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 Rock blast production rate (BPR) is one of the most crucial factors in the 
evaluation of mine project's performance. In order to improve the production of a 
limestone mine, the blast design parameters and image analysis results are used in 
this work to evaluate the BPR. Additionally, the effect of rock strength on BPR is 
determined using the blast result collected. In order to model BPR prediction using 
artificial neural networks (ANNs) and multivariate prediction techniques, a total of 
219 datasets with 8 blasting influential parameters from limestone mine blasting in 
India are collected. To obtain a high-accuracy model, a new training process called 
the permutation important-based Bayesian (PI-BANN) training approach is proposed 
in this work. The developed models are validated with new 20 blast rounds, and 
evaluated with two model performance indices. The validation result shows that the 
two model results agree well with the BPR practical records. Additionally, compared 
to the MVR model, the proposed PI-BANN model in this work provides a more 
accurate result. Based on the controllable parameters, the two models can be used to 
predict BPR in a variety of rock excavation techniques. The study result reveals that 
rock strength variation affects both the blast outcome (BPR) and the quantity of 
explosives used in each blast round. 
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1. Introduction 
Nurhasan and Saputra define mining as the 

process of removing valuable minerals and other 
geological materials from the Earth for the human 
benefit [1]. The removal of these natural materials 
involved artificial fracturing with various 
techniques for a quick and easy recovery. These 
minerals exist in a hard rock mass that needs to be 
broken down in order to extract valuable materials 
for industrial applications. Blasting is one of the 
most used technologies for breaking large rock 
masses and reducing in-situ formation into smaller 
sizes to facilitate transportation and downstream 
processes [3]. Since the large rock mass cannot be 
transported from the mine site to the production 
plant without size reduction, blasting operations 
are therefore very important to facilitate further 
processing operations [3-5]. This concluded that 
the result of a blast operation has a significant 
impact on the mining operation's efficiency, and 
also affects the overall mining operation cost [2, 
3]. Similar to this, the efficiency of other 
downstream processes like loading, transportation, 
and crushing is influenced by the blasting 
production rate [6]. A good blasting operation will 
require fewer production costs and procedures 
when taking into account the final product [7]. To 
increase the effectiveness of the loading operation 
and the liberation process during ore dressing, the 
blast fragment size must be sufficient for both the 
crusher and the loading equipment [8]. When the 
fragmented rocks have a proper size distribution 
during the blasting process, it will maximize the 
overall mine economics and lower the costs of 
downstream comminution such as crushing and 
grinding [3, 8, 9]. The question now remains on 
the way forward to identify the various factors 
contributing to blast result efficiency and impact 
on other operations. As mentioned by 
Bakhshandeh Amnieh et al., the blast result 
depends on both controllable (see Figure 1) and 
uncontrollable design factors [10]. According to 
Zhang et al., the result of blasting operations can 
be improved by optimizing the controllable 
parameters in the right proportion. Optimization 
of the adjustable parameters to complement the 
impact of constant factors such as rock geology 
had been attempted by several authors using both 
empirical and Machine Learning approaches [10, 
11]. According to Amoakoet al. and Singh and 
Singh, blast design geometry, explosive, and 
controllable variables dimensions are three 
different categories of blast design parameters that 
affect blasting production rate and operation cost 

[9,12]. These adjustable parameters within design 
control include drill hole diameter and depth in 
addition to charge length, spacing, load, and 
stemming height among others. Other than this, 
the uncontrollable factors affecting the blasting 
production results are also explained including the 
geological, hydrogeology condition, and 
geotechnical characteristics of the rock mass [13]. 
A crucial factor in the assessment of blast 
productivity has been identified as the estimation 
of blast fragmentation size [14]. A number of 
modeling techniques have been developed [17–
22] that take both the controllable and 
uncontrollable parameters into account but less 
attention had been given to limestone mining 
production so far [15, 16]. Recently, there has 
been a significant increase in the use of machine 
learning (ML) algorithms in blasting operations to 
increase safety, and production rate despite a 
prediction gap existing in blast production rate. In 
addition to limiting production, the presence of 
large boulders in blasted muck piles raises the cost 
of basic hauling systems. The majority of the 
available empirical models and soft computing 
solutions used to improve blasting results are site- 
and deposit-specific and challenging for small-
scale mining engineers and local miners to 
understand. Due to their inability to handle the 
internal complexity in blasting input parameters 
and lack of focus on limestone formation blasting, 
these empirical models were generally 
unsuccessful with limestone mines. This study 
aims to address the question of "How can the blast 
production rate in limestone mining be predicted 
using machine learning algorithms and developed 
multivariable empirical formula?"A permutation 
important-based artificial neural network has been 
adopted in this work for the development of a 
quantitative model using the blast results obtained 
from limestone blast production rate in order to 
address the aforementioned shortcomings of 
existing empirical models. The model gave 
sufficient training flexibility to the ANN 
algorithms through adopted transfer functions to 
permutate the predicted result to that of other 
training functions as the training proceeds. The 
same dataset was also used with multivariate 
regression (MVR) analysis techniques to create a 
comparative model as a way of assessing the PI-
BANN model prediction performance. The case 
study mine explosive utilization rate, drilling 
operation rate, and rock strength property were 
also examined in the work.  
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2. Review of Artificial Neural Network 
techniques Application in Mining Field 

