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 In this work, an attempt is made to fit and identify the most appropriate probability 
distribution(s) for the analysis of seventeen rock samples including diorite, gypsum, 
marble, basalt, sandstone, limestone, apatite, slate, dolomite, granite-II, schist, gneiss, 
amphibolite, hematitle, magnetite, Shale, and granite-I using laser-induced breakdown 
spectroscopy. The graphical assessment and visualization endorse that the rock dataset 
series are positively skewed. Therefore, Frechet, Weibull, log-logistic, log-normal, 
and generalized extreme value distributions are considered as candidate distributions, 
and the parameters of these distributions are estimated by maximum likelihood and 
Bayesian estimation methods. The goodness of fit test and model selection criteria 
such as the Kolmogorov-Smirnov test, Akaike Information Criterion, and Bayesian 
Information Criterion are used to quantify the accuracy of the predicted data using 
theoretical probability distributions. The results show that the Frechet, Weibull, and 
log-logistic distributions are the best-fitted probability distribution for rock dataset. 
Cluster analysis is also used to classify the selected rocks that share common 
characteristics, and it is observed that diorite and gypsum are placed in one cluster.  
However, slate, dolomite, marble, basalt, sandstone, schist, granite-II, and gneiss rocks 
belong to different clusters. Similarly, limestone and apatite appeare in one cluster. 
Likewise, shale, granite-I, magnetite, amphibolite, and hematitle appeare in a different 
cluster. The current work demonstrate that coupling of laser-induced breakdown 
spectroscopy with suitable statistical tools can identify and classify the rocks very 
efficiently. 
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1. Introduction  
Rocks and minerals are of great importance in the 

universe. They have a wide range of applications 
that make them important for human. Usually, 
rocks are used in construction, for manufacturing 
substances, making medicines, and for the 
extraction of precious elements. Rocks provide 
clues about the earth's history, and therefore, they 
are extremely interesting for the scientists and 
researchers. Rocks tell us about the history of the 
earth's surface because they are the primary 
storyteller of the past climate, life, and major 
events at the earth's surface. As the rock gradually 
breaks down, release minerals that end up in the 
water of oceans, lakes, and the soil.  

A rock is a naturally occurring solid cohesive 
aggregate of one or more mineral or mineral 

materials. An unlimited variety of rocks are present 
in Pakistan that employ effects on the properties of 
soil. The most common rock types are 
metamorphic that are found in Himalayan regions. 
It includes gneisses, schist, slates, and phyllites 
with some quartzite and marble. Small outcrops of 
phyllites and quartzites are also found in the 
northern part of the Indus plain. Granite, diorite, 
dolerite, and peridotite are the more common types 
of igneous rocks that occur in Dir, Swat, Chitral, 
Gilgit, Zhob, and Chagai. The gemstones, marbles, 
and much other economic mineralization are found 
in Azad Jammu and Kashmir (AJ&K) and Gilgit-
Baltistan. The AJ&K region has also a share of 
gemstones and granite, especially from the upper 
areas of Neelam valley, whereas marble, 
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construction materials, coal, clays, and other 
minerals are found in the different areas of AJ&K. 
In general, rocks can be classified into three main 
types on the process of their embodiment. These 
are igneous rocks, sedimentary rocks, and 
metamorphic rocks [1-3]. 

However, it is a desired to characterize the rocks 
samples from the statistical viewpoint. Therefore, 
it is mandatory to identify the best suitable 
distribution(s) for the rock samples because the 
choice of probability distributions is of essential 
significance. The choice of suitable probability 
distributions for a given sample cannot be made on 
a physical basis, and therefore, statistical inference 
and practical appropriateness play a much superior 
role in the distributional choice than physical 
reasoning [4].  

In this regard, a little contribution is found in the 
literature. For instance, Azizi et al. applied 
different probability distribution functions 
including normal, lognormal, beta, and gamma, 
along with the Kolmogorov Smirnov test [5]. It was 
concluded that normal distribution was most 
suitable for the rocks samples. Ghazdali et al. 
conducted a statistical analysis about the rock mass 
of the mine in Morocco [6]. Malkowski et al. 
checked the variability of rock properties in the 
roadways' roofs, and also analyzed the effect of 
geomechanical data on numerical modeling of the 
stability [7]. Teymen and Manguc applied different 
statistical techniques for the prediction of the 
uniaxial compressive strength of rocks [8]. Gent et 
al. examined the stability of rocks slopes to 
examine the damage in the design of rock armored 
slopes [9]. Cai et al. investigated the water 
saturation effects on the mechanical behavior of 
different rocks [10]. Salih and Alshkane 
determined the relationship between the physical 
and mechanical properties of igneous rocks [11]. 
Mayer et al. used the application of statistical 
approaches to analyze the geological, geotechnical, 
and hydrogeological data at fractured rock mine 
sites in northern Canada [12]. Karakul and Ulusay 
carried out a study to correlate the strength 
properties of rocks with a p-wave velocity of many 
rocks under different degrees of saturation [13]. 
Ceryan et al. applied generalized regression neural 
networks to establish predictive models for the 
unconfined compressive strength of carbonate 
rocks in Turkey [14]. Ghazvinian and Hadei 

explored the effects of discontinuity orientation 
and confinement on the strengths of rocks [15]. 
Huang et al. investigated the dependence of tensile 
strength softening of the sandstone on loading rate 
[16].  

