placed in 

successive feeder layers, and send their outputs 

forward. The term back-propagation implies that 

the errors are fed backward in the network to 

correct the weights. The BP method is a 

supervised method in the sense that the input 

samples are labeled, and the expected output is 

known in advance. Therefore, the network output 

is compared with these ideal outputs, and the 

network error is calculated. In this algorithm, it is 

first assumed that the network weights are 

randomly selected. In each step, the network 

output is calculated, and following the difference 

between the output and the target (desired output), 

the weights are updated to minimize this error 

using a loss function. In order to compute the 

gradient of the loss function, some training data is 

used. According to the data, the gradient descent 

methods can be divided into three categories: 

batch gradient descent (BGD) method, mini-batch 

gradient descent (MBGD) method, and stochastic 

gradient descent (SGD) method [20]. In the BGD 

method, the gradient is calculated for the entire 

training data. Therefore, in the case of a large 

amount of data, this method is practically 

ineffective because it requires a lot of memory. In 

SGD, only one training sample is used in each 

step to calculate the gradient. This algorithm 

requires less storage but it is hard to establish the 

theoretical convergence conditions. In MBGD, the 

benefits of both methods are used; a subset of 

training data is used to update the weights and 

calculate the gradients.  

In the neural network, we need an algorithm that 

changes the weights to minimize the loss score. 

The algorithm that performs such a task is called 

the optimizer. It is performed iteratively to 

achieve an optimal solution for the weights.  

In this work, we propose a new updating method 

for gradient descent-based optimizers called 

Whitened Gradient Descent (WGD). It smooths 

and accelerates the training process of DNN and 

also improves the model generalization 

performance. In this method, we use the mean 

gradient matrix in each layer of the convolution 

filter bank; this value is calculated and subtracted 

from all gradient kernel gradients in that layer. In 

this way, similar information in the convolution 

layer is deleted. The experimens show that the 

proposed method improves the network behavior 

in terms of classification criteria without 

significantly changing the network processing 

time. 

The rest of this paper is organized as what 

follows. The works related to our idea and famous 

optimizing methods are discussed in Section 2. 

The proposed method and its structure are 

described in the next section. In Section 4, the 

experimental results are discussed. The 

experiments are conducted in two stages: first, 

each network is trained using the original 

optimizer, and then the process is repeated using 

the modified WGD optimizers. Finally, in Section 

5, we draw the paper to conclusions. 

 

2. Related Works 

There are a lot of optimizer algorithms used in 

DNNs [21-26], among which the gradient descent 

based algorithms are the most popular. In this 

section, we introduce the famous optimizers based 

on gradient descent. In order to mathematically 

present the problem, assume that f(x) is the 

desired objective function, 
nx R and n is the 

number of training data. The corresponding 

gradient is ( )f x . The step size for iteration k is 

tk. 

 

2.1. Batch gradient descent 

In this method, a new x is calculated after 

computing  the gradient of the whole training data 

(Equation 1):  
(1: )

1 ( ) n

k k k kx x t f x     (1) 

The batch gradient descent ensures that the back-

propagation algorithm converges to a minimum 

for the convex and non-convex problems. In deep 

learning applications, calculating the gradient for 

all training data costs a lot of time and memory. 

For this reason, the weights are slowly updated in 

this method. Therefore, deep neural networks 

rarely use this method to calculate the gradients 

and update the weights. 

 

2.2. Stochastic gradient descent 

Another method to optimize the gradient is SGD. 

Since the selection of training samples is random, 

it is called stochastic. In this method, only one 

training data is used in each step to update the 

weights and calculate the gradient (Equation 2): 
( )

1 ( ) i

k k k kx x t f x     (2) 

in which i is the number of training data. Since 

gradient computation and weight update are 

conducted sample by sample, the computed 

gradient is not necessarily equal to the actual 

gradient of the error curve for all training data. As 

a result, the likelihood of convergence decreases.  
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2.3. Mini-batch gradient descent 

The Mini-Batch gradient descent has the 

advantages of both of the previous methods, i.e. 

BGD and SGD. In this algorithm, the training data 

is split into several mini-batches, and then one of 

them is used to calculate the gradient at each step. 

