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CHARACTERIZATION OF JORDAN
{g,h}-DERIVATIONS OVER MATRIX ALGEBRAS

A. GHOSH AND O. PRAKASH*

ABSTRACT. In this article, we characterize {g,h}-derivation on
the upper triangular matrix algebra 7,(C) and prove that every
Jordan {g, h}-derivation over 7,(C) is a {g, h}-derivation under
a certain condition, where C' is a 2-torsion free commutative ring
with unity 1 # 0. Also, we study {g, h}-derivation and Jordan
{g, h}-derivation over full matrix algebra M, (C).

1. INTRODUCTION

Throughout the article, C' represents a commutative ring with unity
1 # 0. Recall that a ring R is 2-torsion free if 2a = 0 for some a € R
implies a = 0. Herstein [15] initiated the research on Jordan derivation
over prime rings in 1957 and proved that every Jordan derivation over
a prime ring of characteristic not 2 is a derivation. In 1975, Cusack [¥]
established the same result for semiprime rings. Let A be an algebra
over a commutative ring C. A linear map d : A — A is said to be a
derivation if d(zy) = d(x)y + xd(y), for all z,y € A and d is said to be
a Jordan derivation if d(z?) = d(x)x + xd(x) for all z € A. When C is
a 2-torsion free, Jordan derivation is a linear map d : A — A such that
d(xoy) =d(z)oy+zod(y) for all z,y € A, where x oy = zy + yz.
A linear map T : A — A is a left (right) centralizer if T'(zy) = T'(x)y
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(T'(zy) = 2T (y)) for all z,y € A and T is two-sided centralizer if it is
both left and right centralizers.
In the last six decades, many authors studied Jordan derivation

over rings and algebras in [2, 3, 5, 13, 21, 22, 23], showing that every
Jordan derivation over undertaken ring or algebra is a derivation.
For more results on Jordan derivations, see [I, 10, 9, 11]. Later,

mathematicians introduced some generalizations of (Jordan)
derivations, like (Jordan) left derivation, (Jordan) generalized
derivation, and (Jordan) P-derivation. They established many results
on those derivations over some rings and algebras; we refer [0, 7, 12,
Recently, in 2016, Bresar [1] introduced {g,h} derivation and
Jordan {g,h} derivation on algebras. ~We note that they have
considered algebra over the field F with char(F)# 2. Inspired by
these above works, we study {g, h}-derivation for the algebra over C.
Towards this, we recall the definition of {g,h} derivation and Jordan
{g,h} derivation.
Let A be an algebra over C' and f,g,h : A — A be the linear maps.
Then f is said to be a {g, h}-derivation if

flzy) = g(x)y + zh(y) = h(z)y + zg(y), for all z,y € A.  (1.1)

If f=¢g=~hin (1.1), then f is a usual derivation. Now, f is said to
be a Jordan {g, h}-derivation if

fxoy)=g(x)oy+xzoh(y), forall z,y € A. (1.2)

If f=g¢=hin (1.2), then f is a usual Jordan derivation. Hence,
every {g, h}-derivation is a Jordan {g, h}-derivation but the converse
is not true (Example 2.1 of [1]). It is also easy to see that if every
Jordan {g, h}-derivation over A is a {g, h}-derivation, then every
Jordan derivation on A is a derivation. In this connection, in 2016,
Bresar established that every Jordan {g, h}-derivation of a semiprime
algebra A over a field F with char(IF)# 2, is a {g, h}-derivation [1]. Also,
we can find results related to Jordan {g,h}-derivation on
triangular algebras in [17].

The manuscript is organized as follows: First we give an example of
{g, —g}-derivation over T5(C'). Motivated by that example, we prove
for a zero map to be a {g, h}-derivation, where g and h has to be equal
but opposite sign (Theorem 2.2) and g turns out to be a two-sided
centralizer. Also, we prove every Jordan {g, —g}-derivation over 7,(C)
has to be a zero map (Theorem 2.5) with some restriction on C'. That
restriction on C' is necessary given by Example 2.6. Further, we prove
that every Jordan {g, h}-derivation on 7,(C) is a {g, h}-derivation
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under certain assumptions over the maps and C (Theorem 2.7).
If the assumptions in Theorem 2.7 are not considered, then the
theorem may not hold (Example 2.13 and 2.14). Also, we establish that
{g, h}-derivation is the only Jordan {g, h}-derivation on M, (C') under
only the torsion restrictions of C' (Theorem 3.2). In this case, we do not
assume the relation between maps as for 7,(C'). Before going further,
let e;; denote the matrix whose (4, j)-th entry is 1 and 0 elsewhere.