Similarly, Huang et al. conducted a study on 
sedimentary rocks’ dynamic characteristics under 
creep state using a new type of testing equipment 
[17]. Further, Liu et al, studied mechanical 
parameters with a statistical methods [18]. G. 
Mibei introduced and classified the different rock 
samples [19]. Rybar et al. studied the physical-
mechanical properties of rocks [20]. Singh et al. 
detected a correlation between point load index and 
uniaxial compressive strength for different rock 
types [21]. Wang et al. predicted uniaxial 
compressive strength of rocks from simple index 
tests using a random forest predictive model [22]. 
Recently, Probability Distribution Functions have 
also been selected for Rock Joint Geometric 
Properties by Jamal et al. [23].  

Here, we present a new work to distinguish the 
rock samples by comparing several distributions 
and determining the best probability distribution 
for the selected rocks available in Pakistan based 
on AIC and BIC. The optical emission data of these 
rock samples was taken using laser-induced 
breakdown spectroscopic (LIBS) setup. This 
emission data was utilized to get the best 
probability distributions for accurate 
investigations. The present work will be interesting 
and beneficial for a wide range of audiences 
working in the field of spectroscopy, geology, and 
statistics. Including this introduction section, the 
remaining paper unfolds as what follows. Section 
2 introduces the methodology. Results and 
discussions are presented in Section 3, and finally, 
conclusion is given in Section 4.  

1.1. Data description 

The seventeen rock samples were collected from 
different locations of Pakistan. Seventeen rock 
samples were considered including Diorite (D), 
Gypsum (G), Marble (M), Basalt (B), Sandstone 
(S), Limestone (L), Apatite (A), Slate (SL), 
Dolomite (DO), Granite-II (GR-II), Schist (SC), 
Gneiss (GN), Amphibolite (AM), Hematitle (H), 
Magnetite (MA), Shale (SH), and Granite-I (GR-
I), as shown in Figure 1. 
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Figure 1. Rock samples collected from Pakistan. 

2. Methodology  
The experimental setup used to get data of optical 

emission spectra is the same as discussed in our 
earlier papers [24-29], as shown in Figure 2. In 
brief, it consists of second harmonic Q-Switched 
Nd: YAG laser having 532 nm wavelength and a 
focusing lens of 20 cm was used to focus the laser 
beam on the target. Sample was placed on a 
motorized sample holder to provide fresh surface 
to each shot and to prevent deep craters on the 
surface of the sample. An optical fiber (high-OH, 
core diameter: 600 µm) with a collimating lens (0-
45°) coupled to Avantes spectrometer that covered 
the wavelength range from 250 nm to 870 nm to 
record the emission spectra from the plasma plume. 

The laser delivers 850 mJ pulse energy at 1064 nm 
and 400 mJ at 532 nm. At the target surface, the 
spot diameter was calculated as 0.5 mm, and the 
corresponding power density would be about 2 ×
10ଵ   ܹܿ݉ିଶ at 200 mJ laser energy. The laser 
pulse energy was varied with the delay of the flash 
lamp switch, and an energy-meter that was used to 
measure the laser pulse energy. When laser was 
fired on the target surface, the incident photons 
were absorbed by the sample, which leads to an 
excited state, and for a very short time, the plasma 
was produced, and emission spectra were recorded 
using the spectrometer. A physical diagram of 
LIBS setup is shown in Figure 3.  

 
Figure 2. Schematic diagram of LIBS setup used for rock analysis. 
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After formation of plasma plume, it starts cooling 
after spreading, and then it emits spetra of light rays 
having different wavelengths that were collected 
using a spectrograph having a charge coupled 
device (CCD) that records all wavelengths 

simultaneously. After a careful identification of the 
spectral lines for all the rock samples, the major 
lines of those elements that were present in all the 
samples were selected as the input data. 

 
Figure 3. Physical diagram of LIBS setup used for rock analysis. 

2.1. Emission studies and statistical 
distributions 

The optical emission spectra were collected by 
focusing the laser beam on the rock samples. 

Figure 4 shows the optical emission spectra of all 
the rock samples collected using Aventes 
spectrometer at 200 mJ laser energy in the 
wavelength ranges from 250-870 nm.  

 
Figure 4. Optical emission spectra of rock samples in the range 250-870 nm. 

The emission data of the major lines of those 
elements that were present in all the samples were 
selected for the different statistical distributions. 

Integrated line intensities of all the selected 
elements were selected as the input data, and many 
probability distribution functions (PDFs) have 

LASE

Spectrometer 

PC 
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been proposed in the recent past but in the present 
study, Frechet distribution (FD), Weibull 
distribution (WD), log-logistic distribution (LLD), 
lognormal distribution (LND), and generalized 
extreme value distribution (GEVD) are used in the 
current study to describe the characteristics of the 

selected rocks. The PDF of these distributions is 
presented in Table 1. Maximum likelihood (ML) 
and Bayesian estimation (BE) methods are used to 
estimate the parameters of  FD [30], WD [31], and 
LLD [32]. However, the parameters of LND and 
GEVD are estimated by only the ML method. 

