

 Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 4, 2022, 467-477.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Original paper

Whitened gradient descent, a new updating method for optimizers

in deep neural networks

Hossein Gholamalinejad
1,2*

 and Hossein Khosravi
 2

1. Department of Computer, Faculty of Engineering, Bozorgmehr University of Qaenat, Qaen, Iran.

2. Faculty of Electrical Engineering Shahrood University of Technology.

Article Info Abstract

Article History:
Received 08 November 2021

Revised 06 January 2022
Accepted 05 April 2022

DOI:10.22044/jadm.2022.11325.2291

 Optimizers are the vital components of deep neural networks that

perform weight updates. This paper introduces a new updating method

for optimizers based on a gradient descent called the whitened gradient

descent (WGD). This method is easy to implement, and can be used in

every optimizer based on the gradient descent algorithm. It does not

increase the training time of the network significantly. This method

smooths the training curve, and improves the classification metrics. In

order to evaluate the proposed algorithm, we perform 48 different tests

on two datasets, Cifar100 and Animals-10, using three network

structures including densenet121, resnet18, and resnet50. The

experiments show that using the WGD method in the gradient

descent-based optimizers improves the classification results

significantly. For example, integrating WGD in the RAdam optimizer

increases the accuracy of DenseNet from 87.69% to 90.02% on the

Animals-10 dataset.

Keywords:
Deep learning, Optimizer,

Whitened gradient descent,

Momentum.

*Corresponding author:

Gholamalinejad69@gmail.com (H.

Gholamalinejad).

1. Introduction

Today, artificial neural networks (ANNs) have

become very widespread and diversified. It

attempts to simulate the human brain's learning

process on a computer and make the computers

more intelligent. ANNs can be divided into two

categories: shallow networks and deep networks.

In shallow ANNs, the inputs are the feature

vectors. These features are extracted using some

handcrafted algorithms such as PCA, FFT,

Wavelet, and HoG. This process is somewhat

different from the human brain's learning process

since the brain receives pure data without any

changes, and completes the learning or

experimentation process. Deep neural networks

(DNNs) are another type of ANNs that typically

work on images without a prior feature extraction

phase. These networks benefit from the deep

learning process. Although the basic idea of deep

learning was introduced many years ago, it was

not possible to implement these algorithms due to

the weakness of the existing hardware systems at

that time. The advancement of hardware

technology made the implementation of these

algorithms feasible. Recently, many deep learning

algorithms have been proposed to solve the

traditional artificial intelligence problems.

The architecture of DNNs is hierarchical. A DNN

uses this architecture for feature extraction.

Today, these networks are used in many

applications of artificial intelligence including

semantic parsing [1-3], transfer learning [4-8],

natural language processing [9-11], computer

vision [12-15], and many more. The main reasons

for the rapid development of these networks can

be summarized in three things: significant

increase in the hardware processing capabilities,

especially GPUs, reduced cost of computer

hardware, and significant improvements in

machine learning algorithms [16].

DNNs have been widely used in the recent years,

and several models have been proposed for

different applications. These models can be

divided into five categories [17, 18]: Convolution

Neural Networks (CNN), Restricted Boltzmann

Machines (RBM), Autoencoders, Sparse Coders,

and Recurrent Neural Networks. The back-

mailto:Gholamalinejad69@gmail.com%20(H

Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

468

propagation (BP) [19] algorithm is used in the

feed-forward neural networks. Forward structure

means that the artificial neurons are placed in

successive feeder layers, and send their outputs

forward. The term back-propagation implies that

the errors are fed backward in the network to

correct the weights. The BP method is a

supervised method in the sense that the input

samples are labeled, and the expected output is

known in advance. Therefore, the network output

is compared with these ideal outputs, and the

network error is calculated. In this algorithm, it is

first assumed that the network weights are

randomly selected. In each step, the network

output is calculated, and following the difference

between the output and the target (desired output),

the weights are updated to minimize this error

using a loss function. In order to compute the

gradient of the loss function, some training data is

used. According to the data, the gradient descent

methods can be divided into three categories:

batch gradient descent (BGD) method, mini-batch

gradient descent (MBGD) method, and stochastic

gradient descent (SGD) method [20]. In the BGD

method, the gradient is calculated for the entire

training data. Therefore, in the case of a large

amount of data, this method is practically

ineffective because it requires a lot of memory. In

SGD, only one training sample is used in each

step to calculate the gradient. This algorithm

requires less storage but it is hard to establish the

theoretical convergence conditions. In MBGD, the

benefits of both methods are used; a subset of

training data is used to update the weights and

calculate the gradients.

In the neural network, we need an algorithm that

changes the weights to minimize the loss score.

The algorithm that performs such a task is called

the optimizer. It is performed iteratively to

achieve an optimal solution for the weights.