2. JORDAN {g, h}-DERIVATION ON T,(C)

Let 7,(C) be the algebra of n x n upper triangular matrices over C'.
In this section, we characterize {g,h}-derivation and Jordan
{g, h}-derivation over T,(C).

Example 2.1. We start here by an example of a {g, h}-derivation over
T2(C). Define g : To(C) — T2(C) by g(A) = A, forall A € 75(C). Then
0 is a {g, —g}-derivation.

We want to see whether the converse of the example is true. The
following theorem will answer this question.

Theorem 2.2. If 0 is a {g, h}-derivation over T,(C), n > 2, then

h = —g and g(A) = aA, for some o € C. In particular, g is a
two-sided centralizer.
Proof. Let
g(eij) Z gn?p)emp , where g(” e C, (2.1)
1<m<p<n
and -
h(ei;) Z hmp emp » Where hgffp) e C. (2.2)
1<m<p<n

Since 0 = g(eii)eii + €iih(€u‘) = h<eii)€ii + €ii9(€ii),
gl(fi) = hl(ln) =0forl={1,...,i—1},
g = p0) =0 for 1 ={i+1,...,n}, (2.3)
)+ hz(fi) =0, forallie {1,...,n}.
Let ¢ # j. From the relation
glei)ej; + eih(ej;) = 0 = h(eu)ej; + engles;),

we have P
g =l =0forl={1,...,j},

for all 4, j € {1,...,n}.
From (2.3) and (2.4), we have

(2.4)
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g(eu‘) = gg?i)eu‘ and h(en‘) = hl(-fi)e 91(1”) €ii-

0

Let i < 7 and j # k. By the relation
gleij)err + eiih(e) = 0 = hley)ew + eiglerr),
we get
g = B — 0 for 1 = {1,...,k},
for all 4, j, k€ {1,...,n}.
As the relation g(e;;)ei; + eih(ei;) = 0 = h(e;i)ei; + eig(es;) holds,

(2.5)

g =h? =0, forl={ii+1,....j—1,j+1,....n},
g+ n? =0, (2.6)
W 4 g (” =0, foralli, je€{1,...,n}.
Since g(ez‘j)ejj + eijh(ej;) =0 = h(%’)ejj + eijg(es;),
g =h? =0, for l={1,2,...,i—1,i+1,....5},
gZ(;j) + h(jj) =0, (2.7)
hgj)—i-g](;j =0, foralli, j€{1,...,n}.

From (2.5), (2.6) and (2.7), we have g(e;;) = gl(]])e”, h(ei;) = hz(;j)el]
and

gf;J) _ gffz) _ gj(;]) _ hg-j) _ _hgi) _ —h(j.j)
for all i < j and 4, j € {1,2,...,n}. Let « gm” € C. Then
g(A) = aA and h(A) = —aA, for all A € 7,(C). Hence, h = —¢g and
it can easily be proved that g is a two-sided centralizer. 0

Example 2.3. Now, we give an example of a nonzero {g, h}-derivation

on T3(C) where g = h. Define f, g: To(C) — T2(C) by

a11 Q12 _ 2a11  ap a1 a2 _ a; 0
f(() (Izg)_( 0 2&22)andg<0 &22)_<0 (122)’
respectively. Then f is {g, g}-derivation on 75(C).

Example 2.4. This is an example of a {g, h}-derivation f on T5(C)
for nonzero different f, g and h. Define f, g, h: T2(C) — T2(C) b

f a1l a2 _ 3air 2aiz ai; Qaig _ a0
0 929 0 3(122 9 0 929 0 929
and b @1 a2 _ 2a11 a2

0 929 o 0 2&22
{g, h}-derivation on T5(C).

, respectively. Then f is a
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After these examples, we want to see the existence of a nonzero
Jordan {g, —g}-derivation over 7,(C). The answer is in the next
theorem. The following theorem is the converse of Theorem 2.2 with
some torsion conditions on C'.