Table 1. PDF of five distributions and its parameters. 

Distribution PDF Parameter 

FD ݂(ݔ; (ߚ,ߙ  = ൬
ߙ
ߚ
൰൬
ߚ
ݔ
൰
ఈାଵ

݁ି൬
ఉ
௫൰

ഀ 
ݔ     ,      > 0, ߚ,ߙ > 0 

ߙ = ܵℎܽ݁ 
ߚ = ݈ܵܿܽ݁ 

WD ݂(ݔ; (ߚ,ߙ  = ൬
ߙ
ߚ
൰൬
ݔ
ߚ
൰
ఈିଵ

݁ି൬
௫
ఉ൰

ഀ

, ݔ > 0, ߚ,ߙ > 0, 
ߙ = ܵℎܽ݁ 
ߚ = ݈ܵܿܽ݁ 

LLD ݂(ݔ; (ߚ,ߙ  =
൬ߙߚ൰ቀ

ݔ
ቁߙ

ఉିଵ

൜1 + ቀߙݔቁ
ఉ
ൠ
ଶ  , ݔ > ߚ,ߙ,0 > ߙ 0 = ݈ܵܿܽ݁ 

ߚ = ܵℎܽ݁ 

LND ݂(ݔ;  µ,ߪ) =
1

ߨ2√ߪݔ
exp ቊ

ݔ݈݊)− − µ)ଶ

ଶߪ2
ቋ ݔ, > 0,−∞ < ߤ < ଶߪ,∞ > 0 

ߤ = ܵℎܽ݁ 
ଶߪ = ݈ܵܿܽ݁ 

GEVD ݂(ݔ; (ߟ,ߙ,ߠ  =  
1
ߙ
ቊ1 + ߟ

ݔ) − (ߠ
ߙ

ቋ
ିଵఎିଵ

ݔ݁  − ൜1 + ߟ
ݔ) − (ߠ

ߙ
ൠ
ିଵఎ
 ݔ, > 0 

ߟ = ܵℎܽ݁ 
ߙ = ݈ܵܿܽ݁ 
ߠ =  ݊݅ݐܽܿܮ

 
2.1 Model selection 

The following goodness of fit tests are used for 
the selection of best-fitted distribution for the rock 
series:  

2.1.1. Kolmogrove Smirnove test 
KS (Kolmogrove, 1933) test was performed 

under the null hypothesis to check whether the rock 
samples originate from a hypothesized continuous 
distribution [33]. The KS test statistic (D) can be 
expressed as:  

ܦ = max ฬܨ(ݔ) −
݅ − 1
݊

,   
݅
݊
−  ฬ(ݔ)ܨ

where ݔ represents the rocks samples,  ݅ =
1, 2, … , 17. 

2.1.2. AIC and BIC 
AIC and BIC are used to pick and endorse the 

most applicable distribution for describing the 
behavior of selected rocks based on the minimum 
AIC and BIC values. The AIC and BIC values can 
be calculated as: 

ܥܫܣ = 2 − 2݈݊൫ܮ൯ 

ܥܫܤ = ݈ܲ݊(݊) − 2݈݊൫ܮ൯ 

where ܮ is the maximum value of the likelihood 
function, and ‘p’ is the number of parameters 
estimated. 

2.1. Kruskal Wallis test 
The Kruskal and Wallis (1952) test does not 

make any assumptions about normality, and in the 
current study, it is used under the null hypothesis 
for testing whether the rock samples emanate from 
the same distribution at a 5% level of significance 
[34].  

2.2. Cluster analysis  
Cluster analysis is used to classify the rocks that 

share common characteristics and the groups are 
initially not known. The cluster of rocks was 
grouped based on the similarity level. The higher 
the similarity level, the more similar rocks are in 
each cluster. The lower the distance level, the 
closer the rocks are in each cluster. A dendrogram 
is constructed to visualize the clustering results at 
each step. 
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3. Results And Discussion 
The descriptive statistics such as mean, median, 

coefficient of variation (CV), minimum (Min.), 
maximum (Max.), coefficient of skewness, and 
coefficient of kurtosis for rocks samples are 

provided in Table 2. The maximum standing varies 
from 69526 to 8910, and the minimum is between 
1 and 210. On average, the AM rock has maximum 
standing of 14048.2 arbitrary units (arb.u.), where 
A rock has a minimum standing of 389.30 arb. u. 

Table 2. Descriptive statistics for rock samples with sample size (n = 32). 
Rocks Mean Median CV Min. Max. Skewness Kurtosis 

D 870.04 199.95 200.43 81.83 7669 3.28 12.61 
G 1047.32 214.13 195.54 73.63 8910 3.13 11.87 
M 570.78 408.76 92.80 92.27 2258 1.83 6.12 
B 528.73 352.50 101.20 82.83 2134 1.75 5.26 
S 465.49 126.31 164.40 41.57 30191 2.40 7.78 
L 737.12 503.63 96.23 62.57 26872 1.49 4.51 
A 389.30 226.90 96.99 97.50 1997 2.71 11.56 

