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Abstract 

Plenty of works have treated the system expansion planning problem in the presence of intermittent 

renewable energy resources like solar. However, most of those proposals have been approached from 

scenarios of plenty of data, which is not the rule in developing countries, where the principal investment 

actors have recently switched their focus. In contrast of operation problems where the existing literature can 

be successfully applied since it requires short-term historical time-series gathered from the same studied 

plants, proposals for planning problems are almost impossible to apply because of a lack of information and 

measurement about renewable resources in places where no renewable plants have been previously installed. 

In order to fill this information gap, this paper presents a novel methodology to synthesize solar production 

time-series on an hourly time scale, taking as inputs aggregate data such as monthly average, maximum or 

minimum values of basic parameters like global horizontal insolation, air temperature, and surface albedo. 

The methodology comprises five steps, from data gathering to calculating electrical power produced by a 

solar photovoltaic system. Three application tests are performed for different places in Chile, Slovakia, and 

Peru to validate the proposed methodology. The results show that the methodology successfully synthesizes 

time-series of output power, correctly replicates typical solar resource behavior, and slightly underestimates 

the produced solar energy, having a discrepancy of 2.4% in the yearly total. 
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1. Introduction 

The recent reports have shown that the investment 

cost of renewable generation technologies 

continues to decrease, in contrast to their 

efficiencies, which get higher year to year [1–3]. 

According to [1], renewable energy resources 

(RER) will account for 86% of the global 

electricity generation, while 49% of the share in 

final consumption will use electricity by 2050. 

Although several benefits to human development 

will come with this higher RER penetration level, 

energy agents shall face many challenges to 

smooth this energy transition. 

As studied in [4–7], power systems get vulnerable 

to RER generation fluctuation when the 

penetration level increases. In this scenario, the 

independent system operator (ISO) experiences 

critical load demand ramp up or down created by 

short-period fluctuations in solar irradiance, 

which reveals the necessity of must-run machines 

or energy storage systems in the grid to absorb 

variability. Also ISO finds it very difficult to 

perform the day-ahead dispatch scheduling due to 

the unpredictable availability of this kind of 

plant’s generation capacity. Although the ISO’s 

responsibility is to forecast this time-series 

accurately, technical complexity sometimes 

obligates it to assume a deterministic generation 

prepared by plant owners, as evidenced in [8, 9] 

for the Peruvian case. This situation affects the 

physical and wholesale electricity markets, as 

studied in [10]. Several approaches have been 

proposed [11–18] to overcome these problems. 

Although RER uncertainties affect operation 

activities to some relevant degree, as detailed 

before, system expansion planning problems are 

at a higher level of complexity since it involves a 

farther time horizon analysis [19, 20]. 

In that sense, the availability of information on 

resource measurements and existing plants’ 

historical records is a key to successfully 
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overcoming these problems. Unfortunately, the 

developing countries that are recently 

experiencing more investment expenditures in 

RER plants usually lack this information. Even 

though private developers conduct field studies to 

profile their projects, the gathered information is 

not socialized with academia and public 

organisms, which must appeal to alternative 

sources to develop their studies. 

Recent publications on the existing barriers to 

renewable energy in developing countries strongly 

coincide with these points:  the lack of capabilities 

to develop proper mathematical models to study 

these problems [21] and information barriers to 

access to databases on the potential of these 

resources [22]. 

Therefore, this paper addresses the question of 

what methodology should be used to estimate the 

behavior of solar photovoltaic (PV) renewable 

plants in any part of a country in the context of 

information scarcity, an issue identified as one of 

the most critical challenges in developing 

countries. 

The main contributions of the paper are: 

1. To develop a novel methodology to generate 

hourly electricity production time-series for 

solar PV renewable plants that 

a. only use aggregate data as input, and 

b. Do not require historical time-series 

2. To achieve realistic stochastic behavior in 

generated time-series 

3. To compare synthetic solar irradiance and 

energy against actual measurements and 

plants 

The remainder of the paper is organized as what 

follows. Section 2 provides a comprehensive 

literature review of the approaches presented to 

synthesize solar time-series. Section 3 presents 

and discusses in detail the proposal to fill the 

central gap found in the previous section. Section 

4 performs a set of applications in different places 

worldwide such as Chile, Slovakia, and Peru; and 

presents its comparison with historical values. 

Finally, concluding remarks and future work are 

highlighted in Section 5. 