Theorem 2.5. If f is a Jordan {g, —g}-derivation over T,(C) where
C' is 2-torsion free, then f = 0.

Proof. Let i < jandi,j€{1,2,...,n}. If i = j, from
fleioen) = glew) o e — e 0 glew),
we have 2f(e;) = 0. Therefore, f(e;) = 0, since C' is 2-torsion free.
Now, if i < 7, by using the relation
fleiioeij) = gleu) o eij — eii o gleis) = —glew) o eij + €ii o g(eij)
and C' being 2-torsion free ring, we get f(e;;) = 0. Hence, f =0. O
Example 2.6. If we drop torsion condition of C, then Theorem 2.5

does not hold, which has shown in this example. Let Z, be the
ring of integers of modulo n. Then Z, is not 2-torsion free. Define

foo ) ey £ ) = (g 2 )

Q22
an a2 \ _ [ an 2a11 + a2 + 2a9
9 O 929 O 929
a nonzero Jordan {g, —g}-derivation on T3(Z,).

), respectively. Then f is

Our next theorem tells that any Jordan {g, h}-derivation on 7,(C)
becomes a {g, h}-derivation under certain conditions over the maps and
on the underlying ring.

Theorem 2.7. Let f be a Jordan {g,h}-derivation on T,(C), C be
a 2-torsion free ring, n > 2, with f(ey;) = g(es)eq + exh(ey) for all
i=1,2,...,n. Then f is a {g, h}-derivation.

To prove the theorem, we first prove several related lemmas. Let
f:A— Abea Jordan {g, h}-derivation.

Lemma 2.8. Let a € A such that f(a®) = g(a)a + ah(a). Then
f(a®) = h(a)a + ag(a).
Proof. From (1.2), we have f(aoa) = h(a) o a+ ao g(a). Therefore,
f(a®) = f(aca) = f(a®) = h(a)a + ag(a). B
Lemma 2.9. Let a,b € A such that

f(ab) = g(a)b+ ah(b) = h(a)b+ ag(b).
Then f(ba) = g(b)a + bh(a) = h(b)a + bg(a).
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Proof. From (1.2), f(z oy) = g(x) oy + x o h(y), for all z,y € A,
Therefore,

f(ba) = f(boa)— f(ab)
=g(b)oa+boh(a)— h(a)b— ag(b)
= g(b)a + bh(a).
Similarly,
f(ba) = flaob) — f(ab)

g(a)ob+aoh(b) — g(a)b— ah(b)
h(b)a + bg(a)

Now, let f: T,(C) — T,(C) be a Jordan {g, h}-derivation.

First we prove
fleien) = gleij)ew + eijh(er) = h(ei;)en + eijg(en), (2.8)
which is equivalent to

flemes;) = glew)es; + ewh(es;)
= h(ew)eij + erglei;) (by Lemma 2.9). (2.9)

Let g(e;;) and h(e;;) is of the form (2.1) and (2.2).

Lemma 2.10. f(eiiej;) = g(ei)ej; + eih(ej;) = hlei)ej; + eiglej;),
fori#j.

Proof. Let © # j. Without loss of generality, let ¢ < j. Since f is a
Jordan {g, h}-derivation on 7,(C),

0 = f(eiioejj)
= g(eii) o ejj + €i 0 h(ej;)

From (2.10), we have
9§j) = éj) == 91(7)1,]' = gi(Jr)l,j == gjf)l,j =0,
gj(;i) = hgfj) =0 (since C is 2-torsion free), 2.11)
hEJZJJZl = hgjzjlz == hz(j]]ll = h'gjjj}rl - = hgzj) =0, |

o+ 19 =0

Therefore, we get f(e;e;;) =0 = g(eii)ej;+eih(ej;), by using (2.11).
Similarly, by using the second part of (2.10), we get

h(eii)ej; + eig(ej;) = 0.
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Hence, f(eiej;) = gleu)es; + eiih(ej;) = hei)ej; + eiglej;). O
Lemma 2.11. f(eu‘ej'k) = g(eii)ejk -+ eiih<€jk) = h(eii)ejk + €u‘g(€jk),
for j < k.
Proof. Our aim is to prove the following:
fleien) = glei)ejr + eish(en) = h(eq)e + engler), (2.12)
where j < k.
Case 1. Let i = 5. Then (2.12) is equivalent to
f(eijeii) = g(eij)eii + eijh(eii) = h(eij)eii + eijg(eii)v
where 7 < j.
For 7 < j,

fleij) = fleijoei)