SL 1559.20 464.20 170.69 177.70 11602 3.00 11.22 
DO 1464.90 940.00 133.53 210.00 9017 2.91 10.99 

GR-II 1143.10 527.00 125.71 157.50 6082 2.41 8.43 
GN 544.40 379.10 108.99 59.20 3230 3.09 14.32 
SC 1406.30  727.90 126.13 117.50 7686 1.25 12.41 
U 14048.2 11672.0 93.91 169.9 61370 2.0491 7.7679 

AM 14048.20 11672.0 93.91 169.90 61370 2.05 7.76 
H 11455.60 3247.30 181.17 1.00 69526 2.23 6.60 

MA 5415.34 2462.80 124.87 3.10 24245 1.22 3.65 
SH 4383.80 2996.10 97.74 6.10 17961 1.45 4.96 

GR-I 24882.40 22955.00 67.05 24.60 64240 0.63 3.42 
 
The coefficient of skewness varying from 0.63 to 

3.28 shows that distributions of selected rocks are 
positively skewed. Therefore, it would be 
appropriate to select positively skewed 
distribution(s) as a candidate for the observed data 
series of selected rocks. Similarly, the range of CV 
varies from 67.05 to 200.43 that means that there is 
a significant variation in the materialization of 
rocks. Further, all coefficients of kurtosis for the 
rocks data are greater than three, revealing that 
distributions of observed datasets are leptokurtic 
having a wider or flatter shape with fatter tails than 
the normal distribution. 

3.1. Parameter estimates for LND and GEVD 
In this work, LND and GEVD are considered for 

the analysis of selected rocks, and their parameters 

are estimated by only the ML method. The 
estimates of parameters are provided in Table 3. 

3.2. KS test for LND and GEVD 

To examine the suitability of LND and GEVD for 
the rock dataset, the values of the KS test and P-
values are shown in Table 4. Based on the p-values 
of KS test, the LND provides a good fit to all rocks 
except GR-I. Similarly, p-values of KS test reveals 
that GEVD is good fit to all rocks excluding SH 
and H rocks at 5% level of significance based on 
the ML estimation method. These distribution 
functions can be used for the characterization of the 
selected rocks. However, AIC and BIC are 
considered to pick the most suitable distribution for 
the remaining rocks, and the result are presented in 
Table 5. 
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Table 3. Estimates of parameters for LND and GEVD. 
 LND GEVD 

Rocks µො ࣌ෝ ࣁෝ ࢻෝ ࣂ 
D 5.8612 1.2482 2.0457 177.4233 164.0803 
G 5.8881 1.3728 2.3801 304.7810 199.3290 
M 6.0055 0.8209 0.6257 204.2494 282.3678 
B 5.8612 0.8927 0.7538 184.7516 236.5667 
S 5.2855 1.2006 1.2358 89.4480 103.9812 
L 6.1600 0.9854 0.5783 314.1833 350.6152 
A 5.6786 0.7061 0.6180 117.2347 208.4598 
SL 6.5563 1.1610 1.8278 451.7178 409.1760 
DO 6.7865 0.9399 0.8528 502.0804 599.2422 

GR-II 6.5245 0.9647 0.9581 410.1837 473.1360 
GN 5.9006 0.8918 0.5269 217.0383 269.1082 
SC 
U 6.6372 1.1035 0.9055 527.9568 522.3487 

AM 9.0397 1.2572 0.2535 7588.4837 7920.6838 
H 6.9624 3.1104 2.0155 4619.3278 2132.2987 

MA 6.7111 2.8486 1.6992 3427.2400 1790.5409 
SH 7.5520 1.8718 0.3511 2568.4576 2222.6363 

GR-I 9.6268 1.5663 0.1831 2655.3655 3193.7632 

Table 4. KS  test for LND and GEVD 
 LND GEVD 

Rocks KS P-values KS P-values 
D 2.0457 0.6611 0.1644 0.3171 
G 2.3801 0.3191 0.1953 0.1520 
M 0.6257 0.7527 0.1015 0.8634 
B 0.7538 0.5040 0.1081 0.8099 
S 1.2358 0.2072 0.1037 0.8467 
L 0.5783 0.9372 0.0903 0.9355 
A 0.6180 0.2608 0.1262 0.6416 

SL 1.8278 0.3368 0.1494 0.4305 
DO 0.8528 0.8163 0.1058 0.8301 

GR-II 0.9581 0.4443 0.1325 0.5822 
GN 0.5269 0.9479 0.1006 0.8707 
SC 
U 

0.9055 0.9807 0.0840 0.9633 
AM 0.2535 0.4216 0.0995 0.8787 
H 2.0155 0.1376 0.2883 0.0106 

MA 1.6992 0.2164 0.2758 0.0604 
SH 0.3511 0.1108 0.2636 0.0381 

GR-I 0.1831 0.0002 0.7740 0.5456 
 
The lowest AIC and BIC values nominate that 

LND is the best-fitted distribution for all rocks 
excluding GR-I rock because the KS test confirm 
that LND is inappropriate for the GR-I rock. 
Hence, the remaining rocks favor LND. 

