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ON THE FINITENESS OF FORMAL LOCAL
COHOMOLOGY MODULES

SH. REZAEI* AND M. GHASEMI-KALEMASIHI

ABSTRACT. Let a be an ideal of a local ring (R,m) and M a
finitely generated R-module. In this paper, we prove some results
concerning artinianness and finiteness of formal local cohomol-

ogy modules. In particular, we investigate some properties of top

formal local cohomology module Fam M/ aM(M ) and we determine

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with
identity, a is an ideal of R and M is an R-module. Recall that the i-th
local cohomology module of M with respect to a is denoted by H’(M).
For basic facts about commutative algebra see [7]; for local cohomology
refer to [1]. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. For each i > 0; §4 (M) = I'&nHin(M/a”M) is

called the i-th formal local cohomology of M with respect to a.

The basic properties of formal local cohomology modules are found
in [1], [3], 7] and [12].

Recall that an R-module M is called minimax, if there is a finite
submodule N of M, such that M /N is Artinian, The class of minimax
modules was introduced by Zoschinger [141]. The class of minimax
modules includes all finite and all Artinian modules. Moreover it is
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closed under taking submodules, quotients and extensions, i.e., it is a
Serre subcategory of the category of R-modules.

In this paper, we investigate some artinianness and finiteness
properties of formal local cohomology modules. At first, we obtain
some results about the top formal local cohomology module. It is well
known that dim M /aM is the largest integers i such that § (M) is non-

zero (see [12, Theorem 4.5]). Here we determine Cosg(Fa™ /™M (M)

and Anng(Fo™ MM (A1), Let a and b be two ideals of a local ring
(R,m) and M a finitely generated R-module. Let [ := dim(M/aM).
We will prove that

i) Cosp(SL(M)) = Suppgp((M/aM)/N) where N is the largest
submodule of M/aM such that dim N < [.

11) AHHR(SQ<M)) = MkeN AIlIlR(H]ln(M/ClkM)),

i) If § (M) is artinian, then there exists an integer k € N such that
Anng(FL(M)) = Anng(H. (M/a*M)).

Also, we investigate the relation between artinianness and finiteness
of (M) and bF" (M) for some integer .. Among other things, we show
that if a C b then

inf{i € Ny : bF:(M) is not representable}
and inf{i € Ny : § (M) is not artinian} are equal and

sup{i € Ny : bF: (M) is not representable}
and sup{i € Ny : (M) is not artinian} are equal. As our last result,
we will show that if @ C b then in each of the cases a) dim 2 < 2, b)
a is principal, and ¢) dim R/a < 1, the Betti number 57 (m, bF,(M)) is
finite for all 7 and j.

2. MAIN RESULTS

A non-zero R-module M is called secondary if its multiplication map
by any element a of R is either surjective or nilpotent. A secondary
representation for an R-module M is an expression for M as a finite sum
of secondary submodules. If such a representation exists, we will say
that M is representable. A prime ideal p of R is said to be an attached
prime of M if p = (N :g M) for some submodule N of M. If M admits
a reduced secondary representation, M = S;+55+...+.S5,, then the set
of attached primes Attg(M) of M is equal to {/0:g S;:i=1,...,n}
(see [0]).

Let S C R be a multiplicative set. The Rg-module Homg(Rg, M) is
called the colocalization of M with respect to S and denoted by M.
When M is an artinian R-module, it is known that ¢M is almost never
an artinian Rg -module (see [9]), while by [9, Theorem 3.2] M is a
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representable Rg -module. Thus the functor colocalization is not closed
on the category of artinian modules.
The cosupport of M is defined by

Cosgp M = {p € Spec R : ,M # 0}

(see [9]). A module is called cocyclic if it is a submodule of E(R/m)
for some maximal ideal m of R. Yassemi [I3] defined the co-support
of an R-module M, denoted by Cosuppg(M), to be the set of primes
p such that there exists a cocyclic homomorphic image L of M with
Ann(L) C p. We always have Cosg(M) C Cosuppg(M). Also, it is well
known that in the case where M is an artinian R-module the equality
Cosgr(M) = Cosuppg(M) holds (see [9, Lemma 7.3] and [13, 2.3]).