(Equation 3): 
( : )

1 ( ) i i m

k k k kx x t f x 

     (3) 

where   represents the mini-batch size. This 

method does not guarantee convergence, and if 

the learning rate is not adjusted correctly, the 

possibility of divergence is high. Therefore, other 

techniques are used for convergence.  

 

2.4. Gradient descent with momentum 

Qian has considered momentum to reduce 

variance in SGD [28]. Momentum accelerates 

convergence in the desired direction, and prevents 

the tendency to irrelevant directions. In this 

method, instead of using only the gradient of the 

current step to guide the search, the momentum 

from previous steps is also employed to determine 

the direction of the gradient [27]. (Equation 4): 

1 ( )k k k kv mv t f x    

1k k kx x v    
(4) 

Where vk is the rate of weight change, and 

[0,1]m  is the momentum factor and often has a 

value close to 1.0 such as 0.8, 0.9, or 0.99. A 

momentum of 0.0 is the same as gradient descent 

without momentum. 

 

2.5. Nesterov accelerated gradient 

Nesterov accelerated gradient (NAG) [29] is 

another momentum-based algorithm. This method 

calculates the gradient relative to the next 

approximate value of the parameters, not their 

current value. The difference between NAG and 

classical momentum is that NAG puts more 

weight on the recent gradients. In other words, 

NAG forgets old gradients more quickly. Weight 

update in this method is shown in Equation 5: 

1 1( )k k k k kv mv t f x mv      

1k k kx x v    
(5) 

In this method, we give the momentum coefficient 

m a value of about 0.9. In the gradient method, the 

current gradient is first calculated, and then this 

gradient makes a significant leap in the direction 

of the new accumulated gradient. The Nesterov 

method first makes a large leap in the direction of 

the previously accumulated gradient, measures the 

gradient, and then makes a minor correction. 

These changes created by predicting future values 

prevent the changes from accelerating too much. 

 

2.6. Adagrad 

One of the disadvantages of all the optimizers 

described so far is that the learning rate is constant 

across all parameters and cycles. Adagrad [30] 

changes the learning rate for each parameter in 

each time interval, and is a second-order 

optimization algorithm that works with the 

derivative of the error function (Equation 6): 
(2)

1 ( )k k kG G f x   

1 ( )k k k

k

t
x x f x

G 
   


 

(6) 

Here, G is a diagonal matrix in which each i-th 

object of diameter is the sum of the squares of the 

gradients, and   is a smoothing coefficient that 

prevents zero in the denominator. One of the main 

advantages of this method is that it eliminates the 

requirement to determine the learning rate. In 

most applications, the value 0.01 is selected, and 

does not change. The main disadvantage of the 

Adagrad is the square aggregation matrix of the 

gradients at the denominator. Since 2( )kf x  is a 

positive value, the sum always increases during 

the network's training. This reduces the rate of 

learning (Equation 6), and eventually, weight 

update will have no effect. After that, the 

algorithm cannot learn anything else.  

 

2.7. Adadelta 

The Adadelta method [31] is a more robust 

version of the Adagrad. It tries to overcome the 

main drawbacks of Adagrad: 1) the continual 

decay of learning rates throughout training, and 2) 

the need for a manually selected global learning 

rate. Adadelta adapts the learning rates based on a 

moving window of gradient updates instead of 

accumulating all past gradients. This way, 

Adadelta continues learning even when many 

updates have been done. 

This method has the benefits of both Adagrad and 

momentum. Followings are the operation details 

of Adadelta (Equation 7): 
2 2

1

2

[ ( ) ] [ ( ) ]

(1 ) ( )

k kE f x E f x

f x





   

 
 

1

2

[ ]
( )

[ ( ) ]

k

k k

k

E x
x f x

E f x





 
  

 
 

2 2 2

1[ ] [ ] (1 )k k kE x E x x     

1k k kx x x    

(7) 
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where ρ is a decay constant (e.g, 0.95) and ε is a 

small value (e.g. 1e-6) for numerical stability. 