 

3.3. Parameter estimates of FD, WD, and LLD 

The estimates of parameters for FD, WD, and 
LLD are presented in Table 6 and KS test along 
with p-values are shown in Table 7. The values of 
AIC and BIC are listed in Table 8 for comparison 
purposes. 
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Table 5. AIC and BIC values for LND and GEVD 
 LND GEVD 

Rocks AIC BIC AIC BIC 
D 77.0011 79.9326 466.78 471.17 
G 83.0907 86.0222 481.60 486.00 
M 50.1815 53.1130 468.93 473.33 
B 55.5478 58.4793 464.25 468.65 
S 74.5127 77.4442 435.08 439.48 
L 61.8708 64.8023 492.42 496.82 
A 40.5402 43.4717 433.81 438.21 

SL 72.3662 75.2976 514.96 519.36 
DO 58.8453 61.7768 525.53 529.93 

GR-II 60.5121 63.4436 509.36 513.76 
GN 55.4833 58.4148 468.53 472.93 
SC 
U 

69.1153 72.0468 528.82 533.21 
AM 77.4609 80.3924 683.76 688.16 
H 127.2215 130.0239 608.02 612.23 

MA 94.4253 96.6963 451.11 454.51 
SH 87.4754 90.0670 519.87 523.76 

GR-I 72.3828 74.8205 456.96 459.40 
 

Table 6. Estimates of parameters for FD, WD, and LLD 
  FD WD LLD 

Rocks Methods ࢻෝ ࢼ ࢻෝ ࢼ ࢻෝ ࢼ 

D ML 1.0865 187.9471 0.7123 651.6142 292.9720 1.3833 
Bayesian 1.0710 183.7022 0.6955 599.3741 278.8408 1.3576 

G ML 0.9569 190.7382 0.6755 753.7369 321.3974 1.2304 
Bayesian 0.9439 185.2517 0.6629 691.1234 301.3821 1.2069 

M ML 1.3802 271.7232 1.2322 615.6274 398.0460 2.0514 
Bayesian 1.3625 268.2754 1.2107 598.1170 388.7729 2.0089 

B ML 1.3015 228.0841 1.1200 551.1799 339.6777 1.8889 
Bayesian 1.2850 224.7495 1.0908 533.8703 330.2042 1.8496 

S ML 1.1484 114.8727 0.7548 374.5018 171.3085 1.4535 
Bayesian 1.1308 112.5649 0.7316 347.2040 164.0625 1.4267 

L ML 1.0521 287.7802 1.1142 766.0499 480.5195 1.7161 
Bayesian 1.0416 280.9123 1.0829 736.8644 464.5011 1.6773 

A ML 1.7773 210.8105 1.2746 423.5877 275.5477 2.4527 
Bayesian 1.7501 209.4598 1.2476 412.7836 271.4038 2.4056 

SL ML 1.1407 412.3683 0.7856 1313.2173 634.8851 1.4737 
Bayesian 1.1240 404.1713 0.7605 1196.0502 607.7080 1.4450 

DO ML 1.2716 566.8772 0.9815 1433.9529 848.6716 1.8491 
Bayesian 1.2551 558.1840 0.9607 1386.1132 824.8620 1.8101 

GR-II ML 1.2809 432.9737 0.9773 1142.3571 638.2448 1.7731 
Bayesian 1.2627 426.3139 0.1780 1069.7654 618.8390 1.7377 

GN ML 1.1968 234.4492 1.1162 569.4417 368.3003 1.9173 
Bayesian 1.1829 230.3673 1.0998 551.6636 358.1094 1.8745 

SC ML 1.0267 445.7392 0.9172 1332.8083 738.9358 1.5406 
Bayesian 1.0155 434.3211 0.8971 1292.4002 709.5975 1.5082 

AM ML 0.6206 4175.1757 1.1071 14352.8275 9914.3022 1.5590 
Bayesian 0.6188 3848.0437 1.0757 14082.5904 9503.1300 1.5175 

H ML 0.3110 207.0785 0.4022 4384.1927 1412.3704 0.5409 
Bayesian 0.3124 143.2378 0.1110 4149.4567 946.4194 0.5205 

MA ML 0.3357 182.1433 0.1178 1925.1442 1119.0672 0.5931 
Bayesian 0.3363 120.3467 0.1150 1810.2320 716.5817 0.5630 

SH ML 0.4148 659.9815 0.1209 3884.1256 2644.4202 1.0854 
Bayesian 0.4155 524.9093 0.8202 3778.4034 2382.0662 1.0453 

GR-I ML 0.4062 5854.9203 0.0938 4056.7080 20121.0894 1.5600 
Bayesian 0.4080 4507.8164 0.0895 3878.9654 19108.4585 1.5033 
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The estimated parameters of FD, WD, and LLD 
for seventeen rocks by using two methods of 
estimations are shown in Table 6. It is noted that 
the estimates of shape parameters of these 
distribution both ML and the Bayesian methods are 

almost the same. However, the noteworthy 
difference can be observed in the estimates of scale 
parameters may be due to dissimilar characteristics 
of rocks.   

