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NEW MAJORIZATION FOR BOUNDED LINEAR
OPERATORS IN HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI*

ABSTRACT. This work aims to introduce and investigate a
preordering in B(#), the Banach space of all bounded linear
operators defined on a complex Hilbert space H. It is called strong
majorization and denoted by S <, T, for S, T € B(H). The strong
majorization follows the majorization considered by Barnes, but
not vice versa. If S <s T, then S inherits some properties of
T. The strong majorization will be extended for the d-tuples of
operators in B(H)? and is called joint strong majorization denoted
by S <js T, for S,T € B(H)?. We show that some properties of
strong majorization are satisfied for joint strong majorization.

1. INTRODUCTION

Let B(H) denote the Banach space of all bounded linear operators
defined on a complex Hilbert space (H,(-,-)). The numerical radius
and the Crowford number of T' € B(H), respectively are defined by

w(T) = sup{|(Tz, z)| - = €M, [lf =1},
and
o(T) = inf{|(Tx,x)| : =z €H, |z| =1}

It is well known that

SIT) < w(T) < 7)), (11)
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where ||T|| is the usual operator norm.
In [7], Zamani et al. obtained the following lemma.

Lemma 1.1. [7, Lemma 2.7] Let T' € B(H). Then for all x € H with
||| = 1, we have

TN + A(T) < | Tl|* + (T2, 2)|* < 4w™(T). (1.2)

For T € B(H), we denote R(T') for the range of T"and N(T') for the
null space of T, its adjoint is denoted by T™.
An operator T € B(H) is said to be positive if (T'z,z) > 0, for all
reH.
For Banach spaces X and Y, we denote the Banach space of all bounded
linear operators T': X — Y, by B(X,Y).
In [1], Barnes considered the following majorization.

Definition 1.2. [I] Let 7" € B(X,Y) and S € B(X,Z). Then T

majorizes S and denoted by S <p T if there exists M > 0 such that
for all € H, we have

1Sz|| < M| Tz]|.
In [1], Barnes obtained the following proposition.
Proposition 1.3. [I, Proposition 3] Let T € B(X,Y), and
S € B(X,Z). Then the following statements are equivalent.

(1) S=<pT.

(2) There exists V € B(R(T), Z) such that S = VT.

(3) Whenever {x,} C X with ||Tz,|| — 0, then ||Sx,| — 0.
n

In [5], Douglas proved the next proposition.

Proposition 1.4. [5] Let S,T € B(H). Then the following three
conditions are equivalent.

(1) R(S) C R(T).

(2) S* <g T,

(3) S=TU for some U € B(H).

For more details about numerical radius, norm equalities and
majorization, we refer the reader to [2, 3, 4, 6, 7].

We organize this paper as follows. In the next section, we intro-
duce a preorder relation in B(#), which is called strong majorization
and denoted by <, . Some properties of strong majorization are in-
vestigated and we show that strong majorization follows majorization
considered by Barnes, but not vice versa. We prove that if S <, T,
then S inherits some properties of T". In Section 3 we extend the strong
majorization for the d-tuples of operators in B(H)? and is called joint
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strong majorization denoted by S <;s T, for S,T € B(H)?. We show
that some properties of strong majorization are satisfied for joint strong
majorization.

2. STRONG MAJORIZATION

In this section, we introduce a preordering on B(#H), we call it, strong
majorization and consider some properties of it.

Definition 2.1. Let S,T € B(H). We say that T strong majorizes S
and denoted by S <, T if there exists M > 0 such that for all x € H,

|(Sz,z)| < M|(Tx,x)|. (2.1)

Clearly, strong majorization is a preordering relation on B(H), i.e.,
it is reflexive and transitive. Obviously, S' <, 7T if and only if 5* <, T™.
By taking the supremum over x € H with ||z|| =1 in (2.1), we get

w(S) < Mw(T). (2.2)
Proposition 2.2. Let S,T € B(H). If S <s T, then S <5 T.

Proof. By assumption, there exists M > 0 such that for all z € H, we
have (2.1). The inequalities (1.1) and (2.2) follow that

0 < w(S) < Mw(T) < M|T|,
SO
du?(S) < 4M2||T|2. (2.3)

On the other hand, (1.2) concludes the following inequalities for = € H
with [|z] =1,

1Sz ]|* < [[S2|* + [{Sz, z)|* < 4w*(S),
and
AMP(T|* < AMP(||T* + (7))
< AM?(||T2|* + (T, 2)]?)
< AM*(|T2|® + | T )*[|z]?)
< 8M?||Tz|?.
The above inequalities and (2.3) follow that
IS|* < 80| T,
so for all x € H
ISz|l < V8M|Tx|. (2.4)
Therefore S <g T. O
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The inequality (2.4) concludes that N(7T) C N(S). Also, by taking
the supremum in (2.4) over x € H with ||z| = 1, it follows that
IS < V8M|T|.

Remark 2.3. Let S,T € B(H) be such that S = a7, for some
a € C\ {0}. Clearly, T <, S and S <, T, but for a # 1, we have
S # T, i.e., in general the strong majorization is not a partial ordering.

Now we obtain nontrivial example of (2.1).
Example 2.4. Let
H=ly={x=(zn): 200 |2n|* < oo}
be the Hilbert space with the inner product (z,y) = > | ©,¥n, where
r = (x,) and y = (y,) are in {y. Suppose that S, T € B(H) are defined
by
Sz =(0,0,x3,24,...), and Tax = (0, x9,x3,...), for z = (z,) € H.
Hence for x = (z,,) € {2, we have
(Sz,2) = |s|* + [za|* + -,
(T2, 2) = |w2|* + |2s]* + za|* +
Clearly
[(Sz, )| < [(Tz,2)],
and so S <, T

The next example obtains in general the inverse of Proposition 2.2
is not correct.