 

2.8. RMSprop  

The RMSprop [5] method is an Adagrad-based 

method. The RMS and Adadelta deduction 

methods were developed independently and 

almost simultaneously following the need for a 

solution to the problem of drastically reducing the 

learning rate in the Adagrad method. This method 

also divides the learning rate by the average 

attenuated square of the gradients (Equation 8): 
2

1 [ ( ) ]k k kG G fE f x     

2

1[ ( ) ] (1 ) ( )k kE f x f x      

1
2

( )
[ ( ) ]

k k k

k

t
x x f x

E f x 
   

 
 

(8) 

where ρ is a decay constant, and is commonly 

considered as 0.9.  

 

2.9. Adam 

Adam [32] is another method that calculates the 

learning rate according to the data. In addition to 

storing the exponentially squared averages of the 

previous gradients, such as the Adadelta method, 

it also preserves exponentially averaging the 

gradients like the NAG method [32]. 

Adam's updating rule consists of the following 

steps (Equation 9): 

1 1 1(1 ) ( )k k km m f x      

2

2 1 2(1 ) ( )k k kv m f x      

11

t
k k

m
m





 

 ̂  
  

    
  

1k k k

k

k
x x m

v




  


 

(9) 

in which mk  is the exponential moving averages 

of the gradient, and vk  is the moving averages of 

the squared gradient. The hyper-parameters 
1  

and 
2 control the exponential decay rates of these 

moving averages. These moving averages are 

initialized as (vectors of) 0’s, leading to moment 

estimates that are biased towards zero. ˆ
km and 

ˆ
kv are the bias-corrected estimates. The 

developers have proposed default values of 0.9 for

1 , 0.999 for
2  and 10e-8 for ε. They have shown 

empirically that the Adam method works well in 

practice, and is superior to other adaptive learning 

methods. 

 

2.10. Nadam 

Nadam (Nesterov-accelerated Adaptive Moment 

Estimation) [29] combines the Adam and 

Nesterov accelerated gradient (NAG) [33]. The 

weight update of this method is shown in 

Equation 10: 

( )k xk kg J x   

1k k km m g    

11

t
k k

m
m





 

21

t
k k

m
v





 

1 1

1

1

(

(1 )
)

1 1

k k k

k

k

k

x x m
v

g










  





 

 

(10) 

where 
1  can be 0.9, 

2 can be 0.999, and ε can be 

1e-8.  

2.11. Radam 

Rectified Adam or Radam [34] is a variant of the 

Adam stochastic optimizer that introduces a term 

to rectify the variance of the adaptive learning 

rate. It seeks to tackle the convergence problem 

suffered by Adam. The authors in [34] argue that 

the root cause of this behavior is that the adaptive 

learning rate has an undesirably large variance in 

the early stage of model training due to the limited 

amount of training samples being used. Thus to 

reduce such variance, it is better to use lower 

learning rates in the first few epochs of training-

that justifies the warmup heuristic. The Radam 

optimizer algorithm is shown in Algorithm 1. 

 

 

3. Proposed Method 

In DNNs, the convolution layer weights are the 

factors that change the information between 

layers. These weights are stored in memory as a 

matrix. They often contain similar information. 

The targeted removal of this information can help 

to produce better feature maps. In this article, we 

propose a new optimizer algorithm that removes 

this similar information. We use the mean matrix 

for this purpose. In each convolution layer, the 

mean matrix to produce better feature maps. In 

this article, we propose a new optimizer algorithm 

that removes this similar information. We use the 

mean matrix for this purpose.  
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In each convolution layer, the mean matrix of the 

weights is subtracted from all weight kernels. The 

formulation of the proposed algorithm is shown in 

Equation 11: 

, ( , )k x x xh J k x    

1

1
( , )

P

x x

i

J i x
P




   
(11) 

where J is the objective function, P is the weight 

kernel number in a specific layer, and x  is the 

mean of weight kernels in a specific layer. Due to 

subtracting the mean from each gradient vector, 

we named our method whitened gradient descent 

(WGD). This algorithm can be integrated with any 

gradient descent-based optimizer by replacing 

( )x J x  with ,k xh . As an example, embedding 

the WGD to the RAdam optimizer is shown in 

Algorithm 2.  