Table 7. KS test for FD, WD, and LLD. 
  FD WD LLD 

Rocks Methods KS P-value KS P-value KS P-value 

D ML 0.1429 0.4863 0.2040 0.1209 0.1533 0.3993 
Bayesian 0.1435 0.4814 0.2215 0.0737 0.1591 0.3542 

G ML 0.1449 0.4693 0.2027 0.1848 0.1403 0.5103 
Bayesian 0.1461 0.4585 0.1461 0.1250 0.1544 0.3909 

M ML 0.1148 0.7504 0.1156 0.7432 0.1140 0.7574 
Bayesian 0.1188 0.7126 0.1023 0.8576 0.1002 0.8728 

B ML 0.1015 0.8640 0.1396 0.5165 0.1356 0.5529 
Bayesian 0.1035 0.8482 0.1239 0.6644 0.1207 0.6948 

S ML 0.1259 0.6454 0.1893 0.1773 0.1440 0.4773 
Bayesian 0.1161 0.7384 0.1950 0.1532 0.1391 0.5212 

L ML 0.1115 0.7802 0.0894 0.9402 0.0917 0.9283 
Bayesian 0.1157 0.7418 0.0706 0.9938 0.1012 0.8659 

A ML 0.1335 0.5725 0.1593 0.3534 0.1543 0.3912 
Bayesian 0.1289 0.6164 0.1527 0.4038 0.1431 0.4847 

SL ML 0.1216 0.6863 0.1876 0.1849 0.1342 0.5663 
Bayesian 0.1226 0.6768 0.2090 0.1050 0.1447 0.4708 

DO ML 0.1180 0.7206 0.1408 0.5053 0.1058 0.8301 
Bayesian 0.1215 0.6873 0.1506 0.4212 0.0912 0.9306 

GR-II ML 0.0908 0.9329 0.1556 0.3811 0.1300 0.6057 
Bayesian 0.0850 0.9595 0.8088 0.4567 0.1150 0.7494 

GN ML 0.1198 0.7034 0.0908 0.7143 0.0947 0.9107 
Bayesian 0.1251 0.6530 0.0985 0.8859 0.1017 0.8616 

SC ML 0.1138 0.7592 0.1187 0.7592 0.0763 0.7592 
Bayesian 0.1212 0.6902 0.1098 0.7952 0.0745 0.9884 

AM ML 0.2203 0.0761 0.1040 0.8441 0.1324 0.5825 
Bayesian 0.2092 0.1046 0.1019 0.8610 0.1283 0.6218 

H ML 0.2281 0.0747 0.1567 0.4108 0.1727 0.2972 
Bayesian 0.2616 0.2067 0.6392 0.4786 0.2201 0.0932 

MA ML 0.2397 0.1423 0.6540 0.3214 0.1815 0.4345 
Bayesian 0.2790 0.5557 0.6544 0.4987 0.2381 0.1474 

SH ML 0.3052 0.1089 0.6953 0.4998 0.1349 0.6608 
Bayesian 0.4114 0.4321 0.1560 0.4799 0.1635 0.4207 

GR-I ML 0.3147 0.4356 0.7988 0.5783 0.1405 0.6559 
Bayesian 0.3162 0.6734 0.7912 0.6964 0.1564 0.5230 

 
The values of KS test statistics along with P-

values are listed in Table 7 as a measure of 
goodness. Since all the P-values of the KS test are 
greater than a 5% level of significance, therefore, it 
is determined that these distributions are seemed to 
be good for all selected rocks based on both ML 
and Bayesian estimation methods. Additionally, 
the AIC and BIC values are calculated and 
presented in Table 8 to select the preferable 
distribution having the smallest value of AIC and 
BIC respectively. 

It can be seen that the values of AIC and BIC are 
not significantly different from each other by using 
the two methods of estimation. According to the 
AIC and BIC values, FD is selected as the best fit 
for A, M, B, DO, and GR-II rocks, whereas D, G, 
S, SL, SC, H, SH, and GR-I rocks favor WD, and 
some of the rocks such as MA, GN, L, and AM 
favor LLD. AIC and BIC placed the WD, FD, and 
LLD models as the first, second, and third best-fit 
models, respectively, for nominated rocks. 
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Table 8. AIC and BIC values for FD, WD, and LLD. 
 FD WD LLD 

Rocks Methods AIC BIC AIC BIC AIC BIC 

D ML 473.6139 476.5454 456.7162 459.6477 481.3516 484.2831 
Bayesian 484.2153 487.1468 503.8246 506.7561 493.2935 496.2250 

G ML 486.6515 489.5830 463.5745 466.5059 493.7247 496.6562 
Bayesian 497.0230 499.9545 513.4518 516.3833 505.6026 508.5341 

M ML 467.1159 470.0474 538.2613 541.1928 468.5567 471.4882 
Bayesian 478.9450 481.8764 485.0793 488.0107 481.9221 484.8536 

B ML 462.2042 465.1357 496.7739 499.7053 464.6648 467.5963 
Bayesian 473.5634 476.4948 481.3624 484.2939 477.5441 480.4756 

S ML 437.2573 440.1887 423.4384 426.3698 445.5929 448.5244 
Bayesian 446.9865 449.918 466.5572 469.4886 456.5663 459.4978 

L ML 492.4647 495.3961 516.7478 519.6792 490.0251 492.9565 
Bayesian 503.8579 506.7893 503.4029 506.3343 503.3995 506.3310 

A ML 431.9120 434.8435 530.9316 533.8631 436.8638 439.7953 
Bayesian 443.7424 446.6739 458.8592 461.7907 449.8618 452.7932 