A prime ideal p is called coassociated to a non-zero R-module M
if there is a cocyclic homomorphic image T' of M with p = Anng T
[13]. The set of coassociated primes of M is denoted by Coassg(M).
In [13] we can see that Coassg(M) C Cosuppg(M) and every minimal
element of the set Cosuppg(M) belongs to Coassg(M).

Theorem 2.1. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim(M/aM). Then

Cosn(§L(M)) = Cosu(H,,(M/aM)) = V(Anng(Hl,(M/a))).
Proof. At first, we show that for any integer k we have
Cosg(H: (M /a"M)) = Cosg(H., (M/aM)).
Since Suppg(M/a*M) = Suppg(M/aM), we have
Asshg(M/ak M) = Asshp(M/aM)

and so by [4, Theorem 7.3.2] Attr(H. (M/akM)) = Attz(H. (M/aM)).
Thus by [, Proposition 7.2.11]

\/(o cHL (M /akM)) = \/(o cHL (M /ab)).

Hence V((0 : H, (M/a¥M))) = V((0 : H,(M/aM))). On the other
hand, since H., (M/a*M) and H. (M /aM) are artinian [0, Lemma 7.3]
implies that

Cosp(Hy, (M/a"M)) = V((0 : Hy,(M/a"M)))
and also Cosp(H. (M/aM)) = V((0 : H, (M /aM))). Thus

Cosg(H. (M/a*M)) = Cosg(H. (M/aM))
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for any integer k.

Now, let p € Cosg(H. (M/aM)). Thus p € Cosg(HL (M/a*M))
and so ,(HL (M/akM)) # 0 for any integer k. On the other hand,
dim(a* M /ak 1 M) < [ and so the short exact sequence

0— a"M/a""'M — M/a""'M — M/a*M — 0

induces an epimorphism H’ (M /a**'M) — H. (M/a¥ M), of non-zero
artinian R-modules for all k& € N. By [J, Proposition 2.4] we get an
epimorphism ,(H, (M/a**1M)) — ,(H. (M /a*M)), of non-zero R-
modules for all & € N. Thus, by using [10, Theorem 2.22] we can
see that Lm(p(an(M/akM))) # 0. Therefore

k

plim (Hy, (M/a* M) = 5 (M) # 0

and we conclude that p € Cosg(FL(M)).
Conversly, assume that p € Cosg(FL(M)). Thus ,F,(M) # 0 and so

p(lm (L, (M/a" M) = Lim(, (Hy, (M/a"M))) # 0.

Hence there exists an integer k such that ,(H. (M/a¥M)) # 0 and
therefore p € Cosg(H. (M/a*M)) = Cosg(HL (M/aM)) and the proof
is complete. O

Theorem 2.2. Let (R,m) be a local ring and M a non-zero finitely
generated R-module of dimension d. Then

Cos(Hy, (M) = Cosuppp,(Hy, (M) = Supp M/N
where N is the largest submodule of M such that dim N < d.
Proof. Since H%(M) is artinian, Cosg(H%(M)) = Cosuppg(HZ(M)).
Set G := M/N. We know that AnngG C Anng(H%(G)) and so
V(Anng(H%(G))) € V(Anng G). But H(G) is artinian and so by
[13, Proposition 2.3] we have
V(Anng(Hy(G))) = Cosupp(Hy(G)).