In this work, we propose a new updating method

for gradient descent-based optimizers called

Whitened Gradient Descent (WGD). It smooths

and accelerates the training process of DNN and

also improves the model generalization

performance. In this method, we use the mean

gradient matrix in each layer of the convolution

filter bank; this value is calculated and subtracted

from all gradient kernel gradients in that layer. In

this way, similar information in the convolution

layer is deleted. The experimens show that the

proposed method improves the network behavior

in terms of classification criteria without

significantly changing the network processing

time.

The rest of this paper is organized as what

follows. The works related to our idea and famous

optimizing methods are discussed in Section 2.

The proposed method and its structure are

described in the next section. In Section 4, the

experimental results are discussed. The

experiments are conducted in two stages: first,

each network is trained using the original

optimizer, and then the process is repeated using

the modified WGD optimizers. Finally, in Section

5, we draw the paper to conclusions.

2. Related Works

There are a lot of optimizer algorithms used in

DNNs [21-26], among which the gradient descent

based algorithms are the most popular. In this

section, we introduce the famous optimizers based

on gradient descent. In order to mathematically

present the problem, assume that f(x) is the

desired objective function,
nx R and n is the

number of training data. The corresponding

gradient is ()f x . The step size for iteration k is

tk.

2.1. Batch gradient descent

In this method, a new x is calculated after

computing the gradient of the whole training data

(Equation 1):
(1:)

1 () n

k k k kx x t f x (1)

The batch gradient descent ensures that the back-

propagation algorithm converges to a minimum

for the convex and non-convex problems. In deep

learning applications, calculating the gradient for

all training data costs a lot of time and memory.

For this reason, the weights are slowly updated in

this method. Therefore, deep neural networks

rarely use this method to calculate the gradients

and update the weights.

2.2. Stochastic gradient descent

Another method to optimize the gradient is SGD.

Since the selection of training samples is random,

it is called stochastic. In this method, only one

training data is used in each step to update the

weights and calculate the gradient (Equation 2):
()

1 () i

k k k kx x t f x (2)

in which i is the number of training data. Since

gradient computation and weight update are

conducted sample by sample, the computed

gradient is not necessarily equal to the actual

gradient of the error curve for all training data. As

a result, the likelihood of convergence decreases.

Whitened gradient descent, a new updating method for optimizers in deep neural networks

469

2.3. Mini-batch gradient descent

The Mini-Batch gradient descent has the

advantages of both of the previous methods, i.e.

BGD and SGD. In this algorithm, the training data

is split into several mini-batches, and then one of

them is used to calculate the gradient at each step.

(Equation 3):
(:)

1 () i i m

k k k kx x t f x

 (3)

where represents the mini-batch size. This

method does not guarantee convergence, and if

the learning rate is not adjusted correctly, the

possibility of divergence is high. Therefore, other

techniques are used for convergence.

2.4. Gradient descent with momentum

Qian has considered momentum to reduce

variance in SGD [28]. Momentum accelerates

convergence in the desired direction, and prevents

the tendency to irrelevant directions. In this

method, instead of using only the gradient of the

current step to guide the search, the momentum

from previous steps is also employed to determine

the direction of the gradient [27]. (Equation 4):

1 ()k k k kv mv t f x

1k k kx x v
(4)

Where vk is the rate of weight change, and

[0,1]m is the momentum factor and often has a

value close to 1.0 such as 0.8, 0.9, or 0.99. A

momentum of 0.0 is the same as gradient descent

without momentum.

2.5. Nesterov accelerated gradient

Nesterov accelerated gradient (NAG) [29] is

another momentum-based algorithm. This method

calculates the gradient relative to the next

approximate value of the parameters, not their

current value. The difference between NAG and

classical momentum is that NAG puts more

weight on the recent gradients. In other words,

NAG forgets old gradients more quickly. Weight

update in this method is shown in Equation 5:

1 1()k k k k kv mv t f x mv

1k k kx x v
(5)

In this method, we give the momentum coefficient

m a value of about 0.9. In the gradient method, the

current gradient is first calculated, and then this

gradient makes a significant leap in the direction

of the new accumulated gradient. The Nesterov

method first makes a large leap in the direction of

the previously accumulated gradient, measures the

gradient, and then makes a minor correction.

These changes created by predicting future values

prevent the changes from accelerating too much.