 

2. Literature review  

Significant research effort has been made for 

modeling solar hourly radiation values. In that 

sense, one of the first proposals was presented in 

[23], where hourly insolation values’ daily and 

annual periodicity was removed using a Fourier 

analysis, and time-dependent frequency 

distribution (TDFD) was employed to synthesize 

insolation values. Likewise, Graham et al. [24] 

presented an autoregressive-moving average 

(ARMA) technique to generate synthetic values 

starting from monthly mean values of the 

clearness index (kT). 

A novel approach was described in [25], 

demonstrating that kT was the variable that 

induces the randomness in the series, in contrast 

with previously published research that treated 

solar irradiance as a random variable. Then an 

ARMA model for kT was used to generate 

synthetic irradiance values. 

However, the previously mentioned works 

coincide in presenting complex statistical analyses 

and models that became too difficult to 

understand and implement in practical 

applications. 

On the other side, Hontoria et al. [26] developed 

an artificial intelligence (AI) model to synthesize 

solar hourly radiation time-series. Although 

formulation does not require a deep statistical 

analysis of variables’ interrelation, it is necessary 

to have historical time-series values to train the AI 

model. As reviewed in [27], AI models that do not 

need historical solar measurements require 

historical values for many other parameters. 

Another reasonable attempt was presented by 

Celik [28], where an energy output model was 

used to generate synthetic hourly radiation values. 

Although energy output is coherent with historical 

measurements, the results showed that the power 

generation profile did not reflect the actual 

stochastic solar behavior. 

An interesting approach was developed by Polo et 

al. [29], who, through a simple model based on a 

beta distribution, generates a 10-min solar 

irradiance time-series. Validation of the model 

showed that daily and monthly means between 

actual and synthetic series coincided and that the 

10-min solar irradiance profile preserves the 

actual behavior acceptably. However, the 

proposed procedure needs a historical hourly solar 

irradiance time-series to start. 

Laslett et al. [30] developed a simple algorithm to 

generate hourly solar radiation values 

implemented using a web page with the same aim. 

The algorithm needs as arguments distances 

instead of coordinates, and starting from that, 

hourly values are generated. Nonetheless, 

algorithm equations were explicitly defined for 

the southwest region of Western Australia. Thus 

applicability to other places is limited and must be 

carried out carefully since model calibration 

depends on comprehensive historical 

measurement data. 

Another major group of works looks to generate 

synthetic time-series at high temporal resolutions. 

In that line, Ngoko et al. [31] proposed a model 
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that used a second-order Markov transition matrix 

(MTM) to synthesize a 1-min time resolution 

time-series. While final model only needs as input 

a daily kT, it is needed data at the same time scale 

of 1-min to calibrate the model. 

Also Grantham et al. [32] presented a simple 

approach to generate 5-min global horizontal 

irradiance (GHI) and direct normal irradiance 

(DNI) time-series. The method uses 1-min 

observed data (re-scaled to 5-min) to calibrate the 

model, which then is used to interpolate hourly 

mean solar irradiance values obtaining good 

results though validation is performed only in the 

Australian territory. The authors suggest that the 

method would be suitable for applying to Typical 

Meteorological Year (TMY) records. 

However, the same authors later recommend 

using another proposed attempt that combined 

Fourier series, autoregressive models, and white 

noise terms. This new attempt synthesizes 

coherent daily and hourly time-series since it was 

demonstrated that the generated series included 

patterns that had not occurred in the recorded data 

but were equally as likely to occur, thus better 

suits evaluation and planning requirements [33]. 

The application of the described method needs to 

have historical data to force the generated series’ 

distribution. 

Recently, a novel approach to downscale DNI 

time-series from 1-h to 1-min that can be applied 

in any location without requiring local adaptation 

was presented in [34]. After training the model 

with 14 years of measured 1-min DNI data, it only 

needs an hourly DNI time-series for any location. 

Indeed, downscaling proposals have gain attention 

within developed countries in recent years [35, 

36]. 

Wang et al. [37] proposed an interesting approach 

to predict long-term time-series combining a 

variety of decomposition and reconfiguration 

methods. The authors achieve generating time-

series for 10 years in advance, using the same 

amount of registers. A related approach was 

presented in [38], where the empirical mode 

decomposition (EMD) was complemented with 

deep learning (DL) techniques to improve the 

performance of the method. A case study in Korea 

to guide the development of sustainable energy 

policies is developed, using registers of 4 years to 

synthesize 1 year of data. 