As shown in Figure 1, the complexity of various 
blast design parameter has made the optimization 
of blast result through explosive quantity 
adjustment difficult. According to [23], a mining 
company can increase its rate of rock blast 
production to extract more material in a pre-
determined amount of time through proper 
adjustment of well-known controllable parameters 
and explosive properties. This will actually help 

the mine management to complete the mine 
blasting process safely, more quickly, and 
effectively [24]. The development of empirical 
equations for the prediction of blast fragmentation 
using machine learning, multivariate approaches, 
linear equations, and other existing equations are 
some of the strategies many researchers have 
adopted to increase mine and quarry blast 
production rates. The application of the machine 
learning approach in solving engineering 
problems employs algorithms to systematically 
combine data [25]. 

 
Figure 1. Blast design parameter terminology [17]. 

For example, artificial neural network modeling 
techniques tend to mimic human brain neuron 
working systems [26]. Similar to the neurons in 
the human biological nervous system, artificial 
neurons are computational units that depend on 
supplied memories to actualize general prediction 
behavior for a set of target predictions [27]. The 
input, hidden, and output layers, as shown in 
Figure 2, make up the structure of a typical ANN 
model. The basic artificial neural network 
processing units are connected to one another by a 
large number of weighted connections, which 

allows a direct communication between each 
neuron link [28].  

Training neural networks had gotten several 
improvements in the past decade through the 
development of computer technology. This 
innovation supported the use of classical theory 
and machine learning to predict the distribution of 
rock blasting fragmentation has become more and 
more common [29]. According to Ouchterlony 
and Sanchidrián [30], a number of models have 
been taken into consideration over the years to 
evaluate and forecast blasting fragmentation. 
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Figure2. Example of artificial neural network model with 3-input and 1-output diagram (a) feed forward neural 

network (b) radial basis network [39]. 

Models based on artificial intelligence (AI) are 
increasingly common among other types of 
models due to their excellent prediction outcomes 
for a number of pertinent factors [31]. Table 1 

presents some past research works finding about 
blast fragmentation prediction using various soft 
computing techniques.  

Table1. Recent works on fragmentation prediction using different soft computation techniques. 
Input Output Technique Performance Source 

B, S, ST, Q, MC X80 SVM R2= 0.83, RMSE = 1.66 Hasanipanah et al. [32] 
B, S, ST, Q, MC X80 ANFIS R2= 0.81, RMSE = 1.78 Hasanipanah et al. [32] 
B, S, ST, Q, MC X80 PSO-ANFIS R2= 0.89, RMSE = 1.31 Hasanipanah et al. [32] 

D, T, PF, MC  (LMR), (ICA), (ANFIS), and 
ANN (ANN) R= 95.6%, RSME= 5.04 Shakeri et al. [33] 

B, S, ST, PF, MC X80 SVM R2= 0.83 Gao et al. [34] 
B, S, ST, PF, MC X80 ANFIS R2= 0.81 Gao et al. [34] 
B, S, ST, PF, MC X80 PSO-ANFIS R2= 0.89 Gao et al. [34]  
B, S, ST, PF, MC X80 GPR R2= 0.94 Gao et al. [34] 
MC, B, S, ST, PF, RMR X80 ICA R2= 0.947, RMSE = 1.23 Sayevand et al. [35] 
B, S, ST, PF, MC X80 FFA-ANFIS R2= 0.98 Mojtahedi et al. [36] 
Q, B, RMR, MC, ST,S X80 CSO R2= 0.985, RMSE = 0.847 Huang et al. [37] 
PF, MC, S, ST, B, H X100 FFA-BGAM R2= 0.98, RMSE =1.213 Fang et al. [38] 

 
Note: GPR-Gaussian process regression; CSO-

Cat swarm optimization; BGAM-boosted 
generalized additive model; SVM-support vector 
machine; ICA-imperialist competitive algorithm; 

ANFIS-adaptive neuro-fuzzy inference system; 
PSO–ANFIS-the propose ANFIS; RMR-Rock 
mass rating; Xm-mean particle size (cm); X80-
80% passing size (cm); X100-100% passing size 
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(cm) ; S-spacing (m); B-burden (m); ST-stemming 
(m); PF-powder factor (kg/m3); Q-specific charge 
(kg/m3); MC-charge per delay (kg/ms); H-bench 
height (m);RMSE-Root mean square error; R2-
coefficient of determination. 