2.6. Adagrad

One of the disadvantages of all the optimizers

described so far is that the learning rate is constant

across all parameters and cycles. Adagrad [30]

changes the learning rate for each parameter in

each time interval, and is a second-order

optimization algorithm that works with the

derivative of the error function (Equation 6):
(2)

1 ()k k kG G f x

1 ()k k k

k

t
x x f x

G

(6)

Here, G is a diagonal matrix in which each i-th

object of diameter is the sum of the squares of the

gradients, and is a smoothing coefficient that

prevents zero in the denominator. One of the main

advantages of this method is that it eliminates the

requirement to determine the learning rate. In

most applications, the value 0.01 is selected, and

does not change. The main disadvantage of the

Adagrad is the square aggregation matrix of the

gradients at the denominator. Since 2()kf x is a

positive value, the sum always increases during

the network's training. This reduces the rate of

learning (Equation 6), and eventually, weight

update will have no effect. After that, the

algorithm cannot learn anything else.

2.7. Adadelta

The Adadelta method [31] is a more robust

version of the Adagrad. It tries to overcome the

main drawbacks of Adagrad: 1) the continual

decay of learning rates throughout training, and 2)

the need for a manually selected global learning

rate. Adadelta adapts the learning rates based on a

moving window of gradient updates instead of

accumulating all past gradients. This way,

Adadelta continues learning even when many

updates have been done.

This method has the benefits of both Adagrad and

momentum. Followings are the operation details

of Adadelta (Equation 7):
2 2

1

2

[()] [()]

(1) ()

k kE f x E f x

f x

1

2

[]
()

[()]

k

k k

k

E x
x f x

E f x

2 2 2

1[] [] (1)k k kE x E x x

1k k kx x x

(7)

Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

470

where ρ is a decay constant (e.g, 0.95) and ε is a

small value (e.g. 1e-6) for numerical stability.

2.8. RMSprop

The RMSprop [5] method is an Adagrad-based

method. The RMS and Adadelta deduction

methods were developed independently and

almost simultaneously following the need for a

solution to the problem of drastically reducing the

learning rate in the Adagrad method. This method

also divides the learning rate by the average

attenuated square of the gradients (Equation 8):
2

1 [()]k k kG G fE f x

2

1[()] (1) ()k kE f x f x

1
2

()
[()]

k k k

k

t
x x f x

E f x

(8)

where ρ is a decay constant, and is commonly

considered as 0.9.

2.9. Adam

Adam [32] is another method that calculates the

learning rate according to the data. In addition to

storing the exponentially squared averages of the

previous gradients, such as the Adadelta method,

it also preserves exponentially averaging the

gradients like the NAG method [32].

Adam's updating rule consists of the following

steps (Equation 9):

1 1 1(1) ()k k km m f x

2

2 1 2(1) ()k k kv m f x

11

t
k k

m
m

 ̂

1k k k

k

k
x x m

v

(9)

in which mk is the exponential moving averages

of the gradient, and vk is the moving averages of

the squared gradient. The hyper-parameters
1

and
2 control the exponential decay rates of these

moving averages. These moving averages are

initialized as (vectors of) 0’s, leading to moment

estimates that are biased towards zero. ˆ
km and

ˆ
kv are the bias-corrected estimates. The

developers have proposed default values of 0.9 for

1 , 0.999 for
2 and 10e-8 for ε. They have shown

empirically that the Adam method works well in

practice, and is superior to other adaptive learning

methods.

2.10. Nadam

Nadam (Nesterov-accelerated Adaptive Moment

Estimation) [29] combines the Adam and

Nesterov accelerated gradient (NAG) [33]. The

weight update of this method is shown in

Equation 10:

()k xk kg J x

1k k km m g

11

t
k k

m
m

21

t
k k

m
v

1 1

1

1

(

(1)
)

1 1

k k k

k

k

k

x x m
v

g

(10)

where
1 can be 0.9,

2 can be 0.999, and ε can be

1e-8.

2.11. Radam

Rectified Adam or Radam [34] is a variant of the

Adam stochastic optimizer that introduces a term

to rectify the variance of the adaptive learning

rate. It seeks to tackle the convergence problem

suffered by Adam. The authors in [34] argue that

the root cause of this behavior is that the adaptive

learning rate has an undesirably large variance in

the early stage of model training due to the limited

amount of training samples being used. Thus to

reduce such variance, it is better to use lower

learning rates in the first few epochs of training-

that justifies the warmup heuristic. The Radam

optimizer algorithm is shown in Algorithm 1.

3. Proposed Method

In DNNs, the convolution layer weights are the

factors that change the information between

layers. These weights are stored in memory as a

matrix. They often contain similar information.

The targeted removal of this information can help

to produce better feature maps. In this article, we

propose a new optimizer algorithm that removes

this similar information. We use the mean matrix

for this purpose. In each convolution layer, the

mean matrix to produce better feature maps. In

this article, we propose a new optimizer algorithm

that removes this similar information. We use the

mean matrix for this purpose.