The lack of a solar atlas or an official source of 

information about solar resources within the 

territory of almost all of South America and other 

developing countries makes it very difficult to 

obtain measurement data at scales of 1-min, 5-

min, or even 1-hr. As a result, adopting the 

models proposed in developed countries, which 

make extensive use of historical data, is almost 

impossible most of the time. 

For that reason, the main objective of this paper, 

which is also its main contribution, is to develop a 

methodology to generate hourly electricity 

production time-series for solar PV renewable 

plants using aggregate data as input. This 

methodology can be helpful for project evaluation 

and system expansion planning purposes. 

 

3. Methodology  

The proposed methodology consists of five steps, 

as shown in figure 1. 
 

 
 

Figure 1. Steps flow of synthesis methodology. 
 

The first step gathers relevant solar data for a 

specific coordinate. Then it is used in the second 

step to generate random daily insolation values. 

Subsequently, the third step calculates the hourly 

global radiation incident on the PV array starting 

from the previous values. The fourth step models 

the stochastic behavior of clouds. Finally, step 

five converts solar radiation into PV power 

values. 

 

3.1. Solar data gathering 

Available open-access information about solar 

irradiance and insolation in Peru is limited to very 

few sources. On the one hand, the Peruvian 

Ministry of Energy and Mines (MINEM) released 

a non-interactive solar map in 2003 [39] that 

showed average monthly solar insolation values 

for the whole country. However, the ability to 

extract precise values for any given coordinate is 

limited since it was delivered as static images 

instead of being implemented over a geographic 

information system (GIS) platform. 

On the other hand, some international companies 

and organizations provide this kind of 

information. While many of them are private 

commercial services (e.g. Meteonorm or 

Solargis), there is a couple of open-access 

services provided by the American National 

Aeronautics and Space Administration (NASA) 

called POWER [40] and by the European 

Commission called PVGIS [41]. This paper 

Solar data gathering

Solar daily insolation 

random values generation

Solar hourly global data 

calculation

Solar stochastic 

behaviour reproduction

Solar PV power 

assessment
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employs five parameters provided by POWER 

service and one by PVGIS. 

For a given pair of latitude and longitude (ϕ and λ 

in 
º
), the monthly mean daily global horizontal 

insolation (Hm in kWh/m
2
/day) is obtained from 

PVGIS (average month of all available years), 

while the maximum and minimum variations of 

Hm (Hm
max and Hm

min in %), the maximum and 

minimum air temperature at 2 m (Tm
max and Tm

min 

in ºC), and the surface albedo (ρg,m) values are 

retrieved from POWER. These parameters must 

be obtained for each month m ∈ [1, M]. 
 

3.2. Solar daily insolation random value 

generation 
Random values for global horizontal insolation 

(Hsyn) are generated using Ntrand [42], which is a 

free Microsoft Excel add-in that uses pseudo- 

uniform random numbers generated by Mersenne 

Twister algorithm which achieves a long period of 

2
19937

-1 and high order of equidistribution.  

One of the distributions supported by Ntrand is 

the Truncated Normal Distribution shown in (1), 

which is proposed to be employed in this paper. 
 

𝐇𝐬𝐲𝐧 = 𝚽−𝟏 (𝚽(𝛝𝐦) + 𝐔 (𝚽(𝛇𝐦) − 𝚽(𝛝𝐦))) 𝛔𝐦 + 𝛍𝐦 (1) 
 

where Φ represents the cumulative distribution 

function of standard normal distribution, and U is 

a uniform random number. Parameters ϑm and ζm 

are the normalized values of the lower (g) and 

upper (t) bounds of truncated normal for a given 

mean (μ) and standard deviation (σ). 

In an Excel worksheet, a (N × M) matrix must be 

constructed to obtain N = 8760 random values 

for every month (M = 12). The content of each 

matrix column should be the Ntrand matrix 

function NtRandTruncnorm(N, g, t, μ, σ, 0) 

considering μ = Hm, g = Hm(1 + Hm
max), and 

t = Hm(1 − Hm
min) for the corresponding month 

column. 

Since no value was recovered for the standard 

deviation of Hm, it will be assumed equal to the 

multiplication of a constant k by the mean value 

(σ = kμ). In this paper, the value of k is set to 0.5. 

Therefore, random generation process results 

depend on the value of these four parameters. 