= g(e;j) o e;i + €;; 0 h(es)
= h(eij) o €ii + €55 0 g(ei),
(2.13)
fleij) = feijoejy)
= g(eij) o ej; + €55 0 h(ej;)
= h(e;) o €55 + €50 g(ej;).
From (2.13),
g =g = =g =gl =0, (2.14)
T I
From (2.10),
g~
= = 0 =0 215
Gt = G =+ = g5 =0,

Now, using (2.11), (2.14) and (2.15), we have
fleijei) = 0= g(eij)ei + eijh(ei) = h(eij)ei + ejjgleqn).  (2.16)
Case 2. Claim:
fleier) = glei)ejn + eih(ejr) = hei)er + eugle),
where ¢ < j. Using the relation g(e;;)oejr+e;;0h(ejr) = f(eioejr) =0,
g +hii =0

hz(zjk) = h’z(]lli)l == hgjlle = hEJIfJ)rl == hz(ik) = 0.

(2.17)
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Hence, we have f(e;ejr) =0 = g(ei;)e;r + eih(e;r) using (2.11) and
(2.17). Similarly, using h(e;;) o eji + € © g(ejr) = f(es © €ji), we have
h(€¢i>€jk + eiig(ejk) = 0.

Case 3. Claim:

f(eiejr) = glei)ejn + eih(en) = heq)en + eig(ejr), (2.18)
where ¢ > j.
Subcase 1. Let k =i. Then (2.18) is equivalent to

flejieis) = glejj)eis + ejih(eiz) = hiejj)eij + ej59(eq),

for i < 7.
From (2.10) and (2.13), we have
9 = 9 = = g, = 9 =,
CIC) (i) (2.19)
hjj~ = hjii = =Ny’ =0.

Using (2.19), we have f(ejje;;) = 0 = g(ejj)e;; + ej;h(e;;). In a
similar way, h(ej;)e;; + e;;g(ei;) = 0.

Subcase 2. Let k # i. From g(e;;)oejp+e0h(ejr) = f(eioe) =0
and (2.10), we have

)
@ G (id) (2.20)
91;° = 925 = "= Yj; =0.
By (2.20), we get f(eiejn) = 0 = g(ei)ejr + eih(ejr). Similarly,
h(eii)ejk + eiig(ejk) = 0. L]

Lemma 2.12. f(el-jekl) = g(eij)ekl + eijh(ekl) = h(eij)ekl + eijg(ekl),
fori<g, k<l

Proof. We prove
f(eijekl) = g(ez’j)ekl + eijh(ekl> = h(eij)ekl + eijg(ekl)v (2-21)

where 1 < 7, k <.
Case 1. Let j = k. Then (2.21) equivalent to

flewjeir) = glewj)eir + exjh(en) = hler;)eir + erjgleir),

where < k < j.
For i < k < j, from (2.13) and the relation

flei;) = flewjoeir) = gler;) o e + exj o hie),

we have o) ) )
glij = gm‘J == gi—Jl,i =0,
(ik) (ik) (ik) (2.22)
hjjer = Rjjpa == hy” = 0.
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As discussed in Lemma (2.11), using the relations
h(ei)er; + eiuglex;) = flewer;) =0
and h(e)ej; + einglej;) = f(eiej;) = 0, we get
gt =0=h{M. (2.23)
Therefore, by using (2.22) and (2.23), we have
flerjeir) =0 = glew;)ew + exih(eir).