Thus it follows that Cosuppz(H%(G)) € Suppy G. Since by [, Lemma
7.3.1] H4(G) ~ H% (M) we get Cosuppy(H%(M)) C Suppy G. On the
other hand, by [4, Lemma 7.3.1] Assg G = Attz(H%(M)). Thus

Assp G C CosuppR(H:i(M)) = V(AnnR(Hi(M)))
and so

Suppp G C V(Anng(H, (M))) = Cosuppp(Hy, (M)).
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The proof is complete. OJ

Theorem 2.3. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim(M/aM). Set G' := (M/aM)/N’
where N' is the largest submodule of M/aM such that dim N' < [,
Then Cosg(F,(M)) = Suppp(G').

Proof. By Theorem 2.1 Cosp(F\(M)) = Cosg(H. (M/aM)). But by
Theorem 2.2 we have Cosg(H. (M/aM)) = Suppyp(G’) and the proof
is complete. 0

Lemma 2.4. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim M /aM. Then for any k € N, there
exists an ezact sequence Fy(M) — Hi (M/a¥M) — 0.

Proof. For any integer k € N, the short exact sequence
0—a"M - M— M/d*M — 0
induces the following exact sequence
Fa(M) = Fo(M/a"M) — F (a"M).
Since dim(a*M/a**1M) < dim(M/aM) = | we have
S (a* M) = 0.
On the other hand, M/a*M is an a-torsion R-module and so by [3,

Lemma 2.1] §(M/a*M) ~ H.(M/a*M). Thus from the above
sequence we get the result. O

In the next result, we determine the annihilators of top formal local
cohomology module.

Theorem 2.5. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim M/aM. Then

Anng(F,(M)) = Nken Anng (Hy, (M/a* M)).
Proof. By Lemma 2.4 for any k € N, there exists an exact sequence
FL(M) — H. (M /a* M) — 0.

Thus Anng(FL(M)) € Anng(H. (M/a*M)) for any k € N and so we
conclude that

AHHR<3"la(M)) - MNkeN AHHR(Hin<M/ClkM))

On the other hand, assume that u € Nyey Anng(HL (M /a*M)). Thus
we have u H. (M/ak*M) = 0 for any integer k& € N. Hence

uFh(M) = ulim Y, (M/a*M) = 0
k
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and so u € Anng(FL(M)). It follows that
Nken Anng(H. (M/aFM)) C Anng(FL(M)),
as required. O

Theorem 2.6. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim M/aM. If § (M) is artinian, then
there exists an integer k € N such that

Anng(FL(M)) = Anng(HL (M /¥ M)).

Proof. Let k be an integer. Take Jj, := Anng(H. (M/a*M)). The short
exact sequence

0— a*M/a"" "M — M/a" M — M/a*M — 0
induces the following epimorphism
H. (M/aF M) — HL (M /a*M) — 0.

Thus Anng H. (M/a**'M) C AnngH' (M/a*M) and so Jpyy C Jp.
On the other hand,

Ne(JFa(M)) = limJilim H, (M /a" M)
C limlim J, Hy, (M/a" M)
= limlim J, H, (M/a" M)

=0

as J,H. (M/a"M) = 0 for all t > n. As FL(M) is artinian, the
descending chain

- C IBL(M) C L3L(M) C LEL(M)

of submodules of F' (M) is stable. Thus there exists an integer k such
that

NeJio(M) = JpTL(M).

Thus Jp§, (M) = 0 and so J; € Anng(FL(M)). But, by Theorem 2.5
Anng(FL(M)) C Ji. Therefore

Anng(FL(M)) = Jy, = Anng(H, (M /a*M)).
O

Corollary 2.7. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim(M/aM). If FL(M) is artinian, then
there exists a submodule W of M such that
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Anng(FL(M)) = Anng(M/W).
Proof. By Thorem 2.6, there exists an integer k£ such that
Anng(FL(M)) = Anng(H, (M/a*M)).
But by [2, Corollary 2.4]
Anng(HL (M /a*M)) = Anng((M/a*M) /(W /a"M))
and W/akM is the largest submodule of M/a* M such that
dim W/akM < 1.