From these, g and t could be treated as quasi-fixed 

values since they come from historical measures. 

On the other side, μ and k values should be 

considered factors that introduce uncertainty in 

the process and could be used to generate distinct 

synthetic time-series to represent multiple 

scenarios for the stochastic behavior of the solar 

resource. 

Two additional terms must be appended when 

calling the Ntrand Excel function to avoid the 

problem of producing identical random values for 

places with the same aggregate input parameters. 

The final formula would be 

NtRandTruncNorm(… , Rϕ, Rλ), where Rϕ and 

Rλ are the last five digits of ϕ and λ starting from 

the right, which usually belongs to the decimal 

part when working with a precision of at least six 

digits. These constants are used in the function as 

random seeds. 

Although different values for each hour of a 

typical year are obtained after this process, the 

generated values are still a daily insolation value, 

which must be converted into hourly values. 

 

3.3. Solar hourly global radiation calculation 

This third step explains the calculation flow 

required to convert the global daily horizontal 

radiation synthesized in the second step into 

hourly total radiation over a tilted solar panel. 

This flow consists of four primary relations, 

which must be applied following the order 

presented in figure 2.  
 

 
 

Figure 2. Calculation flow to convert Daily Horizontal 

Radiation (𝐇𝐬𝐲𝐧) into Hourly Total Radiation (𝐈𝐓). 
 

To start, it should be clear that the total radiation 

incident on any tilted surface corresponds to the 

sum of beam radiation (Ib), diffuse radiation (Id), 

and albedo or ground reflected radiation. 

However, when working with horizontal radiation 

values, the albedo component is neglected due to 

this physical disposition. 

In that sense, the estimated hourly global 

horizontal radiation value (I) obtained through (2) 

from Hsyn will account just for beam and diffuse 

components, i.e. I = Ib + Id. 
 

𝐫𝐭 = 𝐈 𝐇𝐬𝐲𝐧⁄  (2) 
 

The definition of rt is explained in the Appendix, 

from (S1) to (S8). 

After this first relation, the value of I is obtained. 

This value could be related to the extraterrestrial 

horizontal radiation (Io) by the ratio kT as 

indicated in (3). Special care should be taken to 

consider non-negative values for I, and therefore, 

for kT.  

Hsyn I = f(Hsyn) = Ib + Id

Id = I * f(kT)

kT = f(I)

IT = f(Ib , Id , β , γ , ρg)
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𝐤𝐓 = 𝐈 𝐈𝐨⁄  (3) 
 

The equations needed for the calculus of Io are 

given in the Appendix, from (S9) to (S10). 

This second relation gives us the value of kT for 

each hour. This index can then define the hourly 

diffuse fraction, which relates Id and I, as in (4). 
 

𝐈𝐝 𝐈⁄ = 𝐟(𝐤𝐓) (4) 
 

where f(kT) represents a piecewise function 

whose definition is presented in (S11) of the 

Appendix. 

After applying this third relation, the value of Id is 

obtained. With this value, it is possible to clear the 

value of the beam radiation since Ib = I − Id. 

As suggested by [43], for PV panels placed in the 

southern hemisphere, the HDKR anisotropic 

model is suitable. For the sake of simplicity, 

suggested model will be used to calculate the total 

incident radiation on a tilted surface with slope β 

(in rad) and surface azimuth angle γ (in rad), as 

defined in (5). For further studies, a selection 

process could be carried out to choose the best 

model [44]. 
 

𝐈𝐓 = (𝐈𝐛 + 𝐈𝐝𝐀𝐢)𝐑𝐛 + 𝐈𝐝(𝟏 − 𝐀𝐢) (
𝟏+𝐜𝐨𝐬 𝛃

𝟐
) [𝟏 +

𝐟 𝐬𝐢𝐧𝟑 (
𝛃

𝟐
)] + 𝐈𝛒𝐠,𝐦 (

𝟏−𝐜𝐨𝐬 𝛃

𝟐
)  

(5) 

 

Complementary equations for this fourth relation 

are shown in the Appendix, from (S12) to (S16).  

 

3.4 Solar stochastic behavior reproduction 

The effect of shadows over the panel is 

represented by a factor fCLD. Although clouds 

interrupt, Ib, Id continues to be present. Hence, 

only this component is affected by fCLD, as 

indicated in (6). 
 