 

4. Experiments 

In this section, we study the effect of embedding 

the proposed updating algorithm in four famous 

optimizers in the classification tasks. Three 

different image datasets are used to evaluate the 

impact of integrating WGD with different 

optimizers. 

 

4.1. Network training 

We conducted our experiments on a PC with 

GeForce Turbo RTX-2080 GPU and Corei3-

9100f CPU running at 4000MHz. The proposed 

algorithm and model are implemented in Python 

3.7 using the Pytorch and OpenCV libraries. Due 

to the imbalance of the samples in different 

classes of the datasets, we used a weighted 

random sampler [35] to balance the training data. 

The training parameters of the proposed model are 

listed in Table 1. 
Table 1. Training parameters of proposed model. 

32 Batch size 

50 Epochs 

0.9 Momentum  

0.01 Learning rate 

1e-3 Weight decay 

1e-10 Epsilon 

Sampler  Weighted random sampler 

We used three different DNNs including 

ResNet18, ResNet50, and Densenet121. The first 

structure that we used was ResNet [36]. It has a 

novel structure, having the new residual 

connections; it can be trained on every dataset 

without the problem of vanishing gradients. It 

supports very deep layers, and exists in different 

versions from ResNet18 to ResNet152, and even 

more. We trained two structures, ResNet18 and 

ResNet50. Another DNN that we used in this 

article is DenseNet [37]. DenseNet is a type of 

convolutional neural network that uses dense 

connections between layers through Dense 

Blocks, where all layers are connected (with 

matching feature-map sizes) directly with each 

other.  
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We used Densenet121 in our experiments. This 

architecture is shown in Figure 1. 

 
Figure 1. Densenet121 block diagram. 

4.2. Datasets 

In order to evaluate the proposed method, we used 

two popular datasets: Animals-10 with ten classes 

and CIFAR100 with one hundred classes. 

Animals-10 dataset [38] consists of 26,183 

medium quality animal images grouped in 10 

categories: dog, cat, horse, spider, butterfly, 

chicken, sheep, cow, squirrel, and elephant. Some 

images from the Animals-10 dataset are shown in 

Figure 2. 

 
Figure 2. Sample images from Animals-10 dataset. 

 

All the images have been collected from Google 

images, and have been verified by a human. This 

dataset contains 23,563 images for training and 

2,620 images for the test. The number of training 

and test data of this dataset are listed in Table 2.  
 

 

Table 2. Size of each class in Animals-10 dataset. 

Testing  Training Class 

487  4,376 Dog 

262  2,361 Horse 

145  1,301 Elephant 

211  1,901 Butterfly 

309  2,789 Chicken 

166  1,502 Cat 

186  1,680 Cow 

186  1,638 Sheep 

482  4,339 Spider 

186  1,676 Squirrel 

2,620  23,563 Total 
 

 
Figure 3. Sample images from CIFAR-100 dataset. 

The CIFAR-100 dataset is a labeled subsets of the 

80 million tiny images dataset. They were 
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collected by Alex Krizhevsky, Vinod Nair, and 

Geoffrey Hinton. This dataset is just like the 

CIFAR-10, except that it has 100 classes 

containing 600 images in each. There are 500 

training images and 100 testing images per class. 

Some sample images from the CIFAR-100 dataset 

are shown in Figure 3. 

 

4.3. Metrics 

There are various criteria for evaluating the 

performance of deep neural networks used in the 

classification problems. In this section, we 

examine these criteria. These are the mean recall 

(mRe), the mean precision (mPr), and the Cohen 

Kappa Score (Kappa), which is a measure to 

express the agreement between two annotators. In 

this case, the first annotator is a method under 

evaluation, and the second annotator is the ground 

truth. Equation 12 shows these metrics. 
TP

Accuracy=
Total number of images  

num of classes

ii=1
Re

mRe=
num of classes


 

num of classes

ii=1
Pr

mPr=
num of classes


 

Acc-Pe
Kappa=

1-Pe  

(12) 

Where 

Re ( )

Pr ( )

i i i i

i i i i

TP TP FN

TP TP FP

 

 
 

 

And Pe is the probability of agreement when both 

annotators assign random labels. 