Hence, Anng (g, (M)) = Anng(M/W). O

Theorem 2.8. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module. Let | := dim(M/aM). Then

J »= U =
p€Coassr (F4(M)) pEAsshp(M/alM)

Proof. By Lemma 2.4, there exists an ephimorphism
(M) — H.L (M/aM) — 0.

Thus Coassg(H. (M/aM)) C Coassg(FL(M)). But, HL (M/aM) is
artinian and so by [13, Theorem 1.14] and [!, Proposition 7.3.2] we
have

Coassp(HL (M/aM)) = Attg(H. (M/aM)) = Assh(M/aM).
Therefore Assh(M/aM) C Coassg(FL(M)) and so we get

U »c U »

pGASShR(M/ClM) PECO&SSR(&L(M))

Now we show that

Useconssn@ ) P € Upeasshr(ar/ann P-

Take py € Coassp(FL(M)). We claim that pg € Upeasshp(m/arn)P-
If not, there exists u € po such that u & Upcasshy/annp. Since
u € po and pg € Coassg(FL(M)) by [13, Theorem 1.13] it follows that
uFL(M) # §L(M). On the other hand, u € Upeasshp(v/aanp and it
is easy to see that Asshr(M/aM) = Asshp(M/a*M) for any k € N.
Thus u & Upeappmt (mjarayp for any k& € N. Thus, by [, Proposi-
tion 7.2.11] we have uH. (M /a*M) = H. (M /a*M) for any k € N but
the inverse limit on inverse system of artinian modules is exact and so
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ulim Hy, (M/a*M) = lim H (M /a*M). Thus uF, (M) = §,(M) which

k k
is a contradiction. Thus pg C Upeasshp(r/arnyp. Therefore

U »c U »

p€Coassr (F4(M)) pEAsshp(M/aM)

as required. O]

Proposition 2.9. Let R be a ring and (Qn)n>1 be an inverse system
of R-modules, with maps ©mn @ Qm — Qn for m > n. Let a and b be
ideals of R such that u*Q =0 for alluw € a and all k € N. If bLan

is non-zero and representable, then a C p for all p € AttR(b@Qn).

Proof. Let bl'&l@n = S1+ S+ ...+ S, be a minimal secondary
representation of bleQn where S; is pj-secondary for j = 1,2,...,n

n
Assume that there exists an integer j € {1,...,n} such that a Z p;.
Then there exists u € a\yp;. Since S; # 0 there exists an element
0#q=(q) €5; C blim@;, . Let g be the first non-zero component
n

of ¢. Since u ¢ p;, we have uS; = S;. But u*S; C uk(b@Qn), and so
S; C uk(b@Qn). As uFQ;, = 0, it follows that the k-th Tclsomponent of
each elemegt of uk([ﬂ&lQn) is zero. But, ¢ € u*(b l&l@n) and the k-th
component of ¢ is nor?—zero, which is a contradictign. O

Theorem 2.10. Let a and b be ideals of a local ring (R,m) and M
a finitely generated R-module and t > 0 an integer. If bFL(M) is
representable then Attg(bFL(M)) C V(a).

Proof. Since b§, (M) = blim H! (M/a"M) and v* Hf (M /a*M) = 0 for
all u € a and k£ € N, the rgsult follows by Proposition 2.9. U

Corollary 2.11. Let a and b be ideals of a local ring (R,m) and M
a finitely generated R-module and t > 0 an integer. If bFL(M) is
a representable R-module then a C /(0 :p bFL(M)). In particular,

(0 :r bFL(M)) if bFL(M) is artinian.
Proof. By [1, Theorem 7.2.11],

\/ O ‘R bgt ﬂpeAttR bFL (M ))lJ
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and by Theorem 2.10 Attz(bF:(M)) C V(a). Thusa C /(0 :5 bFL(M)).
0

The following result is an extension of [3, Corollary 2.14].