𝐈𝐛
∗ = 𝐟𝐂𝐋𝐃𝐈𝐛 (6) 

 

fCLD is generated randomly for each hour using 

the algorithm presented in table 1. Note that 

global radiation hour-to-hour variation is achieved 

using step 2, so additional noise is introduced in 

this step. 
 

Table 1. Noise generator algorithm. 
 

1: aux = 0 

2: for h in 1. . N 𝐝𝐨 

3: if aux ≥ rand1
h 𝐭𝐡𝐞𝐧 

4: fCLD
h = aux 

5: aux = 0 

6: Else 

7: fCLD
h = 1 

8: aux+= rand2
h 

9: end if 

10: end for 

 

rand1 and rand2 are random numbers between 0 

and 1 generated for each hour h by the non-

volatile Excel matrix function NTRAND(N). 

Consequently, Ib
∗  should be used in replace of Ib 

for all subsequent equations, including (5). 

 

3.5 Solar PV power assessment 

Air temperature varies within a day; however, the 

available data from the first step only provides 

each month’s minimum and maximum values. A 

relationship between global radiation and air 

temperature has to be used to approximate the air 

temperature value for each hour of the day. 

Hence, proposal of [45] is adapted, as shown in 

(7). 
 

𝐇𝐦 𝐇𝐨,𝐦⁄ = 𝐜𝐦 ∙ ((𝐓𝐦
𝐦𝐚𝐱 − 𝐓𝐦

𝐦𝐢𝐧) 𝐓𝐦
𝐦𝐢𝐧⁄ )𝟎.𝟓 (7) 

 

According to [45], cm is a function of the altitude 

and distance to the sea, and its value is determined 

using historical data. In this paper, cm will be 

estimated using available data from step one.  

The monthly mean daily extraterrestrial radiation 

(Ho,m) can be evaluated using (8): 
 

 𝐇𝐨,𝐦 =
𝟐𝟒

𝛑
𝐆𝐨𝐧(𝐜𝐨𝐬 𝛗 𝐜𝐨𝐬 𝛅 𝐬𝐢𝐧 𝛚𝐬 + 𝛚𝐬 𝐬𝐢𝐧 𝛗 𝐬𝐢𝐧 𝛅) (8) 

 

Extraterrestrial radiation should be calculated for 

the recommended average day for each month 

indicated in [43]. Finally, since [45] define this 

parameter as a constant, the average value 

c = ∑ cm M⁄  will be used for the following 

calculations. 

Prieto’s proposed model [45] is then extended in 

this paper to calculate hourly values. Therefore, 

the air temperature for a specific hour h is 

determined by (9). It is assumed that Tm
min is the 

same for every day of the corresponding month 

and that the maximum temperature solved from 

the equation for each hour is the representative air 

temperature for that hour. 
 

𝐓𝐡 = ((𝐈 𝐈𝐨⁄ ) ∙ (𝐓𝐦
𝐦𝐢𝐧)𝟎.𝟓 ∙ 𝟏 𝐜⁄ )

𝟐

+ 𝐓𝐦
𝐦𝐢𝐧 (9) 

 

Since the temperature has an inertial behavior, the 

temperature hour value and the previous hour 

value are weighted using a factor z. In that sense, 

the final ambient temperature value is defined, as 

shown in (10). In this paper, the value of z is set 

to 0.75. 

 

𝐓𝐡
𝐚 = 𝐳𝐓𝐡 + (𝟏 − 𝐳)𝐓𝐡−𝟏

𝐚  (10) 

 

Now, it is possible to calculate cell temperature 

for each hour (Th
c) using (11), which is the 

inferred equation presented in [46]. 
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𝐓𝐡
𝐜 =

𝐓𝐡
𝐚 + (𝐓𝐍𝐎𝐂𝐓

𝐜 − 𝐓𝐍𝐎𝐂𝐓
𝐚 ) (

𝐆𝐓

𝐆𝐓,𝐍𝐎𝐂𝐓
) [𝟏 −

𝛈𝐒𝐓𝐂
𝐦𝐩 (𝟏 − 𝛂𝐩𝐓𝐒𝐓𝐂

𝐜 )
𝛕𝛂

]

𝟏 + (𝐓𝐍𝐎𝐂𝐓
𝐜 − 𝐓𝐍𝐎𝐂𝐓

𝐚 ) (
𝐆𝐓

𝐆𝐓,𝐍𝐎𝐂𝐓
) (

𝛂𝐩𝛈𝐒𝐓𝐂
𝐦𝐩

𝛕𝛂
)