Other research works including the prediction of 
based sediment using different scenarios by Afan 
et al. [39] and the prediction of tunneling-induced 
ground settlement with the small dataset by Liu et 
al.[40], and prediction of rock mass diggability 
index by Saeidi et al. [41] had shown the diverse 
application of machine learning application in 
mining operation improvement. Both [42] and 
[43] discussed the benefits and drawbacks of 
ANN in their studies. They noted that ANNs have 
the ability to handle non-linear data, quickly 
identify intricate correlations between dependent 
and independent variables, provide good fitting, 
and handle noisy data, among other advantages. 

They indicated that some of the disadvantages 
of ANNs include overfitting, becoming stuck in a 
local optimum, being challenging to understand, 
and taking a long time to process for large neural 
networks. ANN as a machine learning technique 
had been used for mining operation optimization 
by several researchers in the past decade. In order 
to predict blast-induced vibration, 
BakhshandehAmnieh et al. used ANN and various 
linear regression models [10]. According to their 
research, ANNs' non-linear structure, high degree 
of flexibility, and low error made their prediction 
superior to other models and empirical 
relationships in terms of estimating PPV. When 
used for model development and for resolving 
engineering issues, ANN models deliver a good 
performance and simplicity [44]. ANNs have 
become more effective as powerful computing 
hardware has become more widely available. The 
speed and efficiency of ANNs, which need a lot of 
computational power to train and run, have 
significantly increased with the use of specialized 
hardware such as graphics processing units 
(GPUs) and tensor processing units (TPUs) 
[45].Another element is the development of 
original training techniques and algorithms. Back-
propagation, gradient descent, and stochastic 
gradient descent are some of the more advanced 
methods for enhancing the training process that 
has been developed over time. These methods 
have increased the efficiency and precision of 
ANN learning, enhancing their capacity to carry 
out tasks like image recognition and natural 
language processing. The availability of large 
datasets and enhanced methods for data collection 
also contributed to the effectiveness of ANNs as a 

modeling tool. Due to the fact that ANNs require 
a large amount of data to learn patterns and make 
predictions, having access to high-quality datasets 
also enhanced their performance on a range of 
tasks. ANNs have generally become more 
efficient over time due to advancements in 
hardware, algorithms, and data [46]. Many 
researchers from around the world have 
concentrated on using ANN to optimize mining 
operations and safety as well as improve the 
performance of current models for the past ten 
years [28, 45–47]. The blast production rate is 
anticipated to be significantly impacted by the 
blast design parameters and blast particle size 
distribution [13]. With comparisons of the 
empirical models in the case study of small-scale 
dolomite quarries, studies like Taiwo [47] 
described the application of artificial neural 
networks for the improvement of small-scale 
dolomite mining in Nigeria. According to the [47] 
findings, the artificial neural network model gave 
accurate prediction as compared to the existing 
empirical models in terms of predicting the mean 
size of blast fragments. Sirjani et al. applied 
artificial neural networks (ANNs) and statistical 
models for predicting back-break, a type of 
ground failure that happens during blasting 
operations [48]. The burden, spacing, and 
explosive weight were just a few of the input 
variables that the authors used to create and train 
their ANN and statistical models. According to 
the study's findings, the ANN model was superior 
to the statistical models at predicting back breaks. 
The authors also talked about how using the ANN 
model in blasting operations might enhance safety 
and lower costs.  