Corollary 2.12. Let a and b be ideals of a local ring (R, m) and M
a finitely generated R-module. Let t be an integer. In each of the
following cases, bF%(M) is artinian if and only if a C /(0 : bFt(M)):

(1) a is principal.

(ii) dim R < 2.

(i7i) dim R/a < 1.

Proof. (=) By Corollary 2.11.

(<) In the proof of [3, Corollary 2.14], it has shown that in each of
these cases we have Hompg(R/a, §.(M)) is artinian for all 7 > 0. Thus
Hompg(R/a, §L(M)) is artinian and so Homg(R/a, bFL(M)) is artinian.
On the other hand, by assumption bF.(M) is an a-torsion R-module.
Hence, the claim follows by [8, Theorem 1.3]. O

The following theorem is a generalization of [3, Corollary 2.8].

Theorem 2.13. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module, and let n € N. Then the
following statements are equivalent:

i) bF:(M) is artinian for all i < n,

ii) bF: (M) is representable for all i < n,

iii) FL (M) is artinian for all i < n.

Proof. 1) = ii): Any artinian R-module is representable.
ii) = iii): By Corollary 2.11, a C /(0 :g bFi(M)) for all i < n.

Since a C b, it follows that a C /(0 :g F2(M)) for all i < n. Now, the
result follows by [3, Theorem 2.6].

iii) = 1): It is clear. O
Recall that the formal grade of M with respect to a is defined by

ferade(a, M) = inf{i € Ny : F.(M) # 0}.
The next result is a characterization of the artinianness of bF9(M),
where g := fgrade(a, M).

Corollary 2.14. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module, and let g := fgrade(a, M).
Then b§9(M) is artinian, if and only if b§9(M) is representable.

Proof. Since F.(M) = 0 for all i < g, the result follows by Theorem
2.13. O
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Theorem 2.15. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module, and let n € N. Then the
following statements are equivalent:

i) bF (M) is artinian for all i > n,

ii) bF:(M) is representable for all i > n,

iii) . (M) is artinian for all i > n.
Proof. i) = ii): Any artinian R-module is representable.

ii) = iii): Since a C b, by Corollary 2.11, we conclude that

a C /(0 g §(M))

for all ¢ > n and so the result follows by [3, Theorem 2.9].

iii) = 1i): It is clear. O

Corollary 2.16. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module, and let | := dim(M /aM).
Then b3 (M) is artinian, if and only if bFL (M) is representable.

Proof. By [12, Theorem 4.5] (M) = 0 for all i > [ and so the result
follows by Theorem 2.15. 0

Proposition 2.17. Let a and b be ideals of a local ring (R, m) and
M a finitely generated R-module and t > 0 an integer. Let a C b. If
Coassg(bFL(M)) C V(a) then Coassg(FL(M)) C V(a).

Proof. By [13, Theorem 1.21],
Coass(F.(M) /63 (M)) = Supp(R/b) N Coassg(F,(M))

and by assumption Coassg(bF%(M)) C V(a). Since by [13, Theorem
1.10] we have

Coassg(F.L(M)) C Coassp(bF:(M)) U Coassg(F,(M)/bF:(M)),
we conclude that Coassg(FL(M)) C V(a), as required. O

Theorem 2.18. Let a and b be ideals of a local ring (R,m) and M
a finitely generated R-module. If either R is complete or a C b then
bF0(M)/a*bF0(M) is artinian for any integer k.

Proof. At first, assume that R is complete. By [, Theorem 2.6], Fo(M)
is a finitely generated R-module and by [12, Lemma 4.1]

Assp(F2(M)) = {p € Assg M : dim R/(a +p) = 0}
and so Suppx(F2(M)) N V(a) C {m}. Therefore
Suppr (b3, (M)/a"6a(M)) = Suppg(bF,(M)) N V(a) S V(m).
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But bF0(M)/a*bF2(M) is finitely generated and so bF0(M)/a*bFo(M)
has finite length and the result follows in this case.