Similarly, we can prove h(ey;)eir + ex;g(ei) = 0.
Case 2. Let j < k. For i < j < k <, from the relation

O = f(eij (@) ekl) = g(eij) O €l + eij o h(ekl),

we have
(i9) (i5) (i9) (i9) (i9)
glkj = 9213 == gi—JLk = gi-ﬂl,k == gkil,kz =0,
g +hy =0, (2.24)
(k) g (kD) k) g (kD) _ (k)
higir = Rjjpa = =hyoy =Dy == hy,” =0

By Lemma (2.11), from 0 = f(e;jexr) = g(eij)ext + €ih(exr) and
0= f(ejjens) = g(ejj)er + ejjh(ex), respectively, we have

ij kl
g =0=n{". (2.25)

By using (2.24) and (2.25), f(e;jen) = 0 = g(eij)en + €ijh(er). In a
similar way, we have h(e;j)ewn + e;j9(er) = 0.

Case 3. Let j > k. Then, we have ¢ < 7,5 > k, k < [. From Lemma
(2.11), the relation 0 = f(e;jer) = g(eij)exk + eijh(e) implies that

£ = o) o=l =0 25
Similarly, from 0 = f(ejjekl) = g(ejj)ekl + ijh(ekl),
(k) _ (k) _ _ (k) _
hjj" = hjjin = =hy =0 (2.27)
Hence, by using (2.26) and (2.27), f(eijern) = 0 = g(eij)em+eiih(ex).
Similarly, it can be proved that h(e;j)ewn + €;jg9(er) = 0. O

Proof of Theorem 2.7: Let f be a Jordan {g, h}-derivation on
T.(C). Since f(e2) = f(es) = glew)es + eih(es), we get
f(e3) = h(ei)ei + exgleq),
for all i = 1,2,...,n (by Lemma 2.8). By Lemmas 2.10-2.12, we get
f(azy) = g(x)y +zh(y) = h(x)y + g(y) for all 2,y € To(C).
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Example 2.13. This example is of a Jordan {g, h}-derivation which
is not a {g, h}-derivation over 73(C). In this case, the condition over
the maps in Theorem 2.7 is not satisfied. Consider g : T5(C) — T2(C)
defined by g(z) = a o x, where a = €11 + €12 + e2. Then 0 is a Jordan
{g, —g} derivation, but 0(e?,) = 0 # —e1o = g(e11)en + e ((—g)(enn)),
i.e. 0 is not a {g, —g} derivation.

Example 2.14. Now, we have an example of a non-zero Jordan
{g, h}-derivation which is not a {g, h}-derivation over T3(C'). But,
here, the condition over the underlying ring in Theorem 2.7 is not
satisfied. Consider the ring Z, which is not 2-torsion free. Define
[ 9. b Ta(Za) — Ta(Zs) by

f aix; a2 _ a0 a11 a2 _ a1 Q12
0 929 0 9292 9 0 a922 0 a1 + a19

and
h 11 Q12 _ 12 0
0 a9 0 an+axw )’

respectively. Then f is a Jordan {g, h} derivation and
fetr) = glen)en + enh(en).
But f is not {g, h} derivation as
flerean) = 0 # ez = g(en)ezn + ennh(ez).

Example 2.15. This example shows that 7,(C) is not always a
semiprime algebra. The ring Zg is a 2-torsion free commutative ring
with unity 1 # 0. Then 73(Zg) is not a semiprime algebra as
361175(Z9)3€11 = O, but 3611 7é 0 in 75(29)

3. JORDAN {g, h}-DERIVATION ON M, (C)

Let M,,(C) be the algebra of n x n matrices over C. Here, we study
{g, h}-derivation and Jordan {g, h}-derivation over M,,(C).

Example 3.1. This is an example of a {g, h}-derivation on M,,(C).
Let g : My(C) — My(C) defined by g(A) = 2A, where A € My(C).
It is easy to see that 0 is a {g, —g}-derivation. The following theorem
describes about the converse of this example.

Theorem 3.2. If 0 is a {g, h}-derivation over M, (C), n > 2, then
h =—g and g(A) = ~vA for some v € C. In particular, g is a two-sided
centralizer.

Proof. Let

n n

g(eij) = ZZgé@j)ekl , where ggj) eC (3.1)

k=1 I=1
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and

h(eij) ZZh,&l er , where h,(géj) cC. (3.2)

k=1 I=1
By the relation 0 = g(ey;)ei; + eih(ei;) = h(ei)eqn + eiig(es;), we have

0 =0 =0
g =p = 0for1={1,....i—1,i+1,...,n}, (3.3)
g“") + h” =0, forallie{l,...,n}.
Let i # j. As the relation g(e;;)e;; +eih(ej;) = 0 = h(e;i)ej; +eig(e;;)
holds, we have
gl(]") hz(]“) =0forl={1,...,n},

h (3.4)
for all 4, j € {1,...,n}.