3. Field Study and Lab Work 
3.1. Field study 

In order to fulfill the aim of the research work, a 
field study at a limestone mine in the Indian state 
of Chattisgarh's BalodaBaazar district was carried 
out. From various benches levels in this mine, the 
blast design and result details including 
fragmentation images, of two hundred and 
nineteen (219) blast rounds were captured (3m, 
9m, 8.3m, 9.3m, and 8.5m). The blast hole 
measured 114.3 mm in diameter. The blast hole 
had a length that varied from 3.0 to 10 meters. 
SME was used as the explosive and sensitized 
emulsion as the cast booster for all rounds, which 
were all drilled in a staggered pattern. By using a 
17 and 42-millisecond shock tube system, the 
blasts were started instantly. In this mine, the 
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following blast design parameters were measured: 
stemming length (m), blast hole diameter (mm), 
total explosive (kg), the charge per hole (kg), 
spacing (m), burden (m), and explosive 
parameters. For each blast round monitored while 
blasting in the bench face, the information 
gathered was used to calculate the powder factor. 
A suitable camera was used to capture images of 
the entire muck pile following blasting, which 
produced rock fragments. The powder factor 
(kg/m3) and rock fragmentation particle size 
distribution of the entire muck pile were 
calculated using image processing software and 
blast data. Representative samples were taken 
from the case study mine for the strength property 
test using the method of "purposeful sampling" as 
described by Taiwo and Omotehinse [40]. Each 
blast round's powder factor was calculated using 
the general formula given by [47] and shown in 
Equation (1). 

KS = ௐ
ௌ××ୌ

 (1) 

where We is the explosive charge weight per 
hole in kg, B denotes the blast hole burden in m, S 
represent the drill hole spacing in m, and H is the 
drill hole length in m. 

3.2. Rock strength and specific drilling rate 
The uniaxial compressive strength of collected 

rock samples from each blast round was 
determined in accordance with the International 
Society of Rock Mechanics (ISRM) [49]. Each 
sample was prepared in accordance with the 
ISRM standard (length/diameter ratio of 2.5-3.0) 
and subjected to an increasing axial load until 
failure. Each specimen was loaded axially with 
spherical seating at a constant rate of stress to 
failure in 5-15 minutes ISRM [50]. During 
drilling, the specific drilling rate at the mine was 
also monitored using a stopwatch. Equation (2) 
was used to calculate the penetration rate per 
volume of rock intercepted by the drilling bit. 

SDR= ு
்

 (2) 

where DHL is the drill hole length in m, DT is 
the drilling time in minutes, and SDR is the 
specific drilling rate in m/min. 

3.2. Fragment size analysis using WipFrag 
software 

The complete blast design parameters and 
explosive parameters were measured in the field 
prior to blasting the rock. After blasting, a suitable 
camera was used to capture scaled images of the 
entire muck pile. As described by Shehu et al., 
evaluating blast fragmentation supports blast 
optimization and can be done using several 
techniques [51]. They also noted that the accuracy 
of fragmentation methods available varied 
depending on various factors [51]. The image 
analysis technique is one of the methods used for 
fragmentation analysis. This technique is an 
automated image-based granulometry system that 
uses digital image analysis of rock photographs 
and video tape images to determine grain size 
distributions, according to Maerz et al. [52]. To 
determine the boundaries of each individual 
fragment, the software employs powerful image 
analysis techniques [52]. Two different images 
were obtained from each blast round result (fresh 
blast picture and during loading). The 219 blast 
images collected from the case study were 
imported into the WipFrag software to generate 
each blast particle size distribution curve. Using 
both the automatic and manual editing tools, the 
images were delineated and analyzed. According 
to Maerz et al. [52], the delineated images were 
manually adjusted in order to obtain the 
fragmentation distribution curve. Figure 3 
displays the blasts 1 and 2 muck piles along with 
the WipFrag software's analysis distribution 
curves.  
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(a) (b) 

  
(c) (d) 

Figure3. Fragmentation analysis result from blasts 1 and 2; a & c show the processed blast image and the 
fragment distribution curve for blast 1, b&d show the processed blast image and the fragment distribution curve 

for blast 2. 

3.3. Artificial neural network for predictions of 
blast productivity 

The back-propagation BPNN technique was 
used to train the feedforward ANN for the 
prediction model proposed in this work. The error 
back-propagation technique was used in this study 
during the training iteration to help the network 
learn more about the relationship between the 
input and target datasets [53]. Additionally, Chen 
and Zeng noted that BPNN created a meaningful 
non-linear connection between input and output 
neurons through the use of iterative learning, and 
had the ability to predict dynamic non-linear 
behavior [54]. In this paper, we used two different 
transfer functions and permutation importance-
based back-propagation neural network (PI-
BPNN) algorithms to achieve optimal network 
training (trainbr and trainlm). Eight input 
variables including stiffness ratio, burden, 

spacing, bench height, number of holes, powder 
factor, stemming, and maximum instantaneous 
charge were used to predict the mine blasting 
operation's production rate. To assess the case 
study mine production rate, the primary crusher's 
opening size was used with the WipFrag analysis 
result to determine the percentage size efficient 
particle size in each blast round result. Based on 
the size of the crusher opening and the percentage 
passing size within the primary crusher inlet, the 
productivity of each blast round was calculated 
using the WipFrag analysis particle distribution 
curve. The rating scale for blast productivity 
ranged from 0% to 100%, with 0% to 35% 
denoting a poor blasting operation and greater 
than 35% denoting a superior one. The dataset 
(eight inputs and one target) was normalized to 
increase the model accuracy. The datasets were 
randomly split into three groups before being used 
to train the ANN model. The ANN model was 