Now, assume that a € b. By [I, Theorem 3.8] F°.(M)/a*F°, (M)
is artinian for all & € N. But, by [12, Lemma 3.8] §, (M) ~ Fo(M)
and so FU(M)/akFO(M) is artinian for any integer k. Since a C b we
conclude that FO(M)/bF2(M) is artinian. From the exact sequence

0 = bF3(M) = Fa(M) — Fo(M)/bF(M) — 0
we have the following exact sequence
Tor{'(R/a*, §o(M)/6Fa(M)) — R/a" @5 bFJ(M) — R/a" @r Fo(M).

Since Torf(R/a*, F2(M)/6F°(M)) and R/a* @5 FO(M) are artinian,
from the above sequence we conclude that bF°(M)/ba*TO(M) is
artinian for all £ € N. O

Corollary 2.19. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. If Coassg(bF2(M)) C V(a)
then bFY(M) is minimaz.

Proof. Since Coassg(bF2(M)) C V(a) by [15, Satz 2.4] there exists an
integer k such that afbF(M) is finitely generated. But, by
Theorem 2.18 bF(M)/akbF9(M) is artinian. Therefore we conclude
that bFY(M) is minimax, as required. O

Theorem 2.20. Let a and b be ideals of a local ring (R,m) such
that a C b and M a finitely generated R-module. Then the following
statements are equivalent:

i) bFY (M) is finitely generated,

i) Cosuppp(bFa(M)) C {m}.

Proof. i) = ii): By [13, Theorem 2.10].

ii) = i): Assume that Coassg(bF (M)) C {m}. Thus we have
Coassg(bF2(M)) C V(a). Now Corollary 2.19 implies that bF°(M)
is minimax and so there exists a finitely generated submodule N such

b3, (M)

that L = N is artinian. Hence

Attr L = Coassg L C Cosuppy L C CosuppR(bgg(M)) C {m}.

Since L is artinian and Attg L C {m}, [!, Corollary 7.2.12] implies
that L is finitely generated. Since L and N are finitely generated, we
conclude that bFY(M) is finitely generated. O

Theorem 2.21. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module, and let t € N. If (M) is
artinian for all i >t then bFL(M)/akbF. (M) is artinian for all k € N.



184 REZAEI AND GHASEMI-KALEMASIHI

Proof. By [12, Lemma 3.8] §, (M) ~ §.(M) for all integers 7, k and so
by using [I, Theorem 3.8] it follows that §t(M)/a*F. (M) is artinian
for all £ € N. Since a C b we have FL(M)/bF.L(M) is artinian. But,
the exact sequence

0 —= b4 (M) = Fo(M) — Fo(M) /65 (M) — 0
induces the following exact sequence:
Tor{'(R/a*, §o(M)/bF,(M)) = R/a* @ bF (M) — R/a* @r Fo(M).

From the above sequence we conclude that bFt(M)/ba*Ft(M) is
artinian. O

Corollary 2.22. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. Let | := dim(M/alM).
Then b3 (M)/a*bF. (M) is artinian for all k € N.

Proof. Since § (M) = 0 for all i > [ by [12, Theorem 4.5], the result
follows by Theorem 2.21. O

Corollary 2.23. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. Let | := dim(M/aM). If
Coassg(bF,(M)) C V(a) then bFL (M) is minimaz.

Proof. Since Coassg(bF.(M)) C V(a) there exists an integer k such
that a*bF. (M) is finitely generated. By Corollary 2.22,

b3 (M)/a" 65, (M)
is artinian. Therefore bF, (M) is minimax, as required. O

Theorem 2.24. Let a be an ideal of a local ring (R, m) and M a finitely
generated R-module, and let n € N. Then the following statements are
equivalent:

i) mF: (M) is finitely generated for all i > n,

ii) Coassg(mg:(M)) C {m} for alli > n,

iii) Coassp(TFL(M)) C {m} for alli >n,

i) (M) =0 for all i > n.