Using (3.3) and (3.4), g(ey) = ggi)eii and h(e;) = hgi)eii = ggz)en.
Let ¢ # j and j # k. Since

gleij)err + eh(er) = 0= h(ey)ew + eiglerr),

we have
gl,:]) = hl;f =0forl={1,...,n}, (3.5)
for all 4, j, k€ {1,..., }
From g(eii)eij + e;ih(ei;) = 0= h(ey)eij + engleif),
g = pl —0for 1={1,2,...,5—1,j+1,...,n}, 56
")—l—h”—O—h” —i—gw,forallz je{l,...,n}. '
As g(eij)ejj + e;jh(ej;) = 0= h(e;j)ej; + €i;9(ejj) holds,
gl] V= n? =0for l={1,2,....i—1,i+1,...,n}, &)
gZ] —i—h(”—O—hgj)ng]J , forall4, j € {1,...,n}. '

From (3.5), (3.6) and (3.7), g(e;;) = gg])eij, h(e;j) = hfj e;; and

gZ(Jw) _ gl(lw) _ g](j]) _ h(;]) h(w) h(]]
for all i, j € {1,2,...,n}. Let v = g(”) € C. Hence, g(A) = vA and
h(A) = —~A, for all A € M, (C). Thus, h = —g and g is a two-sided
centralizer. ]

Example 3.3. This is an example of a {g, g}-derivation on My(C).
Let f, g : My(C) — My(C) be defined by
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f a11 Qa2 . 2a11 a2
a1 Ao 3ag1  2a

g ail Az . a11 0
ag1 A2 2a91 ax )’

respectively. Then f is {g, g}-derivation on My (C).

and

Example 3.4. Now we have an example of a {g, h}-derivation on

M, (C) for different g # h. Let f, g, h: My(C) — My(C) be defined
by
¥ a1 aig _ 3air 2aiz
as1 A99 4&21 a2 ’
g ailz Az _ ai 0
a9 Q9o 2a21  ag
h 11 Q12 _ 2a11 a2
Q21 Q22 a1 2az )’

respectively. It is easy to see that f is a {g, h}-derivation on My (C).

and

Our next theorem tells about the converse of Theorem 3.2.

Theorem 3.5. If f is a Jordan {g, —g}-derivation over M,,(C) where
C is 2-torsion free, then f = 0.

Proof. We can prove this in a similar way as in Theorem 2.5. O

Example 3.6. This is an example which supports the necessity of the
torsion condition in Theorem 3.5. Let f, g : My(Zy) — Ma(Z4) be

defined by
f ay a1z \ _ [ 2a21 2a11 + 2ag
a1 A2 0 2az

p ( ai; a2 ) _ ( a1 + 2a21  2a11 + a1z + 2a9 >

and

Qg1 Q22 a1 2a91 + a9

respectively. Then f is a nonzero Jordan {g, —g}-derivation on My (Z,).

The following theorem proves how a Jordan {g, h}-derivation over
M, (C) be a {g,h}-derivation under certain conditions over the
underlying ring.

Theorem 3.7. Let M, (C) be an algebra of n x n, n > 2, matrices
over a 2-torsion free ring C. Then every Jordan {g, h}-derivation on

M., (C) into itself is a {g, h}-derivation.
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Let f: M,(C) — M, (C) be a Jordan {g, h}-derivation.
First, we prove
flegewn) = gles)ewn + egh(en) = hiey)en + eiglewn), (3.8)
which is equivalent to
flenei) = glen)ei; + enh(ei) (3.9)
= h(ew)ei; + erg(e;;) (by Lemma 2.9). '

Suppose g(e;;) and h(e;;) are of the form (3.1) and (3.2), respectively.
Here, we derive few more identities by using (3.1) and (3.2). Let i # j.