 

4.4. Classification experiments 

We embedded our method into some popular 

gradient-based optimizers including SGDM, 

Adam, RAdam, and Nadam in order to evaluate 

their classification metrics performance in the two 

datasets using three network structures
1
. The 

training parameters are set as shown in Table 1. 

Tables 3, 4, 5 show the classification metrics on 

Animals-10, and Tables 6, 7, and 8 show the 

results on CIFAR-100. 

 

4.4.1. Animals-10 experiments 

Animals-10 is a complex dataset with high-quality 

images. It has several challenges including 

different backgrounds, different vision angles, and 

imbalanced samples, i.e. the number of samples in 

each category is different. As shown in Tables 3, 

4, and 5, embedding WGD to the selected 

                                                      

1
 Codes can be found here https://github.com/hoseingh69/WGD  

optimizers increased the accuracy and decreased 

the loss in all the 24 experiments. The best 

accuracy was achieved using the WGD Radam 

optimizer in DenseNet121, which was 90%. The 

best accuracy improvement was achieved in the 

Nadam optimizer with ResNet50, which increased 

the accuracy from 67.20% to 76.64%. 

As described in [39], Cohen Kappa Score is a 

statistic metric used to measure the inter-rater 

reliability (and also the intra-rater reliability) for 

the qualitative classification items. Thus it could 

show the power of classifier architecture in 

classification. As shown in Tables 3, 4, and 5, the 

best improvement of these parameters was in the 

Nadam cases that were about 6% in DenseNet121 

and ResNet18 and about 10% in ResNet50. 

According to Cohen Kappa Score, the best result 

was in WGD Radam for DenseNet121. 

 
Table 3. Classification results for Animals-10 dataset using 

DenseNet121. 

CKS 
Mean  

precision 

Mean  

recall 
Loss Accuracy Optimizer 

85.20 86.51 85.84 0.5074 87.00 SGDM 

85.95 87.37 87.17 0.4535 87.65 
WGD 

SGDM 

74.32 75.99 76.34 0.6808 77.41 Adam 

76.69 78.19 77.61 0.6604 79.55 
WGD 
Adam 

69.96 72.79 71.17 0.7967 73.66 Nadam 

75.36 77.08 76.57 0.6218 78.36 
WGD 

Nadam 

86.01 86.77 87.40 0.7606 87.69 Radam 

88.66 89.56 90.09 0.6222 90.02 
WGD 

Radam 

 
Table 4. Classification results for Animals-10 dataset using 

ResNet18. 

CKS 
Mean  

precision 

Mean  

recall 
Loss Accuracy Optimizer 

78.54 80.64 79.19 0.7271 81.19 SGDM 

79.00 81.34 79.93 0.6540 81.57 
WGD 

SGDM 

69.09 71.58 70.31 0.9012 72.90 Adam 

71.99 73.15 74.20 0.8535 75.31 
WGD 
Adam 

65.01 66.87 67.08 0.9652 69.19 Nadam 

71.78 74.51 52.55 0.8185 75.27 
WGD 

Nadam 

80.51 82.34 81.12 1.2590 82.91 Radam 

82.60 83.97 83.69 1.1105 84.71 
WGD 

Radam 

 

The training curves on Animals-10 using the 

Radam optimizer are shown in Figure 4 and 

Figure 5. As shown, using WGD in Radam, the 

accuracy was increased, and the loss was 

decreased. 

 

 

 

 

https://github.com/hoseingh69/WGD


Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022 
 

474 
 

Table 5. Classification results for Animals-10 dataset using 

ResNet50. 

CKS 
Mean  

precision 

Mean  

recall 
Loss Accuracy Optimizer 

73.79 76.32 74.57 1.9745 77.03 SGDM 

78.76 80.66 79.44 0.8031 81.38 
WGD 

SGDM 

70.19 73.84 69.63 0.7936 73.97 Adam 

73.39 76.25 74.56 0.7692 76.64 
WGD 

Adam 

62.75 63.80 64.73 0.9498 67.20 Nadam 

72.76 74.50 74.14 0.7422 76.07 
WGD 

Nadam 

81.12 82.37 82.19 1.0974 83.41 Radam 

84.36 84.36 84.63 0.8933 85.28 
WGD 
Radam 

 

 
Figure 4. Accuracy of Densenet121 in train data on 

Animals-10. 