Whitened gradient descent, a new updating method for optimizers in deep neural networks

471

In each convolution layer, the mean matrix of the

weights is subtracted from all weight kernels. The

formulation of the proposed algorithm is shown in

Equation 11:

, (,)k x x xh J k x

1

1
(,)

P

x x

i

J i x
P

(11)

where J is the objective function, P is the weight

kernel number in a specific layer, and x is the

mean of weight kernels in a specific layer. Due to

subtracting the mean from each gradient vector,

we named our method whitened gradient descent

(WGD). This algorithm can be integrated with any

gradient descent-based optimizer by replacing

()x J x with ,k xh . As an example, embedding

the WGD to the RAdam optimizer is shown in

Algorithm 2.

4. Experiments

In this section, we study the effect of embedding

the proposed updating algorithm in four famous

optimizers in the classification tasks. Three

different image datasets are used to evaluate the

impact of integrating WGD with different

optimizers.

4.1. Network training

We conducted our experiments on a PC with

GeForce Turbo RTX-2080 GPU and Corei3-

9100f CPU running at 4000MHz. The proposed

algorithm and model are implemented in Python

3.7 using the Pytorch and OpenCV libraries. Due

to the imbalance of the samples in different

classes of the datasets, we used a weighted

random sampler [35] to balance the training data.

The training parameters of the proposed model are

listed in Table 1.
Table 1. Training parameters of proposed model.

32 Batch size

50 Epochs

0.9 Momentum

0.01 Learning rate

1e-3 Weight decay

1e-10 Epsilon

Sampler Weighted random sampler

We used three different DNNs including

ResNet18, ResNet50, and Densenet121. The first

structure that we used was ResNet [36]. It has a

novel structure, having the new residual

connections; it can be trained on every dataset

without the problem of vanishing gradients. It

supports very deep layers, and exists in different

versions from ResNet18 to ResNet152, and even

more. We trained two structures, ResNet18 and

ResNet50. Another DNN that we used in this

article is DenseNet [37]. DenseNet is a type of

convolutional neural network that uses dense

connections between layers through Dense

Blocks, where all layers are connected (with

matching feature-map sizes) directly with each

other.

Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

472

We used Densenet121 in our experiments. This

architecture is shown in Figure 1.

Figure 1. Densenet121 block diagram.

4.2. Datasets

In order to evaluate the proposed method, we used

two popular datasets: Animals-10 with ten classes

and CIFAR100 with one hundred classes.

Animals-10 dataset [38] consists of 26,183

medium quality animal images grouped in 10

categories: dog, cat, horse, spider, butterfly,

chicken, sheep, cow, squirrel, and elephant. Some

images from the Animals-10 dataset are shown in

Figure 2.

Figure 2. Sample images from Animals-10 dataset.

All the images have been collected from Google

images, and have been verified by a human. This

dataset contains 23,563 images for training and

2,620 images for the test. The number of training

and test data of this dataset are listed in Table 2.

Table 2. Size of each class in Animals-10 dataset.

Testing Training Class

487 4,376 Dog

262 2,361 Horse

145 1,301 Elephant

211 1,901 Butterfly

309 2,789 Chicken

166 1,502 Cat

186 1,680 Cow

186 1,638 Sheep

482 4,339 Spider

186 1,676 Squirrel

2,620 23,563 Total

Figure 3. Sample images from CIFAR-100 dataset.

The CIFAR-100 dataset is a labeled subsets of the

80 million tiny images dataset. They were

Whitened gradient descent, a new updating method for optimizers in deep neural networks

473

collected by Alex Krizhevsky, Vinod Nair, and

Geoffrey Hinton. This dataset is just like the

CIFAR-10, except that it has 100 classes

containing 600 images in each. There are 500

training images and 100 testing images per class.

Some sample images from the CIFAR-100 dataset

are shown in Figure 3.

4.3. Metrics

There are various criteria for evaluating the

performance of deep neural networks used in the

classification problems. In this section, we

examine these criteria. These are the mean recall

(mRe), the mean precision (mPr), and the Cohen

Kappa Score (Kappa), which is a measure to

express the agreement between two annotators. In

this case, the first annotator is a method under

evaluation, and the second annotator is the ground

truth. Equation 12 shows these metrics.
TP

Accuracy=
Total number of images

num of classes

ii=1
Re

mRe=
num of classes

num of classes

ii=1
Pr

mPr=
num of classes

Acc-Pe
Kappa=

1-Pe

(12)

Where

Re ()

Pr ()

i i i i

i i i i

TP TP FN

TP TP FP

And Pe is the probability of agreement when both

annotators assign random labels.

4.4. Classification experiments

We embedded our method into some popular

gradient-based optimizers including SGDM,

Adam, RAdam, and Nadam in order to evaluate

their classification metrics performance in the two

datasets using three network structures
1
. The

training parameters are set as shown in Table 1.

Tables 3, 4, 5 show the classification metrics on

Animals-10, and Tables 6, 7, and 8 show the

results on CIFAR-100.