Taiwo et al. Journal of Mining & Environment (JME), Vol. 14, No. 1, 2023 
 

362 

trained using 80% of the datasets and validated 
and tested using 20% of the datasets. The 
MATLAB software was used to create the BPR 
proposed models. By combining the sigmoid 
functions for the input and output layers, the ANN 
model was created. Figure 4 depicts the modeling 
process used for the created ANN models. The 
training graphs and architecture information for 
one of the adopted training algorithms used during 
the creation of the proposed BPR ANN model are 
shown in Figure 5. Figure 5a displays the dataset 

Bayesian regularization algorithm training 
regression curves. The fitting line displays an 
89.0% correlation for the test data for the first 
training stage, a 92.8% correlation for the 
combined dataset following optimal training, and 
a 90.0% correlation for the combined dataset. 
Many training architectures were taken into 
consideration in order to find the best 
performance model. The most accurate model for 
predicting blast productivity was found to be the 
8-6-1 architectural structured neural model.  

 
Figure 4. Designing process of ANN model proposed in this study. 
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(a) (b) 

  
(c) (d) 

Figure5. Performance and response of the dataset during the Bayesian regularization ANN modelling a. 
Training regression curve, b. Model Architecture, c. Training gradient performance, d. Error histogram of the 

model with 20 bins training property 

3.4. Multivariate regression (MVR) for 
predictions of blast fragmentation efficiency 

The MVR modeling approach has been used by 
several authors including [13], [55-57] to create 
equations that react to the influence of the 
dependent variable on the independent variable. 
The proposed MVR model in this work has one 
dependent variable and eight independent 
variables. The SPSS© program was used to 
develop the proposed blast production rate MVR 
model. The dependent and independent variable 
datasets were imported into the SPSS© program 
in order to perform the necessary modeling 
analysis, and the regression module tool was 

chosen from the regression analysis drawdown 
menu for the analysis.  

3.5. Model prediction error determination 
The prediction error analysis of the two 

proposed models (MVR and ANN) was evaluated 
using root means square deviation (RMSD) and 
mean bias (MB) Equations (3, 4). 

RMSD= ට
∑ (ି)^ଶಿ
సభ

ே
 (3) 

MB=ଵ
ே
∑ (ܲ݅ − ே(݅ܣ
ୀଵ  (4) 
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where N indicates the number of datasets, A is 
the measured value, and P denotes the model 
predicted value, respectively. 

4. Results and discussion 
4.1. Rock strength and specific drilling rate 

The strength of the case study limestone deposit 
was determined in accordance to ISRM. The 
statistic of the blast design parameter and uniaxial 
compressive strength are presented in Table 2. 

The relationship between the blast production 
result and the rate at which explosives are used, as 
shown in Figure 6.  The findings show that the 
blast production rate increases with the quantity of 

explosive charge used. The various results show 
the scattered responses for different explosive 
load weights for each blast round. This variation 
was noted to be caused by rock geology variation 
at different mine bench levels. Singh and Abdul's 
findings show a similar trend; their result revealed 
that productivity of blast results increased as the 
weight of the explosive detonated per delay 
increased in the same trend observed in this study 
[58]. Thornton et al. in their study explained such 
a relationship to be a result of an increase in the 
energy supply from excessive explosive charges 
[59].  

Table 2. Statistics of the blast design parameter and rock strength. 

 Spacing 
(m) 

Burden 
(m) 

Avg 
B.H(m) 

Specific drilling 
(m/min) PF UCS 

(MPa) 
Stemming 

(m) 
Charge per 

delay 
Blast productivity 

rate (%) 
Min 2 2 3 0.15 1.82 64.18 1.7 5.68 26 
Max 6.5 4 10 0.35 16.25 64.30 4 80.25 99.2 

 

 
Figure 6. Relationship between blast production rate and the maximum instantaneous charge. 