SL ML 518.1877 521.1192 505.2545 508.186 525.2727 528.2042 
Bayesian 530.4608 533.3923 547.8733 550.8048 538.8921 541.8235 

DO ML 523.279 526.2105 531.0837 534.0152 525.9460 528.8775 
Bayesian 536.4112 539.3426 548.9479 551.8794 540.6139 543.5453 

GR-II ML 506.9453 509.8768 514.5306 517.4620 511.5045 514.4360 
Bayesian 519.5525 522.4839 607.7854 610.7169 525.5172 528.4487 

GN ML 468.1043 471.0358 497.4003 502.2101 466.5256 469.4571 
Bayesian 479.3489 482.2804 483.2575 486.189 479.5954 482.5269 

SC ML 526.4384 529.3698 517.5170 520.4485 527.6416 530.5730 
Bayesian 538.6529 541.5843 545.5812 548.5126 541.6553 544.5868 

AM ML 705.0262 707.9577 704.3107 707.2422 684.1151 687.0465 
Bayesian 720.6610 723.5924 698.1360 701.0674 703.3386 706.2700 

H ML 582.2234 585.0258 522.2999 525.1023 576.9659 579.7683 
Bayesian 590.1953 592.9977 636.4553 639.2577 589.8192 592.6216 

MA ML 432.1751 434.4461 385.5196 387.7906 427.5994 429.8704 
Bayesian 439.9985 442.2695 474.3223 476.5933 440.1165 442.3875 

SH ML 537.0968 539.6885 492.7678 495.3594 518.2645 520.8562 
Bayesian 548.0959 550.6876 525.9263 528.5180 534.0485 536.6401 

GR-I ML 599.7428 602.1805 567.9348 570.3725 569.8992 572.3725 
Bayesian 615.0365 617.4743 675.2012 677.6390 588.5219 590.9597 

 

3.4. Evaluation of best-fit distribution model  
The selection of best-fitted distributions with two 

methods of estimation can be explored using 
various graphical functions. The plots of PDF for 
FD, WD, and LLD have been constructed and 
presented in Figures 5-7. The histogram of the 
observed datasets superimposed the PDF of the 
proposed theoretical fitted distributions. It is also 
noticed that all rocks have a right-skewed 
distribution, where the tail of the distribution is 
longer to the right-hand side compared to the left-
hand side. The plots of FD, WD, and LLD models 
seem to good fit the observed dataset series, and 
thus may be the preferred models for this dataset. 
Thus the WD, FD, and LLD models are the best 
possible choices for rocks analysis. 

3.6. Kruskal Wallis test 
Table 9 presents the values of the Kruskal Wallis 

(H) test statistic. The test statistic (H) had a p-value 
of 0.000, indicating that the null hypothesis could 
be rejected at a 5% level of significance, which is 
in favor of the alternative hypothesis that not all 
medians of rocks are the same. It ensures that rocks 
samples do not have identical distribution and the 
selected rocks differ significantly from each other 
concerning their characteristics. 

Table 9. Kruskal Wallis test for rocks samples. 
H DF P-value 

173.74 16 0.000 
 



Abbas et al. Journal of Mining & Environment, Vol. 13, No. 4, 2022 
 

1007 

 
Figure 5. PDF plots of FD, WD, and LLD for D, G, M, B, S, and L. 
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Figure 6. PDF plots of FD, WD, and LLD for A, SL, DO, GR-II, GN and  SC. 

 
 
 
 
 



Abbas et al. Journal of Mining & Environment, Vol. 13, No. 4, 2022 
 

1009 

 
Figure 7. PDF plots of FD, WD, and LLD for AM, H, MA, SH, and GR-I rocks. 

3.7. Cluster analysis 

Cluster analysis classifies the number of rocks 
into clusters. Each cluster consists of two rocks. 
The number of clusters, the corresponding 
similarity level, the distance between them, which 
clusters were joined, the identification number of 
the new cluster, and the number of rocks in the new 
cluster are displayed in Table 10. In step one, two 

rocks are joined to form a new cluster. This step 
creates 16 clusters in the data with a similarity level 
of 100.00 and a distance level of 0.00000. The 
similarity level decreases slightly from step one 
and abruptly decreases in step nine, and the number 
of clusters is changed from 10 to 1. At each 
following step, as new clusters are formed 
similarity, level decreases, and the distance level 
increases.  

 

Amphibolite Hematitle 

Magnetite Shale 
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Table 10. Cluster analysis of  rocks 
Step No. of clusters Similarity level Distance level Clusters joined New Clusters No. of Rocks in new clusters 

1 16 100.00 0.000000 10    11 10 2 
2 15 99.83 0.003389 1     2 1 2 
3 14 99.173 0.016547 8     9 8 2 
4 13 98.752 0.024957 1     8 1 4 
5 12 98.665 0.026710 3     4 3 2 
6 11 98.373 0.032533 5    12 5 2 
7 10 97.915 0.041708 1     3 1 6 
8 9 97.907 0.041861 1     5 1 8 
9 8 88.608 0.227845 1     6 1 9 
10 7 77.506 0.449881 1     7 1 10 
11 6 76.419 0.471628 16    17 16 2 
12 5 68.906 0.621879 1    10 1 12 
13 4 60.784 0.784312 1    16 1 14 
14 3 59.386 0.812272 1    15 1 15 
15 2 53.974 0.920526 1    13 1 16 
16 1 50.694 0.986116 1    14 1 17 
 

 
Figure 8. Dendrogram for rock samples. 