 (11) 

 

Nominal operating cell temperature (NOCT) is 

defined for solar irradiance GT,NOCT = 0.8 kW/m
2
 

and ambient temperature TNOCT
a = 20 

º
C. Values 

for cell temperature under NOCT conditions 

(TNOCT
c  in 

º
C), efficiency at maximum power point 

(ηSTC
mp

 in %), temperature coefficient of power (αp 

in %/
º
C) and cell temperature (TSTC

c  in 
º
C) under 

standard test conditions (STC) can be found in the 

solar PV module datasheet. 

Although solar irradiance striking the PV panel 

(GT) is an instantaneous value, the hourly total 

incident radiation (IT) value obtained in step 3 

will be used here, assuming that flat radiation 

occurs for the entire hour bin. 

Finally, (12) is used to calculate the output power 

of the PV panel: 
 

𝐏𝐏𝐕 = 𝐏𝐒𝐓𝐂𝐟𝐏𝐕 (
𝐆𝐓

𝐆𝐓,𝐒𝐓𝐂

) [𝟏 + 𝛂𝐩(𝐓𝐡
𝐜 − 𝐓𝐒𝐓𝐂

𝐜 )] (12) 

 

Rated capacity of PV panel under STC (PSTC in 

W) is obtained from the module datasheet. Solar 

irradiance for STC (GT,STC) is equal to 1 kW/m
2
. 

In this equation, a derating factor (fPV) is 

employed to account for losses occasioned by 

soiling, mismatching, transformation, degradation, 

etcetera. Do notice that losses by irradiance level, 

temperature, and clouds are internalized in the 

proposed procedure, so fPV should only account 

for the other factors. Its value strictly depends on 

the place conditions where the solar PV panel is 

mounted such as the level of dust and rain, among 

others. Typical values range between 75-95% 

[47–54]. 

 

4. Validations 
Three application tests are performed for different 

places to validate the proposed methodology. The 

first test evaluates the accuracy of the proposed 

data sources for a point in Chile. Then second test 

compares the methodology output until the fourth 

step with a historical time-series of irradiance in 

Slovakia. Finally, in third test an existing PV 

power plant in Peru is simulated through the 

proposed methodology, and its results are 

contrasted with actual values. 

 

4.1 Test N
°
 1 – comparison of solar data 

sources for a point in Chile 

Both POWER and PVGIS databases employ 

complex models to approximate solar radiation 

for a wide range worldwide. Hence, these values 

are not historical in-site measurements but a 

mathematical approximation. 

In order to quantify how accurate is the data 

provided by these platforms, figure 3 compares 

them with values obtained from the Solar 

Explorer published by the Ministry of Energy of 

Chile [55], which has a normalized root-mean-

square deviation (nRMSD) of 5.7% for the 

northern part of Chile (between latitudes -17
°
 and 

-30
°
). 

 

 
 

Figure 3. Comparison of 𝐇𝐦 gathered from different 

solar data sources for a point in Chile. 

Values for the comparison are gathered for a place 

located at ϕ = −18.37° and λ = −70.14°. 

As shown in figure 3, values offered by PVGIS 

are significantly more accurate than those 

provided by POWER. Indeed, PVGIS dataset has 

a mean absolute percentage error (MAPE) of 

2.3%, while POWER ranges 20.1%. 

On the one hand, NASA’s data display 

information lower by more than 10% than 

Chilean’s values for 8 out of 12 months, having 

deviations above 23% for months from May to 

October, with a peak in June where the error 

reaches -37%.  

On the other hand, PVGIS’s data remains between 

an error of ±2.6% for 9 out of 12 months. 

Maximum discrepancy occurs on July with an 

error of 6%, followed by a deviation of 5.5% on 

August. 

In that sense, it is validated that using PVGIS to 

obtain information about Hm should be preferred 

over POWER, as proposed in step one. 

This test used the solar radiation database called 

PVGIS-NSRDB for years 2005-2015. 

 

4.2 Test N
°
 2 – comparison of 𝐈𝐓 for a point in 

Slovakia 
The second test validates the quality of synthetic 

hourly values generated. Hence, historical hourly 
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measurement data is used to compute the total 

monthly, and annual global horizontal irradiance 

received, then is compared with the amounts 

produced with the synthesized IT time-series. 