Three main strength descriptions are revealed 
for the case study formation when the rock's 
uniaxial compressive strength is compared with 
the explosive utilization rate. Depending on the 
blast round being observed, different explosive 
weight was used in the mine. Based on the 
uniaxial compressive strength test result 
conducted, the case study mine rock strength was 
classified into three major magnitudes 64.15MPa 
and 64.5MPa, respectively. Figure 7 shows that 
the explosive charge rate increases as rock 
strength increases [61, 62]. The explosive 

consumption rate was noted to increase 
continuously with high-strength rock benches as 
explained by Dotto et al. work [60]. Likewise, 
also, the drilling rate at the mine was found to be 
high for low-strength formations and low for 
high-strength formations, as shown in Figure 8. 
This Figure illustrates the specific drilling rate 
relationship with rock strength. The results of 
[63], which explain that the rock strength property 
has a significant impact on blast fragmentation, 
are supported by these findings. 
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Figure 7. Relationship between rock USC and explosive utilization rate. 

 
Figure8. Relationship between rock strength and drilling rate. 

4.2. Propose developed ANN model 
An 8-6-1 architecture and Bayesian 

regularization were both used for the development 
of the proposed blast production rate ANN model. 
The developed model was found to have 90.0% 
prediction accuracy at the training stage, as shown 
in Figure 9 after training with the back-
propagation (BPNN) and permutation importance-
based BPNN (PI-BPNN) algorithms, and 89.0% 

for the separate testing dataset (see Figure 10). 
Using the [47] approach, the best ANN model was 
extracted into useful mathematical equations to 
support model implementation. A short-code 
method was used to extract the weight and bias of 
the input layer, hidden layer, and output layer 
from the MATLAB optimum model, as shown in 
Table 3. The model's extracted mathematical 
expression is present in Equations (5–11). 
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BPR= 36.6tanh(∑ ܲ݅ + 0.0910ସ
ୀଵ ) + 62.6 (5) 

X1=-0.091tanh(0.023Str+0.026B-0.034S+0.044H+0.001N-0.052K+0.0258T+0.0194MIC-0.0082) (6) 

X2=0.785tanh(0.108Str-0.074B-0.177S+0.0448H+0.224N-1.316K+0.601T+0.527MIC+0.1481) (7) 

X3=-0.9262tanh(-0.169Str+0.5126B+0.650S+0.276H-0.4642N-1.1275K-0.045T+0.527MIC-0.3615) (8) 

X4=-0.6806tanh(0.074Str+0.162B+0.618S+0.231H+0.192N+0.159K+0.6311T+0.274MIC+0.1361) (9) 

X5=0.929tanh(-0.073Str-0.384B+0.621S-0.359H-0.1122N+0.523K-0.085T+0.203MIC-0.270) (10) 

X6=0.766tanh(-0.130Str+0.582B+0.1733S+0.1931H-0.453N-0.0548K+0.087T+0.3601MIC+0.4828) (11) 

 
where BRP is the blast production rate in %, Str 

is the stiffness ratio, B is the burden in m, S is the 
spacing length in m, H is the drill hole length in 
m, N is the number of hole blasted, K is the 

powder factor in Kg/m3, T is the stemming length 
in m, and MIC is the maximum instantaneous 
charge in Kg. 

 
Figure 9. ANN model training regression curve. 

Table 3. ANN optimum model weight and bias result. 

Hidden layer Bias  
Input layer weight 

 
0.02317 0.02602 -0.03388 0.043943 0.000546 -0.05218 0.025791 0.019367 

-0.00823 0.108444 -0.07363 -0.17711 0.04482 0.224339 -1.31645 0.600642 0.527133 
0.148103 -0.16942 0.512632 0.650216 0.276471 -0.46423 1.12751 -0.04499 -0.36153 
0.413182 0.074215 0.162439 0.618401 0.231364 0.192086 0.15913 0.631095 0.274035 
0.136143 -0.07292 -0.38339 0.620613 -0.35956 -0.11219 0.522982 -0.08467 0.203193 
-0.26954 -0.12964 0.581564 0.173314 0.193056 -0.45323 -0.05481 0.087053 0.360187 
0.482841 

        
   Hidden layer weight    

Output layer bias  
-0.09099 0.785298 -0.92623 -0.6806 0.92914 0.766091 

 
0.090987 
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4.3. Propose developed MVR model 
The network connection between the eight input 

variables was also modelled using multi-variant 
regression analysis, as shown in Equation (12). 

ܻ(ܺ) = ߚ + ଵݔଵߚ + ଶݔଶߚ +⋯+   (12)ݔߚ

Where β0 is the intercept, β1, β2, … , βn are the 
coefficients of the regression model, Y(x)is the 

predictive value, and x1, x2,…, xn are the 
independent variables. 

The proposed MVR model was developed from 
the analysis result present in Table 4. The 
coefficient of each parameter as determined by the 
MVR analysis was extracted into mathematical 
expression present in Equation (13). 