In Figure 8, the horizontal axis of the dendrogram 
represents rocks samples, whereas the vertical axis 
denotes the similarity level between clusters. The 
dendrogram shows the information printed in the 
amalgamation table (Table 10) in the form of a tree 
diagram. In the above figure, the dendrogram 
proposes those rocks that are combined based on 
their similarity level. Figure 8 shows that D and G 
are placed in one cluster due to closer similarity 
levels. Similarly, SL and DO, M and B, S and SC, 
GR-II, and GN are established different clusters, 
respectively, while the similarity level of the 

remaining rocks namely L, A, SH, GR-I, MA, AM, 
and H are not identical and consequently these 
rocks constituted separate clusters. 

4. Conclusions 
The present work reviewed the methods of 

identification for the suitable probability 
distribution models applicable on the optical 
emission data of the rock samples for the selection 
of the best materialistic description of rocks. For 
the very first time, these distributions were utilized 
on the output data obtained using the LIBS 
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spectroscopy. Five probability distribution models 
such as three-parameter distribution (GEV) and 
four two-parameter distributions (FD, WD, LLD, 
LND)  were assessed using the Bayesian and ML 
estimation method, goodness of fit tests-based 
analysis to identify the most suitable distribution 
model for seventeen rocks. Therefore, the KS test 
was applied as an evaluator to judge the 
appropriateness of selected distributions. 
Moreover, AIC and BIC were used for preference 
and endorsement of the most appropriate 
distribution for the selected rocks. LND provided a 
good fit to all rocks except GR-I. Similarly, GEVD 
is a good fit for all rocks apart from SH and H rocks 
based on the p-values of the KS test at a 5% level 
of significance. It can be concluded that most of the 
rocks favor WD, and some of the rocks favor FD 
as well as LLD as the best-fitted probability 
distribution. Consequently, AIC and BIC 
positioned the WD, FD, and LLD models as the 
first, second, and third best-fit models, 
respectively, for the selected rocks.  This work 
suggests that WD, FD, and LLD are preferable 
choices in modeling rocks data series in Pakistan. 
The results from this work will give benefits to the 
geologists and spectroscopists to build a better 
explanation about the materialistic characteristics 
of rocks. 
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  چکیده:

، slate ،تیگچ، مرمر، بازالت، ماسه سنگ، آهک، آپات ت،یوریهفده نمونه سنگ شامل د زیآنال ياحتمال برا عیتوز عیتوا نیترکار تلاش شده است تا مناسب نیدر ا
 زر،یاز ل یشکست ناش یسنجفیط زبا استفاده ا I-تیو گران ل،یش ت،یمگنت تل،یهمات ت،یبولی، آمفgneiss ست،یشود. ش یی، برازش و شناساII-تیگران ت،یدولوم

-Frechet ،Weibull ،log-logistic،log يهاعیتوز نیانحراف مثبت هستند. بنابرا يسنگ دارا يهاکه مجموعه داده کندیم دییو تجسم تأ یکیگراف یابیارز

normal نیحداکثر احتمال و تخم يهابا روش هاعیتوز نیا يو پارامترها شوندیدر نظر گرفته م دیکاند يهاعیبه عنوان توز افتهیمیو تعم Bayesian یبرآورد م
 نییتع يبرا Bayesianاطلاعات  اریو مع ک،یاطلاعات آکا اریمع رنوف،یاسم-انتخاب مدل مانند آزمون کولموگروف يارهای. خوب بودن آزمون برازش و معشوند

  log-logisticو  Frechet ،Weibull يهاعیکه توز دهدینشان م جی. نتاشودیاستفاده م يراحتمال نظ يهاعیشده با استفاده از توز ینیب شیپ يهاداده تیکم
مشترك دارند استفاده  يهایژگیمنتخب که و يهاسنگ يبندطبقه يبرا ياخوشه لیاز تحل نیهستند. همچن یسنگ يهاداده ياحتمال برازش برا عیتوز نیبهتر

-تیگران ست،یمرمر، بازالت، ماسه سنگ، ش ت،یتخته سنگ، دولوم يهاحال سنگ نیاند. با اخوشه قرار گرفته کیدر  گچو  تیوریکه د شودیو مشاهده م شودیم
II  وgneiss تیگران ل،یش ب،یترت نی. به همشوندیخوشه ظاهر م کیدر  تیتعلق دارند. به طور مشابه، سنگ آهک و آپات یمختلف يهابه خوشه-Iت،ی، مگنت 
مناسب  يآمار يبا ابزارها زریاز ل یشکست ناش یسنج فیکه جفت شدن ط دهدینشان م ی. کار فعلشوندیخوشه متفاوت ظاهر م کیدر  تلیاتو هم تیبولیآمف

 .کند يو طبقه بند ییکارآمد شناسا اریها را بسسنگ تواندیم

   .معدن فسفات ،يفسفات، مراکش مرکز ي، اولد عبدون، سرOCPگروه  کلمات کلیدي:
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