The available data of Slovakia for the years 2014, 

2017, and 2020 was downloaded from [56]. 

Geographic coordinates correspond to ϕ =
49.03° and λ = 20.32°. 
Figure 4 represents the daily behavior of the 

measured and synthetic values for the 

recommended average day for each month 

indicated in [43], although both time-series 

correspond to a full year. 

The plotted series have been ordered to allow a 

correct visualization.  
 

 
 

Figure 4. Time-series of 𝐈𝐓 for a point in Slovakia. 
 

As seen, there are some days like April, July or 

August where synthetic and historical daily time-

series are very similar to each other. But also 

exists days like May, October or December, 

where not even historical values coincide between 

them. In fact, this figure evidences that solar 

resource variability is such that radiation for the 

same day differs from year to year. 

This figure also demonstrates that the proposed 

methodology correctly replicates typical solar 

resource behavior, although synthetically 

generated values barely coincide with some 

historical days. However, as mentioned by 

Grantham et al. [33], the objective of this kind of 

methodologies is not to produce patterns that have 

occurred in the recorded data, but to generate 

patters that are equally as likely to occur. 

Regarding the monthly insolation, figure 5 reflects 

that historical total radiation received each month 

fluctuates year after year. Despite this, synthetic 

amounts seem similar to actual values for some 

months like March, September or December. 

The monthly radiation received calculated using 

the synthetic IT time-series has a MAPE of 

11.9%, 12.5%, and 11.7% when compared with 

actual values of years 2014, 2017, and 2020, 

respectively. 

 
 

Figure 5. Comparison of total monthly insolation for a 

point in Slovakia. 
 

Nevertheless, if a mean aggregates the three 

historical hourly time-series, resulting amounts 

are closer to the synthetic ones, as shown in table 

2.  
 

Table 2. Deviations of total monthly insolation values for 

a point in Slovakia. 
 

 Average Synthetic Variation 

January 39.48 34.72 -12.0% 

February 56.49 49.02 -13.2% 

March 104.50 92.86 -11.1% 

April 137.86 132.86 -3.6% 

May 162.31 145.40 -10.4% 

June 179.64 155.21 -13.6% 

July 167.94 170.96 1.8% 

August 151.26 148.45 -1.9% 

September 103.25 102.89 -0.3% 

October 65.00 65.49 0.7% 

November 36.53 39.02 6.8% 

December 26.81 25.49 -4.9% 

Total 1231.07 1162.38 -5.6% 

Mean 102.59 96.86 
 

 

Specifically, deviation gets reduced to a MAPE of 

6.7%. 

Significant variations values are obtained for 

some months like January or February; however, 

these values respond to a numerical issue instead 

of a methodology instability, since average values 

are rather small. If the root-mean-square error 

(RMSE) is calculated, a value of 9.78 kWh/m
2
 is 

obtained, which contains, for instance, the 

difference between synthetic and average value 

for January (4.75 kWh/m
2
).  

The nRMSD, which achieves 9.5% when 

comparing synthetic values to the average of 

historical measurements. Individual comparisons 

produce values of 13.6%, 18.3% and 14.7% for 

years 2014, 2017, and 2020, respectively. 

These results validate the proposed methodology 

until step four and also suggest that to deal with 

uncertainties, synthetic series should be generated 
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considering a variation of ±9.5% the values of 

Hm. 

This test used the solar radiation database called 

PVGIS-SARAH2 for years 2005-2020. 

 

4.3 Test N
°
 3 – comparison of solar energy with 

an existing solar park in Peru 
The third test corroborates the results of all steps. 

In that sense, the historical power output of an 

existing PV plant in Peru is used to evaluate the 

quality of synthetic time-series generated for a 

similar plant. 

The studied plant is Majes Solar Park, located at 

ϕ = −16.44° and λ = −72.22°. 
This plant uses fixed PV panels sloped at 15

°
 

facing the north. Although the existing plant 

comprises modules of 350, 370, 390, and 410 W 

manufactured by TSolar, simulation is made using 

technical specifications of Hanwha Solar Q.Peak 

Duo L-G5.2 for a rated power of 380 W. A total 

of 57 894 panels are considered for the 

simulation, giving a total installed power of 22 

MW, as it is in reality. 

Synthetized solar resource for the plant’s location 

is good and almost stable throughout the year, as 

shown in figure 6 (yellow bars). 