 

BPR=41.534Str+11.33B-2.861S-18.55H+0.004N-3.469K+4.644T+0.649MIC+59.72 (13) 

 
where BRP is the blast production rate in %, Str 

is the stiffness ratio, B is the burden in m, S is the 
spacing length in m, H is the drill hole length in 
m, N is the number of hole blasted, K is the 
powder factor in Kg/m3, T is the stemming length 

in m, and MIC is the maximum instantaneous 
charge in Kg.The developed MVR model 
evaluation summary is present in Table 5, the 
model as 74.9% coefficient of correlation and 
7.97 standard error of estimation. 

Table 4. MVR model coefficients as extracted from SPSS software. 
Coefficientsa 

Model Unstandardized coefficients Standardized coefficients T Sig. 
B Std. error Beta 

1 

(Constant) 59.721 91.079  0.656 0.513 
Str 41.534 36.897 1.301 1.126 0.262 
B 11.330 30.662 0.139 0.370 0.712 
S -2.861 1.392 -0.184 -2.055 0.041 
H -18.549 12.246 -1.884 -1.515 0.131 
N 0.004 0.024 0.006 0.148 0.883 
K -3.469 0.632 -.448 -5.493 0.000 
T 4.644 1.795 0.125 2.587 0.010 

MIC 0.649 0.129 0.631 5.025 0.000 
a. Dependent variable: BPR     

Table 5. Model performance evaluation summary. 
Model summary 

Model R R square Adjusted R square Std. error of the estimate 
1 0.866a 0.749 0.740 7.97308 

a. Predictors: (constant), MIC, N, B, T, K, S, Str, H 
 
4.4. Model error analysis result 

The actual field blast production rate results are 
shown in Figure 10 with the developed ANN and 
MVR models having coefficients of correlation 
(R2) of 89.0% and 81.8%, respectively. Three 
types of estimation errors including root mean 
square deviation, the mean bias of the models, and 
the mean bias of the models were used to assess 
the performance of the suggested models. The 
findings of the error analysis conducted for this 
study are displayed in Table 6. MB and RMSD 
provide the apparent amount of error in the same 
unit as the physical quantity that each model 

calculates. The developed ANN and MVR models 
were evaluated with a new twenty dataset. The 
outcome demonstrates that ANN models are more 
accurate than MVR models in predicting BPR, 
which highlights ANN's superior prediction 
efficiency to MVR as also demonstrated in [64]. 
Although it has been used in a variety of ways, the 
application of ANN to blast improvement has 
only been soft computing without extraction of 
the mathematical equations [65, 66]. Among the 
two error analysis indices, the ANN model 
predicts the lowest blast production rate, while the 
MVR model predicts the highest (Figure 11). 
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Figure 10. ANN and MVR Model Prediction accuracy evaluation result with R2 

Table 6. Model error analysis. 
Models RMSD MB 
ANN 3.99 1.67 
MVR 5.09 2 

 
Figure11. Result of the proposed model error analysis. 

5. Conclusions 
The blasting production rate is the proportion of 

blasted material that can be fed directly into the 
primary crusher without further size reduction. By 
analyzing this trait, mine production can be 
increased, and blasting costs and overall 
production costs can be optimized. This work 
revealed a connection between production rate 
and the impact of rock strength properties on the 
use of explosives and drilling rate. The research's 
conclusions are outlined as follows:  

1. The use of explosive in the mine varies 
depending on the rock strength as examined for 
all the blast rounds being monitored. The study 
revealed that blast rounds with 64.15 MPa and 
64.5 MPa rock strengths required the highest 
explosive charge weight. 

2. It was determined that for low strength 
formation, the mine-specific drilling rate was 
high, and for high strength formation, it was 
low.   
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3. In this study, two prediction models were created 
using ANN and MVR techniques to predict the 
blast production rate. The coefficient of 
correlation (R2) indicates that the two models' 
prediction performance varies differently. The 
coefficient of correlation (R2) for PI-BANN and 
MVR as checked with new 20 dataset after 
development are 89.0% and 81.8%, 
respectively. 

4. RSMD and MB error analysis methods were 
used to assess the prediction error of the two 
models. The permutation importance-based 
back-propagation artificial neural network (PI-
BANN) has the highest prediction accuracy, 
according to the error analysis. 

The obtained results demonstrate that the 
proposed artificial neural network models are 
capable of an accurate prediction of blast 
production rate when compared to multivariate 
regression models. The suggested models are 
therefore suitable, and can be applied to pre-blast 
design painting. The models' performance 
demonstrated that the artificial intelligence 
method is a useful tool for raising the rate of blast 
production.  