Proof. i) = ii): By [13, Theorem 2.10].
ii) = iii): Let ¢ > n be an integer. we have

Coassp(FL(M)) C Coassg(mF,(M)) U Coassg(F4(M) /mFt(M)).

Since

Coassg(FL(M)/mFE(M)) = V(m) N Coassg F,(M)) C {m},
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by using the assumption we conclude that Coassg(FL(M)) C {m}.
iii) = iv) By [L1, Theorem 2.10].
iv) = 1): It is clear. O

Theorem 2.25. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. Let n be an integer. If
63, (M) is finitely generated for all i > n then F.(M) is artinian for
all 1 > n.

Proof. Let | := dim(M/aM). Then §. (M) = 0 for all i« > [ by
[12, Theorem 4.5]. Thus we can assume that n < [. We proceed by
descending induction on n. Assume, inductively that the result has
been proved for all 7 > n + 1. Thus §. (M) is artinian for all ¢ > n + 1
and it is enough to show that (M) is artinian. By [!, Theorem 3.§]
it follows that F(M)/aFr (M) is artinian. Since a C b we can see
that ag? ™ (M) is a submodule of bF" ! (M) and so F» (M) /6F (M)
is artinian. Thus, for any ideal p € Spec(R) such that p # m we have
(Fott (M), = bpyFutt(M),. But, assumption implies that b,F2 (M),
is a finitely generated R,-module and so the above equality shows that
FoH (M), is a finitely generated Ry,-module. Thus, Nakayama Lemma
implies that 2 (M), = 0 and so b,§2 (M), = 0. It now follows that
Suppy(bF2+H(M)) C {m}. Since by assumption bF? (M) is a finitely
generated R-module we conclude that bFr+ (M) is artinian. On the
other hand, T (M)/bF (M) is artinian and so we conclude that
FoHL (M) is artinian, as required. O

Corollary 2.26. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. Letl := dim(M/aM) > 0.
If 6FL (M) is finitely generated then F'\(M) is artinian.

Proof. Assume that bF' (M) is a finitely generated R-module. Since
(M) = 0 for all i > [ by Theorem 2.25 we conclude that (M) is
artinian. 0

Theorem 2.27. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. In each of the following
cases, Torf(R/a, b3%(M)) is artinian for alli and j.

i) dim R < 2.

it) a is principal.

i) dim R/a < 1.

Proof. By [1, Theorems 3.2, 3.6 and 3.8] in each of these cases

Torf(R/a,3i(M))
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is artinian for all 4 and j. Thus §(M)/aF. (M) is artinian for all i.
Since a C b we conclude that §(M)/bF:(M) is artinian for all ¢. But,
the exact sequence

0 = bF(M) = Fo(M) — Fo(M)/6F (M) — 0
induces the following exact sequence:
Torf, | (R/a,§4(M)/6FL(M)) — Torf(R/a, bFL(M)) — Torf(R/a, §L(M)).

From the above sequence we conclude that Torf(R/ a, bF:(M)) is
artinian for all ¢ and 7, as required. ]

The next result, can be considered as a generalization of [1, Corollary
3.9].

Corollary 2.28. Let a and b be ideals of a local ring (R, m) such that
a C b and M a finitely generated R-module. In each of the following
cases, the Betti number B?(m, bF.(M)) is finite for all i and j.

i) dim R < 2.

i) a is principal.

iii) dim R/a < 1.

Proof. By Theorem 2.27, in each of the above cases Torf(R/a, bFL(M))
is artinian for all ¢ and j. Thus by [!, Lemma 3.1] it follows that
Torf (R/m,bF.(M)) is also artinian for all ¢ and j. Hence, we conclude
that 37(m, bF(M)) := dimp)m Torf'(R/m, bFL(M)) is finite for all i
and j, as required. O]
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