The yearly average daily total insolation received 

over a PV panel, calculated using IT time-series, 

is 6,365 Wh/m
2
/day. The greatest deviations from 

the yearly mean are found in June, with a value 

lower by 11.3% (5,646 Wh/m
2
/day), and in 

November, where radiation achieves 10.4% more 

than the average (7,027 Wh/m
2
/day). 

Figure 6 also plots the values of Hm retrieved in 

step one (blue line). It is seen that even though 

these values are taken as inputs, the proposed 

methodology achieves a significant variability 

(notice orange marks of minimum and maximum 

synthetic daily values in each month column) 

yielding monthly averages different from data 

gathered. Discrepancies between gathered and 

calculated averages fluctuates in a range of ±15%, 

with a corresponding MAPE of 8.4%. 
 

 
 

Figure 6. Monthly average daily insolation over a PV 

panel for a point in Peru. 

As analyzed in the previous test, this behavior is 

expected and desired for the solar resource since 

historical registers usually differs year to year.  

The solar park’s total monthly energy produced, 

actual and synthetic, are reported in table 3. The 

variation between both series produces a MAPE 

of 4.9%, with maximum divergences in April (-

9.3%) and July (9%). 
 

Table 3. Deviation of total monthly solar energy output 

(MWh) values for a point in Peru. 
 

 Actual Synthetic Variation 

January 3630.41 3512.84 -3.2% 

February 3345.25 3246.72 -2.9% 

March 3474.82 3624.32 4.3% 

April 3615.47 3280.31 -9.3% 

May 3210.09 3319.55 3.4% 

June 3164.76 3074.66 -2.8% 

July 3061.85 3338.34 9.0% 

August 3806.71 3551.88 -6.7% 

September 3818.65 3555.02 -6.9% 

October 4070.51 3888.83 -4.5% 

November 3841.99 3774.42 -1.8% 

December 3811.57 3667.79 -3.8% 

Total 42852.08 41834.70 -2.4% 

Mean 3571.01 3486.22 
 

 

However, when looking at the total annual energy 

injected by the solar plant into the grid, the 

difference between both values results 2.4%, 

being that the proposed methodology slightly 

underestimates this energy contribution. The 

nRMSD of the synthetic series is 5.4%. 

Besides validating total energy output between 

actual and synthetic values, a comparison between 

output power profiles is also required. Figure 7 

displays the power output time-series for the first 

and second weeks of the year. 

It can be noticed that synthetic series achieves 

reproducing stochastic behavior of solar 

resources, without overemphasizing erratic 

behavior and being coherent with measurements.  

This sample also evidences that significant erratic 

injections occur in existing solar PV plants, as 

seen in days 4, 6, 10 or 12, although other plotted 

days present this phenomenon as well. 

For the simulation, a value of 86% was considered 

for fPV. 
 

 
 

Figure 7. Time-series of total solar power output (MW) 

for a point in Peru. 
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This test used the solar radiation database called 

PVGIS-NSRDB for years 2005-2015. 

 

5. Conclusions 
The proposed methodology presents a simple but 

effective approach for producing synthetic hourly 

production values for renewable solar plants. 

According to the results presented, the 

methodology successfully synthesizes the time-

series of output power, which correctly replicates 

typical behavior of solar resource. 

The results show that the proposed methodology 

slightly underestimates the calculus of produced 

solar energy, having a discrepancy of 2.4% in the 

yearly totals. 

It should not be forgotten that the proposed 

methodology does not try to adjust natural solar 

curves but to generate the realistic probable ones. 

Comparison with the existing solar plants could 

help estimate the expected error for future uses of 

synthetic time-series. 

The presented methodology is novel because it 

uses aggregate parameters as input and does not 

require historical time-series, which is suitable for 

developing countries lacking RER information. 

Besides, this flexible and parametric methodology 

can generate multiple time-series scenarios 

modifying aggregate input parameters to achieve 

enough range of cases to incorporate uncertainties 

that may be used in future research work. 

Future studies must be carried out to find 

alternatives ways to estimate cm presented in (7), 

since it will fail when analyzing places where 

historical minimum temperatures were negative. 

This methodology can help to implement a 

software to improve the access to RER 

information in order to accelerate the adoption of 

distributed solar PV generation in developing 

countries, and to enable further research in the 

field of smart grids, as stated in [57]. 

 

6. Appendix 

See Supplement for supporting content. 
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