 
Figure 5. Loss of Densenet121 in train data on Animals-

10. 

The accuracy results of all experiments on 

Animals-10 are shown in Figure 6. As presented, 

in all cases, the embedding WGD improves the 

accuracy. 

 

4.4.2. CIFAR-100 experiment 

CIFAR-100 is an image dataset with a low quality 

and small images in 100 categories. The input size 

for our test networks is 224 × 224. Thus the 

images will be blurred in the input of networks.  

We did 24 different tests in this stage using 

DenseNet121, ResNet18, and ResNet50. The 

results are shown in Tables 6, 7, and 8. As shown, 

although this dataset has low-quality images, we 

achieved an accuracy of  70.35% on the test data 

with WGD Radam. In this case, we had about 7% 

improvement in accuracy and about 8% in the 

Cohen Kappa Score, using our method. 
 

Table 6. Classification results for CIFAR-100 dataset using 

DenseNet121. 

CKS 
Mean 

precision 

Mean 

recall 
Loss Accuracy Optimizer 

65.81 66.31 66.16 1.3812 66.16 SGDM 

66.36 67.18 66.70 1.3411 66.70 
WGD 

SGDM 

44.46 44.58 45.01 2.0750 45.02 Adam 

50.36 51.22 50.85 1.8090 50.86 
WGD 

Adam 

39.83 40.76 40.44 2.3100 40.44 Nadam 

45.55 47.31 46.09 1.9762 46.10 
WGD 

Nadam 

62.85 63.18 63.23 2.6760 63.23 Radam 

70.05 70.73 70.35 2.0094 70.35 
WGD 
Radam 

 
Table 7. Classification results for CIFAR-100 dataset using 

ResNet18. 

CKS 
Mean  

precision 

Mean  

recall 
Loss Accuracy Optimizer 

57.95 57.99 58.38 1.6075 58.38 SGDM 

60.17 60.30 60.57 1.5235 60.57 
WGD 

SGDM 

43.56 43.77 44.13 2.1271 44.13 Adam 

46.42 46.96 46.96 1.9737 46.96 
WGD 

Adam 

43.32 44.00 43.89 2.1221 43.89 Nadam 

44.71 44.88 45.27 2.0659 45.27 
WGD 

Nadam 

61.86 62.53 62.24 3.0041 62.25 Radam 

62.90 63.55 63.28 2.9368 63.28 
WGD 
Radam 

 
Table 8. Classification results for CIFAR-100 dataset using 

ResNet50. 

CKS 
Mean  

precision 

Mean  

recall 
Loss Accuracy Optimizer 

56.89 56.47 56.34 1.7131 56.34 SGDM 

58.28 58.83 58.70 2.1040 58.70 
WGD 

SGDM 

42.03 42.35 42.61 2.1868 42.61 Adam 

46.46 46.83 47.00 1.9774 47.00 
WGD 

Adam 

29.37 29.14 30.08 2.7722 30.08 Nadam 

44.59 45.46 45.14 2.0368 45.15 
WGD 

Nadam 

64.57 65.46 64.92 2.4143 64.93 Radam 

64.43 64.99 64.78 2.3893 64.79 
WGD 
Radam 
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We measured the accuracy and loss of test data 

after each epoch. The training curves on CIFAR-

100 using Radam optimizer are shown in Figures 

7 and 8. As shown, in this case, using WGD in 

Radam will increase the accuracy and decrease the 

loss. 

 

Figure 7. Accuracy of Densenet121 in train data on 

CIFAR-100. 

 

Figure 8. Loss of Densenet121 in train data on CIFAR-

100. 

The accuracy results of all experiments on 

CIFAR-100 are shown in Figure 9. As shown, in 

11 cases, embedding WGD improves the 

accuracy.  

Using WGD in the Radam decreased the accuracy 

by about 0.3%. 