The authors’ future work will focus on applying 
numerical modeling techniques such as universal 
discrete element continua (UDEC) and Fast 
Lagrangian Analysis of Continua (FLAC) in 
modeling the effect of geological properties on 
rock fragmentation and size separation. Moreover, 
the authors also plan to simulate slope stability 
using numerical modeling techniques by using 
fast Lagrangian analysis of continua. 
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 سهیانفجار سنگ آهک: مقا دینرخ تول ینیبشیپ يبرا يکردیبه عنوان رو یمصنوع یشبکه عصب يمدل ساز
 MVRو  PI-BANN يهامدل

  

اولووسئون  و 6 لیها روسیک، 4،5مینگ لی، ان2، یمانه کیده2،3شایف وهالاشتی ،2کیگبرتساد سومگآن ،*1ویتا دیاولام لسینگب
  1یاون نیآگوست

  هیجریفدرال، آکوره، ن يمعدن، دانشگاه فناور ی. گروه مهندس1
  یوپی، اتتیگراي، آکسوم، آکسوم معدن، دانشگاه یگروه مهندس .2

  ژاپن تا،یآک تا،یدانشگاه آک ،یالملل نیعلوم منابع ب یلیتکم لاتیمنابع، دانشکده تحص يمواد برا یو مهندس يژئوتکنولوژ ن،یگروه علوم زم. 3
  نیچانگشا، چ ،یجنوب يدانشگاه مرکز ،یمنیمنابع و ا ی. دانشکده مهندس4

  ایاسپان د،یروزاس مادر وسیر. گروه مهندسی معدن، دانشگاه پلی تکنیک مادرید، 5
  یوپیآبابا، ات سیآد ،یمعدن عیموسسه توسعه صنا ،یوپی. وزارت معادن ات6

  15/03/2023، پذیرش 08/12/2022ارسال 

  taiwoblessing199@gmail.com* نویسنده مسئول مکاتبات: 

  

  چکیده:

 یطراحــ يمعــدن ســنگ آهــک، پارامترهــا کیــ دیــعملکرد پروژه معدن است. به منظور بهبــود تول یابیعوامل در ارز نیاز مهمتر یکی) BPRانفجار سنگ ( دینرخ تول
انفجــار  جــهیاز نت اســتفادهبــا  BPRاثــر مقاومــت ســنگ بــر  ن،یــاستفاده شــده اســت. عــلاوه بــر ا BPR یابیارز يکار برا نیدر ا ریتصو لیو تحل هیتجز جیانفجار و نتا

در  ره،یــچنــد متغ ینــیبشیپ يهــاکی) و تکنANN( یمصــنوع یعصــب يهابا اســتفاده از شــبکه BPR ینیبشیپ يساز. به منظور مدلشودیم نییتع شدهيآورجمع
 کیــمــدل بــا دقــت بــالا،  کیــبــه دســت آوردن  ي. برادانشده يآورانفجار از انفجار معدن سنگ آهک در هند جمع رگذاریپارامتر تأث 8مجموعه داده با  219مجموع 

گلولــه انفجــار  20بــا  افتــهیتوسعه  يهاشده است. مدل شنهادیکار پ نی) در اPI-BANNمهم ( گشتیبر جا یمبتن يزیآموزش ب کردیبه نام رو دیجد یآموزش ندیفرآ
مطابقــت دارد.  BPR یبــا ســوابق عملــ یدو مدل به خوب جیدهد که نتا ینشان م ینجاعتبار س جهی. نتشوندیم یابیشده و با دو شاخص عملکرد مدل ارز دییتأ دیجد

دو مــدل  نیــقابــل کنتــرل، ا يدهد. بر اساس پارامترها یرا ارائه م يتر قیدق جهیکار نت نیدر ا يشنهادیپ PI-BANN، مدل MVRبا مدل  سهیدر مقا ن،یعلاوه بر ا
 جــهیمقاومــت ســنگ هــم بــر نت راتییــکــه تغ دهــدیمطالعه نشان مــ جیسنگ مورد استفاده قرار داد. نتا يحفار يهاکیدر انواع تکن BPR ینیبشیپ يبرا توانیرا م

 .گذاردیم ریهر دور انفجار تأث) و هم بر مقدار مواد منفجره مورد استفاده در BPRانفجار (

  .نیماش يریادگیمدل،  ینیبشیپ یابیارز گشت،یبر جا یمبتن یمصنوع یسنگ، بهبود انفجار، شبکه عصب خردایش کلمات کلیدي:
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