4.4.1. Animals-10 experiments

Animals-10 is a complex dataset with high-quality

images. It has several challenges including

different backgrounds, different vision angles, and

imbalanced samples, i.e. the number of samples in

each category is different. As shown in Tables 3,

4, and 5, embedding WGD to the selected

1
 Codes can be found here https://github.com/hoseingh69/WGD

optimizers increased the accuracy and decreased

the loss in all the 24 experiments. The best

accuracy was achieved using the WGD Radam

optimizer in DenseNet121, which was 90%. The

best accuracy improvement was achieved in the

Nadam optimizer with ResNet50, which increased

the accuracy from 67.20% to 76.64%.

As described in [39], Cohen Kappa Score is a

statistic metric used to measure the inter-rater

reliability (and also the intra-rater reliability) for

the qualitative classification items. Thus it could

show the power of classifier architecture in

classification. As shown in Tables 3, 4, and 5, the

best improvement of these parameters was in the

Nadam cases that were about 6% in DenseNet121

and ResNet18 and about 10% in ResNet50.

According to Cohen Kappa Score, the best result

was in WGD Radam for DenseNet121.

Table 3. Classification results for Animals-10 dataset using

DenseNet121.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

85.20 86.51 85.84 0.5074 87.00 SGDM

85.95 87.37 87.17 0.4535 87.65
WGD

SGDM

74.32 75.99 76.34 0.6808 77.41 Adam

76.69 78.19 77.61 0.6604 79.55
WGD
Adam

69.96 72.79 71.17 0.7967 73.66 Nadam

75.36 77.08 76.57 0.6218 78.36
WGD

Nadam

86.01 86.77 87.40 0.7606 87.69 Radam

88.66 89.56 90.09 0.6222 90.02
WGD

Radam

Table 4. Classification results for Animals-10 dataset using

ResNet18.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

78.54 80.64 79.19 0.7271 81.19 SGDM

79.00 81.34 79.93 0.6540 81.57
WGD

SGDM

69.09 71.58 70.31 0.9012 72.90 Adam

71.99 73.15 74.20 0.8535 75.31
WGD
Adam

65.01 66.87 67.08 0.9652 69.19 Nadam

71.78 74.51 52.55 0.8185 75.27
WGD

Nadam

80.51 82.34 81.12 1.2590 82.91 Radam

82.60 83.97 83.69 1.1105 84.71
WGD

Radam

The training curves on Animals-10 using the

Radam optimizer are shown in Figure 4 and

Figure 5. As shown, using WGD in Radam, the

accuracy was increased, and the loss was

decreased.

https://github.com/hoseingh69/WGD

Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

474

Table 5. Classification results for Animals-10 dataset using

ResNet50.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

73.79 76.32 74.57 1.9745 77.03 SGDM

78.76 80.66 79.44 0.8031 81.38
WGD

SGDM

70.19 73.84 69.63 0.7936 73.97 Adam

73.39 76.25 74.56 0.7692 76.64
WGD

Adam

62.75 63.80 64.73 0.9498 67.20 Nadam

72.76 74.50 74.14 0.7422 76.07
WGD

Nadam

81.12 82.37 82.19 1.0974 83.41 Radam

84.36 84.36 84.63 0.8933 85.28
WGD
Radam

Figure 4. Accuracy of Densenet121 in train data on

Animals-10.

Figure 5. Loss of Densenet121 in train data on Animals-

10.

The accuracy results of all experiments on

Animals-10 are shown in Figure 6. As presented,

in all cases, the embedding WGD improves the

accuracy.

4.4.2. CIFAR-100 experiment

CIFAR-100 is an image dataset with a low quality

and small images in 100 categories. The input size

for our test networks is 224 × 224. Thus the

images will be blurred in the input of networks.

We did 24 different tests in this stage using

DenseNet121, ResNet18, and ResNet50. The

results are shown in Tables 6, 7, and 8. As shown,

although this dataset has low-quality images, we

achieved an accuracy of 70.35% on the test data

with WGD Radam. In this case, we had about 7%

improvement in accuracy and about 8% in the

Cohen Kappa Score, using our method.