4.5. Decreasing network entropy 

Another effect of the proposed method, i.e. 

integrating WGD in optimizers, is that it decreases 

the network entropy. The network entropy can be 

described using the Optimization Landspace 

Smoothing (OLS) factors. One of the famous OLS 

factors is the Lipschitz function [40]. Assume that 

N is the convolution kernel dimension, e is an N-

dimensional unit vector, D is an N × N matrix, 

and h_t is the WGD. Assume that D is computed 

as in Equation 13: 

1 TD ee   (13) 

We re-write Equation 11 in matrix form: 

th D J   (14) 

The Lipschitz function says that if
2 2

2 2th J    

then the network optimized using WGD is 

smoother than the optimizers without WGD. We 

have: 
2

2
( ) ( ) ( )

( )

T T

t t t

T T

h h h D J D J

J D D J

 

 

   

  
 (15) 

Using Equation 14, we have: 
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Finally, we achieve Equation 17: 
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(17) 

Equation (17) shows that using WGD in 

optimizers leads to a better Lipschitz factor.  
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Figure 6. Accuracy (%) of all experiments on Animals-10. 
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Thus the gradients used in the training phase are 

better, and the proposed method improves the 

training procedure. 

 

5. Conclusion  

In this paper, we introduced WGD, a new 

updating method for gradient descent based 

optimizers. Briefly, we removed the mean from 

the gradient vectors to have zero mean. We 

evaluated this method by embedding it into four 

popular optimizers: SGDM, Adam, Nadam, and 

Radam. Using this method for the training phase 

of a proposed convolutional-based neural network 

on two image datasets improved all the 

classification metrics. In some cases, using the 

proposed updating method can improve the 

classification accuracy by up to 9%. Thus using 

WGD in gradient descent-based optimizers can 

increase the network training capability. Another 

benefit of our proposed updating method is 

improving the stability of the network in the 

training phase. 
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 .1041 سال ،چهارم شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده                                                                                         و خسروی نژادغلامعلی

 

 نزول گرادیان سفیدشده، یک روش به روزرسانی جدید برای بهینه سازها در شبکه های عصبی عمیق

 

 2حسین خسروی و *2،1حسین غلامعلی نژاد

 .گروه کامپیوتر، دانشکده فنی، دانشگاه بزرگمهر قائنات، قاین، ایران 1

 .دانشگاه صنعتی شاهرود، شاهرود، ایراندانشکده برق و رباتیک،  2

 40/40/0400 پذیرش؛ 40/41/0400 بازنگری؛ 40/11/0401 ارسال

 چکیده:

 یرا ب را  دی  جد یروش ب ه روز رس ان   کی  مقاله  نیدهند. ایوزن را انجام م یهستند که به روز رسان قیعم یعصب یشبکه ها یاتیح یسازها اجزا نهیبه

 زس ا  ن ه یروش آسان اس   و در ه ر به   نیا یساز ادهیکند. پیم یمعرف (WGD)شده  دیسف انیبه نام نزول گراد ،انینزول گراد ی مبتنی برسازها نهیبه

 ی ادگیری  یمنحن   پیشنهادی، دهد. روشینم شیافزا یقابل توجه زانیزمان آموزش شبکه را به ماین روش، قابل استفاده اس .  انینزول گراد مبتنی بر

دو مجموع ه داده   یتس   مختل ر را ب ر رو    00م ا   ،یش نهاد یپ تمیالگ ور  یابیارزبخشد. به منظور یرا بهبود م یطبقه بند یارهایکند و معیرا صاف م

Cifar100  وAnimals-10  با استفاده از سه ساختار شبکه شاملdensenet121 ،resnet18  وresnet50 ک ه   دهن د  ینش ان م    ها شی. آزمامیانجام داد

در  WGD. ب ه عن وان مل ال، ادغ ام     بخشد یبهبود م یتوجه را به طور قابل یبند طبقه جینتا ان،یبر گراد یمبتن یسازها نهیدر به WGDاستفاده از روش 

  .دهد.یم شیافزا Animals-10 داده مجموعه در 84.40% به  06.08%را از  DenseNet، دق  RAdamساز  نهیبه

 .، مومنتومشدهبهینه ساز، نزول گرادیان سفید، یادگیری عمیق :کلمات کلیدی

 