0 = f(ew 0 ej;) = glew) o ej; + eii o hiej;)

3.10
= h(ey) o ej; + e o glej;). (310
(61]) - f €i; © 61])
= g(es) o ey + €5 0 h(ey;)
= (3.11)

€ij © €j;)
eij) o ej; + eij o h(ej;)
eij) o ejj + eij o glej;).

Lemma 3.8. f(e;i€e;) = gl(eii)en + eih(ei) = hei)ei + eiglei), for
i=1,2,....n

Proof. From (3.11),

(
9(
h(ei;) o eij + e 0 g(ei;)
£
9(
h(

gﬁi) _ hgiii)w g(u‘) ) ) ) (@) _ p, (@)

.. 1 ( 1 i1 =Nil1i-59 = ;
i ’ Zm ! Z@ . Zm ! Zii " ’ nZz nzlz ’ (312)
gzl *h ) "'7912)1:h‘z(z)—l’gzz—)l-l_hz(i—)i-l?"'7gzn)*h( .
By using (3.12), f(ef) = glew)eu + euh(eq). Similarly
f(e3) = hleq)ei + eingles). O

Lemma 3.9. f(en-ejj) = g(eii)ejj + eiih(ejj) = h(eii)ejj + eiig(ejj), fOT
i 7.
Proof. Using the relation (3.10),

o4 09 g, (3.13)
hz({J) = hz]jj 1= th]]-i-l == h’gqj‘nj) =0.

Hence, we have f(e,;iejj) =0 = g(eii)ejj + eiih(ejj) by (313)
Similarly, we can show that f(e;e;;) = 0= h(e;i)ej; + eiglej;). O
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Lemma 3.10. f(esejr) = g(ei)ejr + eih(en) = hlei)er + eing(e;r),
for j # k.

Proof. We have two cases.
Casel. Let i = j. We prove

fleiei) = gleir)ei + eh(en) = hew)ei + erg(ei),
for ¢ # k, which is equivalent to
fleijei) = glei)ei + eih(ea) = hlei;)ei + eiig(ei),
for i # 7.
By the relation 0 = f(e;; o €;;), we have
g + Y = g5l + ) == g7+ ) =0, (3.14)
gD nD = gD 1 n = =gl =, (3.15)
From (3.11),
gi) =0 g = W gl = g = ] (3.16)
Using (3.14) and (3.16), we get

g = =g =g = =g =0, (3.17)
P = H, =m0 ()
Again, by the relation (3.11),
W 28 = g9 (3.19)
From (3.10),
(i2) (3 _
hD 4 g9 =0, (3.20)
By (3.19) and (3.20),
93+ h =0. (3.21)
From the relation (3.10),
W == n = hl = =hl =0, (3.22)

USiIlg (317),(321) and (322), (eij)en‘ + eijh(eii) =0 = f(eijeii).
Similarly, we can prove that f(e;je;;) = h(eij)eqs + eijg(es).
Case 2. Let j # k. From the relation 0 = f(0) = f(es; o eji),

hg == = bl == hiP =00 (323

gs? +ni = 0. (3.24)
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Using (313),(323) and (324), g(eii)e]’k + eiih(ejk) =0= f(eiiejk)-
Similarly, f(eiiejk) = h(eii)ejk + eiig(ejk)' O

Lemma 3.11. f(ejen) = g(eij)en + eiih(en) = h(eij)ew + eijg(en),
fori=£j and k # 1.

Proof. To complete the proof, we have to consider three cases.
Case 1. Let j # k. By Lemma 3.10, we have

0= f(eienk) = g(eij)exr + eiih(err).

From this relation, we have

g&j) == gz(l]ik gz(ﬂk == 97(315) =0, (3.25)
gz(,?) + h; kk) = 0. (3.26)
Similarly, from 0 = f(e;jex),
S N TR
gjk )+ h () — (3.28)

By Lemma 3.9, 0 = f(ejjexs) = g(eﬁ)ekk + ej;h(exr). From that
relation,

g+ nl = 0. (3.29)
By (3.26),(3.28) and (3.29),
gy +hiY = o. (3.30)