Table 6. Classification results for CIFAR-100 dataset using

DenseNet121.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

65.81 66.31 66.16 1.3812 66.16 SGDM

66.36 67.18 66.70 1.3411 66.70
WGD

SGDM

44.46 44.58 45.01 2.0750 45.02 Adam

50.36 51.22 50.85 1.8090 50.86
WGD

Adam

39.83 40.76 40.44 2.3100 40.44 Nadam

45.55 47.31 46.09 1.9762 46.10
WGD

Nadam

62.85 63.18 63.23 2.6760 63.23 Radam

70.05 70.73 70.35 2.0094 70.35
WGD
Radam

Table 7. Classification results for CIFAR-100 dataset using

ResNet18.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

57.95 57.99 58.38 1.6075 58.38 SGDM

60.17 60.30 60.57 1.5235 60.57
WGD

SGDM

43.56 43.77 44.13 2.1271 44.13 Adam

46.42 46.96 46.96 1.9737 46.96
WGD

Adam

43.32 44.00 43.89 2.1221 43.89 Nadam

44.71 44.88 45.27 2.0659 45.27
WGD

Nadam

61.86 62.53 62.24 3.0041 62.25 Radam

62.90 63.55 63.28 2.9368 63.28
WGD
Radam

Table 8. Classification results for CIFAR-100 dataset using

ResNet50.

CKS
Mean

precision

Mean

recall
Loss Accuracy Optimizer

56.89 56.47 56.34 1.7131 56.34 SGDM

58.28 58.83 58.70 2.1040 58.70
WGD

SGDM

42.03 42.35 42.61 2.1868 42.61 Adam

46.46 46.83 47.00 1.9774 47.00
WGD

Adam

29.37 29.14 30.08 2.7722 30.08 Nadam

44.59 45.46 45.14 2.0368 45.15
WGD

Nadam

64.57 65.46 64.92 2.4143 64.93 Radam

64.43 64.99 64.78 2.3893 64.79
WGD
Radam

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy
(%

)

Epoch

Radam

WGD Radam

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lo
ss

Epoch

Radam

WGD Radam

Whitened gradient descent, a new updating method for optimizers in deep neural networks

475

We measured the accuracy and loss of test data

after each epoch. The training curves on CIFAR-

100 using Radam optimizer are shown in Figures

7 and 8. As shown, in this case, using WGD in

Radam will increase the accuracy and decrease the

loss.

Figure 7. Accuracy of Densenet121 in train data on

CIFAR-100.

Figure 8. Loss of Densenet121 in train data on CIFAR-

100.

The accuracy results of all experiments on

CIFAR-100 are shown in Figure 9. As shown, in

11 cases, embedding WGD improves the

accuracy.

Using WGD in the Radam decreased the accuracy

by about 0.3%.

4.5. Decreasing network entropy

Another effect of the proposed method, i.e.

integrating WGD in optimizers, is that it decreases

the network entropy. The network entropy can be

described using the Optimization Landspace

Smoothing (OLS) factors. One of the famous OLS

factors is the Lipschitz function [40]. Assume that

N is the convolution kernel dimension, e is an N-

dimensional unit vector, D is an N × N matrix,

and h_t is the WGD. Assume that D is computed

as in Equation 13:

1 TD ee (13)

We re-write Equation 11 in matrix form:

th D J (14)

The Lipschitz function says that if
2 2

2 2th J

then the network optimized using WGD is

smoother than the optimizers without WGD. We

have:
2

2
() () ()

()

T T

t t t

T T

h h h D J D J

J D D J

 (15)

Using Equation 14, we have:

() (1) (1)

() (1)

T T T T

T T

J ee ee J

J ee J

 (16)

Finally, we achieve Equation 17:
2

2
() (1)

() ()

T T T

t

T T T

h J ee J

J J J ee J

22 2

2 2 2

2 2

2 2

T

t

t

h J e J

h J

(17)

Equation (17) shows that using WGD in

optimizers leads to a better Lipschitz factor.

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

A
cc

u
ra

cy
(%

)

Epoch

Radam

WGD Radam

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Lo
ss

Epoch

Radam

WGD Radam

Figure 6. Accuracy (%) of all experiments on Animals-10.

Gholamalinejad & Khosravi/ Journal of AI and Data Mining, Vol. 10, No. 4, 2022

476

Thus the gradients used in the training phase are

better, and the proposed method improves the

training procedure.

5. Conclusion

In this paper, we introduced WGD, a new

updating method for gradient descent based

optimizers. Briefly, we removed the mean from

the gradient vectors to have zero mean. We

evaluated this method by embedding it into four

popular optimizers: SGDM, Adam, Nadam, and

Radam. Using this method for the training phase

of a proposed convolutional-based neural network

on two image datasets improved all the

classification metrics. In some cases, using the

proposed updating method can improve the

classification accuracy by up to 9%. Thus using

WGD in gradient descent-based optimizers can

increase the network training capability. Another

benefit of our proposed updating method is

improving the stability of the network in the

training phase.

References
[1] A. Bordes, X. Glorot, J. Weston, and Y. Bengio,

"Joint learning of words and meaning representations

for open-text semantic parsing," in Artificial

Intelligence and Statistics, 2012, pp. 127-135.

[2] W. Ma, W. Ma, S. Xu, and H. Zha, "Pyramid

ALKNet for Semantic Parsing of Building Facade

Image," IEEE Geoscience and Remote Sensing Letters,

2020.

