- Zhou, Q., Lucchini, T., D’Errico, G., Novella, R., García-Oliver, J. M., & Lu, X. (2021). CFD analysis of combustion and emission characteristics of primary reference fuels: from transient Diesel spray to heavy-duty engine. Fuel, 301, 120994.
- Benavides-Morán, A., Cubillos, A., & Gómez, A. (2021). Spray drying experiments and CFD simulation of guava juice formulation. Dry. Technol, 39(4), 450-465..
- Ali, A. M., Dena, A. S. A., Yacoub, M. H., & El-Sherbiny, I. M. (2022). Drag-minimizing spore/pollen-mimicking microparticles for enhanced pulmonary drug delivery: CFD and experimental studies. J. Drug. Deliv. Sci. Technol, 67, 102960.
- Farivar, F., Zhang, H., Tian, Z. F., & Gupte, A. (2020). CFD-DEM-DDM model for spray coating process in a Wurster coater. J. Pharm. Sci., 109(12), 3678-3689.
- Desjardins, O., Fox, R. O., & Villedieu, P. (2008). A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys, 227(4), 2514-2539.
- Ejtehadi, O., Rahimi, A., Karchani, A., & Myong, R. S. (2018). Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme. Int. J. Multiph. Flow, 104, 125-151.
- Ferry, J., & Balachandar, S. (2001). A fast Eulerian method for disperse two-phase flow. Int. J. Multiph. Flow, 27(7), 1199-1226.
- Williams, F. A. (1958). Spray combustion and atomization. Phys. Fluids, 1(6), 541-545.
- Koch, D. L. (1990). Kinetic theory for a monodisperse gas–solid suspension. Phys. Fluids, 2(10), 1711-1723.
- Zhang, D. Z., & Prosperetti, A. (1994). Ensemble phase‐averaged equations for bubbly flows. Phys. Fluids, 6(9), 2956-2970.
- O 'Rourke , P. J. (1985). The KIVA computer program for multidimensional chemically reactive fluid flows with fuel sprays. In Numerical Simulation of Combustion Phenomena (pp. 74-89). Springer, Berlin, Heidelberg.
- Amsden, A. A. (1989). A computer program for chemically reactive flows with sprays. Report of Los Alamos National Laboratory.
- Torres, D. J., & Trujillo, M. F. (2006). KIVA-4: An unstructured ALE code for compressible gas flow with sprays. J. Comput. Phys, 219(2), 943-975.
- Duan, X., Xu, Z., Sun, X., Deng, B., & Liu, J. (2021). Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels. Energy, 231, 121069.
- Ghayoumi, M. (2022). An Investigation of Applied Techniques to Improve Grid Generation in ICEs Simulations by KIVA. Fluid. Mech. Aerodyn. J, 10(2).
- Liu, J., Guo, Q., Guo, J., & Wang, F. (2021). Optimization of a diesel/natural gas dual fuel engine under different diesel substitution ratios. Fuel, 305, 121522.
- Lungu, J., Siwale, L., & Luwaya, E. (2018). Numerical Accuracy of the Kiva4 Code under Different Ignition Timing on the Combustion Characteristics of Gasoline in a Spark Ignition Engine. J. Power. Energy, 6(11), 87.
- Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Appl. Res, 52(4), 309-329.
- Capecelatro, J., & Desjardins, O. (2013). An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys, 238, 1-31.
- Jacobs, G. B., & Don, W. S. (2009). A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks. J. Comput. Phys, 228(5), 1365-1379.
- Zhu, H. P., Zhou, Z. Y., Yang, R. Y., & Yu, A. B. (2007). Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci, 62(13), 3378-3396.
- Amsden, A. A., Butler, T. D., O'rourke, P. J., & Ramshaw, J. D. (1985). KIVA—a comprehensive model for 2-D and 3-D engine simulations. SAE trans, 1-15.
- Watkins, A. P. (1989). Three-dimensional modelling of gas flow and sprays in diesel engines. Computer simulation of fluid flow, heat and mass transfer and combustion in reciprocating engines, (ed. N. C. Markatos). Washington, DC: Hemisphere Publishing Corporation. 193-237.
- Watkins, A. P., Khaleghi, H., & Wang, D. M. (1991). Modelling spray phenomena in direct-injection diesel engines. Internal Combustion Engine Research in Universities, Polytechnics and Colleges, 131-142.
- Khaleghi, H., Farani Sani, H., Ahmadi, M., & Mohammadzadeh, F. (2021). Effects of turbulence on the secondary breakup of droplets in diesel fuel sprays. Proceedings of the Institution of Mechanical Engineers, Part D: J. Automot. Eng, 235(2-3), 387-399.
- Khaleghi, H., Ahmadi, M., & Farani Sani, H. (2019). Effects of two-way turbulence interaction on the evaporating fuel sprays. Appl. Fluid Mech., 12(5), 1407-1415.
- Khaleghi, H., Yazdanparast, S., Keshtkar, M., & Firouznia, Z. (2018). DEVELOPMENT OF A SPREAD SUBMODEL FOR SPRAY/WALL IMPACTION. At. Sprays , 28(10).
- Issa, R. I., Gosman, A. D., & Watkins, A. P. (1986). The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys, 62(1), 66-82.
- Ling, Y., Zaleski, S., & Scardovelli, R. (2015). Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int. J. Multiph. Flow, 76, 122-143.
- Zhou, L., Xia, J., Shinjo, J., Cairns, A., Cruff, L., & Blaxill, H. (2015). Towards high-fidelity multi-scale simulation of spray atomization. Energy. Procedia, 66, 309-312.
- Ström, H., Sasic, S., Holm-Christensen, O., & Shah, L. J. (2016). Atomizing industrial gas-liquid flows–development of an efficient hybrid vof-lpt numerical framework. Int. J. Heat. Fluid. Flow, 62, 104-113
- Hsiang, L. P., & Faeth, G. M. (1992). Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow, 18(5), 635-652.
- Pilch, M., & Erdman, C. A. (1987). Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow, 13(6), 741-757.
- Omidvar, A., & Khaleghi, H. (2012). An analytical approach for calculation of critical weber number of droplet breakup in turbulent gaseous flows. Arab. J. Sci. Eng, 37(8), 2311-2321.
- Reitz, R. D., & Diwakar, R. (1986). Effect of drop breakup on fuel sprays. SAE trans, 218-227.
- Munnannur, A., & Reitz, R. D. (2007). Droplet collision modeling in multi-dimensional spray computations. In SAE World Congress.
- Launder, B.E., Spalding, D.B., (1974). Numerical computation of turbulent flows. Comput. Methods. Appl. Mech. Eng. 3 (2), 269–289
- Versteeg, H. K., & Malalasekera, W. (1995). Computational fluid dynamics. The finite volume method, Harlow, England: Longman Scientific & Technical
- Yule, A. J., Mo, S. L., Tham, S. Y., & Aval, S. M. (1985). Diesel spray structure. Proc. ICLASS-85, 1-1.
|