Hence, by (3.25),(3.27) and (3.30), g(es;)er+eiih(ern) = 0 = f(eijen).
Similarly, we have f(e;;exn) = h(eij)en + €ijg(ew)-
Case 2. Let j =k and 7 # [. We prove

flereir) = glew)eir + erh(eir) = h(er)ei + erg(er).
Now, from 0 = f(exen) = glew)en + ewh(ei),

i ki ki ki
ii)_ _gl(c )1z_gl(c+)1,z‘:"':97(zi):07 (3.31)
g+ =0, (3.32)
From 0 = f(eyequ) = gleu)en + euh(ei),
ik (ik) (ik) ik
hl(l f= = hlk 1= hl k1 T T hl(n) =0, (3.33)

g+ nl® = . (3.34)
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From 0 = f(eyei) = gley)es + enh(ey),

g 4 Bl — o, (3.35)
By (3.32),(3.34) and (3.35),
g L pUR — 0, (3.36)

Hence, by (3.31),(3.33) and (3.36), g(ex)ex+terh(ex) = 0= f(exeir)-
Similarly, we have f(exeix) = h(ew)eir + eng(er)-
Case 3. Let j = k and « = [. We prove

flesesi) = glei)eji + eh(ej) = hleij)ej + eijg(ejs).
From e;; o ej; = e;; + ej;, and by using Lemma 3.8, we get

g(eij)oeji—i—eijoh(ej,;) = g(eii)eii—f—eiih(@ii)+g(6jj)6jj+6jjh(6jj). (337)

From (3.37),
a7 =00 = a0t = e
(7) (@) (i) (i2) (5) (i7) (3.38)
"7gj 1] gj lz7g]+1] gj—‘,—li?"'?gn] _gn'L?
gy + 5 = g + i, (3.39)
h JZ _ hzil)’ e hg];) L= h(ll) b h§]ilil _ hglzll’
(i) @) (i) (i) Gi) _ o (i) (3.40)
..,hHl—hlJ 1,hH+1 hUH,...,h]n =h;, .
From g<eZJ)€]j + ezjh(ejj) = f(ezj) - g(eu)em + eiz’h(eij>7
g = gl (3.41)
From g(ejj)eji + ej;h(eji) = f(eji) = gleji)ei + ejih(es;), we have
(1) _ g (i)
hi = hg. (3.42)

Using (3.38)-(3.42), we get
gleij)esi + eizh(eji) = glew)es + eih(eq) = fei) = fleiesi).
Similarly, we can prove that f(e;jej;) = h(eij)eji + ei;g(€ji). O
Proof of Theorem 3.7: Let f be a Jordan {g, h}-derivation on
M., (C). By Lemmas 3.8-3.11, we get
fxy) = g(x)y + zh(y) = h(z)y + zg(y) for all 2,y € My (C).

Example 3.12. We give an example of a Jordan {g, h}-derivation
which is not a {g, h}-derivation over My(C') where C' is not consid-
ered as 2-torsion free mentioned in Theorem 3.7. Let

f, g, h: MQ(ZQ) — MQ(ZQ)
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be defined by
f ain G2\ _ 0 ap p aip a2 \ _ [ an 0
Q21 A22 az 0 ’ G21 Qa22 0 ax
and
h<a11 CL12)_<CL22 0 )
21 Q22 0 an )’

respectively. It can be shown that f is a Jordan {g, h} derivation over
My (Zs). But f is not a {g, h} derivation on My(Zy) as

f(errea2) =0 # e11 = glerr)ex + er1h(ess).

Example 3.13. This example shows that M, (C) is not always a
semiprime algebra. Therefore, Theorem 3.7 is no more a consequence
of any result from [!]. The algebra My(Zg) is not a semiprime, since

3611M2(Zg)3611 = 0, but 3611 7£ 0 in MQ(Zg)

We have a result motivated by Theorem 3.1 of [1]. It can be easily
proved by following the proof of Theorem 3.1 in [1].

Theorem 3.14. If every Jordan {g, h}-derivation over an algebra A
is a {g, h}-derivation, then the same is true for A ® S, where A is
an algebra over C, S is a commutative algebra over C, and A ® S
represents the tensor product of two algebras A and S.

Finally, we have a result as a corollary of Theorem 3.7 and 3.14 as
follows:

Corollary 3.15. Every Jordan {g, h}-derivation over M, (C) ® S is
a {g, h}-derivation, where S is a commutative algebra over a 2-torsion
free ring C.
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