[3] V. Lialin, R. Goel, A. Simanovsky, A. Rumshisky,

and R. Shah, "Continual Learning for Neural Semantic

Parsing," arXiv preprint arXiv:2010.07865, 2020

[4] D. C. Cireşan, U. Meier, and J. Schmidhuber,

"Transfer learning for Latin and Chinese characters

with deep neural networks," in The 2012 International

Joint Conference on Neural Networks (IJCNN), 2012,

pp. 1-6: IEEE.

[5] J. S. Ren and L. Xu, "On vectorization of deep

convolutional neural networks for vision tasks," in

Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015.

[6] T. Kaur and T. K. Gandhi, "Deep convolutional

neural networks with transfer learning for automated

brain image classification," Machine Vision and

Applications, vol. 31, pp. 1-16, 2020.

[7] I. D. Apostolopoulos and T. A. Mpesiana, "Covid-

19: automatic detection from x-ray images utilizing

transfer learning with convolutional neural networks,"

Physical and Engineering Sciences in Medicine, p. 1,

2020.

[8] X. Li, Y. Grandvalet, and F. Davoine, "A baseline

regularization scheme for transfer learning with

convolutional neural networks," Pattern Recognition,

vol. 98, p. 107049, 2020.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, "Distributed representations of words and

phrases and their compositionality," in Advances in

neural information processing systems, 2013, pp. 3111-

3119.

[10] S. Lazebnik, C. Schmid, and J. Ponce, "Beyond

bags of features: Spatial pyramid matching for

recognizing natural scene categories," in 2006 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR'06), 2006, vol. 2, pp. 2169-

2178: IEEE. [11] K. Chowdhary, "Natural language

processing," in Fundamentals of Artificial Intelligence:

Springer, 2020, pp. 603-649.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

"Imagenet classification with deep convolutional neural

networks," in Advances in neural information

processing systems, 2012, pp. 1097-1105.

[13] D .Ciregan, U. Meier, and J. Schmidhuber, "Multi-

column deep neural networks for image classification,"

in 2012 IEEE conference on computer vision and

pattern recognition, 2012, pp. 3642-3649: IEEE.

[14] O. Badmos, A. Kopp, T. Bernthaler, and G.

Schneider" ,Image-based defect detection in lithium-

ion battery electrode using convolutional neural

networks," Journal of Intelligent Manufacturing, vol.

31, no. 4, pp. 885-897, 2020.

 Figure 9. Accuracy (%) of all experiments on CIFAR-100.

Whitened gradient descent, a new updating method for optimizers in deep neural networks

477

[15] X. Gou, L. Qing, Y. Wang, M. Xin, and X. Wang,

"Re-training and parameter sharing with the Hash trick

for compressing convolutional neural networks,"

Applied Soft Computing, p. 106783, 2020.

[16] L. Deng, "A tutorial survey of architectures,

algorithms, and applications for deep learning,"

APSIPA Transactions on Signal and Information

Processing, vol. 3, 2014.

[17] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and

M. S. Lew, "Deep learning for visual understanding: A

review," Neurocomputing, vol. 187, pp. 27-48, 2016.

[18] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio,

"How to construct deep recurrent neural networks,"

arXiv preprint arXiv:1312.6026, 2013.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

"Learning representations by back-propagating errors,"

nature, vol. 323, no. 6088, pp. 533-536, 1986.

[20] S. Ruder, "An overview of gradient descent

optimization algorithms," arXiv preprint

arXiv:1609.04747, 2016.

[21] C. Y. Miao, A. Yang, and M. J. Anderson, "Deep

Learning Workload Performance Auto-Optimizer,"

EasyChair2516-2314, 2020.

[22] R. Marcus, P. Negi, H. Mao, N .Tatbul, M.

Alizadeh, and T. Kraska, "Bao: Learning to Steer

Query Optimizers," arXiv preprint arXiv:2004.03814,

2020.

[23] G.-H. Liu, T. Chen, and E. A. Theodorou, "A

Differential Game Theoretic Neural Optimizer for

Training Residual Networks," arXiv preprint

arXiv:2007.08880, 2020.

[24] I. Kandel, M. Castelli, and A. Popovič,

"Comparative Study of First Order Optimizers for

Image Classification Using Convolutional Neural

Networks on Histopathology Images," Journal of

Imaging, vol. 6, no. 9, p. 92, 2020

[25] S. Postalcıoğlu, "Performance Analysis of

Different Optimizers for Deep Learning-Based Image

Recognition," International Journal of Pattern

Recognition and Artificial Intelligence, vol. 34, no. 02,

p. 2051003, 2020.

[26] S. Kim and T.-S. Choi, "Design of Multichannel

FIR Filter using Gradient Descent Optimizer for

Personal Audio Systems," in Audio Engineering

Society Convention 148, 2020: Audio Engineering

Society.

[27] R. Sutton, "Two problems with back propagation

and other steepest descent learning procedures for

networks," in Proceedings of the Eighth Annual

Conference of the Cognitive Science Society, 1986,

1986, pp. 823-832.

[28] N. Qian, "On the momentum term in gradient

descent learning algorithms," Neural networks, vol. 12,

no. 1, pp. 145-151,1999.

[29] T. Dozat, "Incorporating nesterov momentum into

adam.(2016),"

[30] J. Duchi, E. Hazan, and Y. Singer, "Adaptive

subgradient methods for online learning and stochastic

optimization," Journal of machine learning research,

vol. 12, no. 7, 2011.

[31] M. D. Zeiler, "Adadelta: an adaptive learning rate

method," arXiv preprint arXiv:1212.5701, 2012.

[32] D. P. Kingma and J. Ba, "Adam: A method for

stochastic optimization," arXiv preprint

arXiv:1412.6980, 2014.

[33] M. Kögel and R. Findeisen, "A fast gradient

method for embedded linear predictive control," IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 1362-1367,

2011.

[34] L. Liu et al., "On the variance of the adaptive

learning rate and beyond," arXiv preprint

arXiv:1908.03265, 2019.

[35] P. Efraimidis and P. Spirakis, "Weighted Random

Sampling," in Encyclopedia of Algorithms, M.-Y. Kao,

Ed. Boston, MA: Springer US, 2008, pp. 1024-1027.

[36] K. He, X. Zhang, and S. Ren, "Deep residual

learning for image recognition," in Proceedings of the

IEEE conference on Computer Vision and Pattern

Recognition, 2016, pp. 770-778.

[37] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.

Weinberger, "Densely connected convolutional

networks," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp.

4700-4708.

[38] Animals-10 image dataset. Available:

https://www.kaggle.com/alessiocorrado99/animals10.

[39] M. L. McHugh, "Interrater reliability: the kappa

statistic," Biochemia medica: Biochemia medica, vol.

22, no. 3, pp. 276-282, 2012

[40] G. Beliakov, "Smoothing Lipschitz functions,"

Optimisation Methods and Software, vol. 22, no. 6, pp.

901-916, 2007.

https://www.kaggle.com/alessiocorrado99/animals10

 .1041 سال ،چهارم شماره هم،دوره د ،کاویمجله هوش مصنوعی و داده و خسروی نژادغلامعلی

 نزول گرادیان سفیدشده، یک روش به روزرسانی جدید برای بهینه سازها در شبکه های عصبی عمیق

 2حسین خسروی و *2،1حسین غلامعلی نژاد

 .گروه کامپیوتر، دانشکده فنی، دانشگاه بزرگمهر قائنات، قاین، ایران 1

 .دانشگاه صنعتی شاهرود، شاهرود، ایراندانشکده برق و رباتیک، 2

 40/40/0400 پذیرش؛ 40/41/0400 بازنگری؛ 40/11/0401 ارسال

 چکیده:

 یرا ب را دی جد یروش ب ه روز رس ان کی مقاله نیدهند. ایوزن را انجام م یهستند که به روز رسان قیعم یعصب یشبکه ها یاتیح یسازها اجزا نهیبه

 زس ا ن ه یروش آسان اس و در ه ر به نیا یساز ادهیکند. پیم یمعرف (WGD)شده دیسف انیبه نام نزول گراد ،انینزول گراد ی مبتنی برسازها نهیبه

 ی ادگیری یمنحن پیشنهادی، دهد. روشینم شیافزا یقابل توجه زانیزمان آموزش شبکه را به ماین روش، قابل استفاده اس . انینزول گراد مبتنی بر

دو مجموع ه داده یتس مختل ر را ب ر رو 00م ا ،یش نهاد یپ تمیالگ ور یابیارزبخشد. به منظور یرا بهبود م یطبقه بند یارهایکند و معیرا صاف م

Cifar100 وAnimals-10 با استفاده از سه ساختار شبکه شاملdensenet121 ،resnet18 وresnet50 ک ه دهن د ینش ان م ها شی. آزمامیانجام داد

در WGD. ب ه عن وان مل ال، ادغ ام بخشد یبهبود م یتوجه را به طور قابل یبند طبقه جینتا ان،یبر گراد یمبتن یسازها نهیدر به WGDاستفاده از روش

 .دهد.یم شیافزا Animals-10 داده مجموعه در 84.40% به 06.08%را از DenseNet، دق RAdamساز نهیبه

 .، مومنتومشدهبهینه ساز، نزول گرادیان سفید، یادگیری عمیق :کلمات کلیدی