Example 2.5. Let n € N\ {2} be even and H = C" be a Hilbert

space with inner product (z,y) = szyl, for © = (x1,29,...,2,),
=1

vy = (y1,92,.---,yn) € C". Let S be the right shift operator on H
defined by Sz = (0, z1,22,...,2,_1). Thus

IS2||* = (Sz, Sz) = |21]* + |z2|* + - + |zaa]*, (2.5)
(Sx,x) = Toxy + T3T9 + -+ - + Ty, Tp1. (2.6)
Let T be the operator on ‘H defined by the block diagonal n x n matrix
[0 1 0 O i
1 00 O
000 1
7T—10 0 1 0
000 - 0 1
0 0 0 1 0]
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For x = (x1,...,x,) € C", it follows that

Tx = (T2,T1, 24,3, .., Tp, Ty_1),
and
| Tx||* = (T, Ta) = a1 [* + |wo* + - + |2, (2.7)
(Tx,x) = T129 + ToZ1 + T3xy + Ty + - -+ + Tp_1 Tp + Ty, Tp1.

(2.8)
The relations (2.5) and (2.7) follow that for all x € C", we have
[Sz|| < || Tz,
that is S <p 7. But for z = (0,1,1,0,...,0) € C", the relations (2.6)
and (2.8) follow that
(Sx,x) =1, (Tx,z) =0,
and so S A, T.

Proposition 2.6. Let S,T € B(H). If S <5 T, then the following
statements hold.

(i) There exists V € B(R(T),H) such that S = VT.

(ii) Whenever {x,} C H with ||Tx,| — 0, then ||Sz,| — 0.

Proof. Propositions 2.2 and 1.3 follow the assertions. OJ

Theorem 2.7. Let S,T € B(H). If S < T, then the following
statements are true.
(i) If S1,5 € B(H) and ai,as € C\ {0} such that Sy <, T,
Sy < T, then a1S7 + Sy < T
(i) If T is self-adjoint, then Re(S) <5 T, Im(S) <5 T, where
Re(S) = £ and Im(S) = 552
(iii) R(S*) C R(T*) and R(S) C R(T).

Proof. (i) By assumption, there exist two positive numbers M, My such
that for all z € H

[((151 + a2 S2)z, x)| < |an|[{S12, )| + ao|[(S2z, 7))
< (laa[ My + |ao| M) [(T'z, )],
that is o157 + 59 <, T
(ii) Since S <, T follows S* <, T*, and by hypothesis T' = T™, we
have S* <, T. Now the assertions follow by part (i).
(iii) According to Propositions 1.4, 1.3 and 2.2 and since S < T if
and only if S* <; T, the assumption concludes R(S*) C R(T*) and
R(S) C R(T). O

Theorem 2.8. Let S,R, T € B(H). If S <, T, then
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(i) TS <, T*T and S*T <, T*T,
(ii) S*S < T*T,
(ili) R*SR <5 R*'TR,
(iv) T*S + S*T <, T*T.
Proof. (i) Since S <, T implies S <p T, so there exists M > 0 such
that for all x € H,

(T Sz, z)| = [{Sz, Tx)]
< [[Sz[[|| Tl
< M||Tx|?
= M|(Tz,Tx)]|
= M|(T*Tx,x)|.
That is T*S <, T*T.
As S <, T implies S* <, T™, so T*S <, T*T follows that S*T <, T*T.

(ii) As S <4 T follows S <p T, so there is M > 0 such that for all
xr E€H,

(5" Sz, 2)| = [(Sx, S)|
= [|Sz|?
< M|Tx|”
_ M|{Tz,T2)
= M|(T*Tx,x)|.

That is S*S <, T*T.
(iii) Since S <, T, there exists M > 0 such that for all z € H,

|(R*SRx,z)| = |(SRx, Rx)|
< M|{TRx, Rx)|
= M|(R*"TRx,x)|.
(iv) Part (i) and Theorem 2.7 imply the assertion. O

Theorem 2.9. Let S,T € B(H) such that S <s T and M be a subspace
of H. If TM C M+, then SM C M+.

Proof. By assumption, there exists N > 0 such that for all z € H,
|(Sz,x)| < N(Tx,x)|. (2.9)

By hypothesis # € M implies that Tz € M*. Assume that z € M,
so (Tx,z) = 0, thus (2.9) implies that (Sz,x) = 0, that is Sz € M*.
Therefore SM C M. O
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Theorem 2.10. Let S,T € B(H) and S <5 T. If S and T are both
self-adjoint, then S™ <, T", where n = 2™, for all m € N.

Proof. We proceed by induction. For m = 1, according to part (ii) of
Theorem 2.8, we have

S*S <, T*T.
Since by hypothesis S* = S and T* = T, it follows that S? <, T2
Now suppose that for n = 2™ and m € N, we have S" <, T". Again
we use part (ii) of Theorem 2.8 to conclude that

since S* = S and T* = T, we get S*" <, T?". Thus the result holds for
2n = 2™*1 This completes the induction. O

For T € B(H), the Davis-Wielandt radius of T" is defined by
du(T) = sup { V[T, )P+ [Tall : w €, ] =1}
The total cosine of T is defined by
T
M: reH, Tr #0, x#O}.
[ T|| []x]]
These concepts will be used in the next theorem.
Theorem 2.11. Suppose that S,T € B(H) and S <5 T, i.e., there
exists M > 0 such that for all x € H,
|[(Sz,x)| < M|(Tz, ). (2.10)
Then the following statements hold.
(i) For all v € H, \/[(Sa. 9} + 5] < N+/[(Ta, )P + [Tal"
and so dw(S) < N dw(T), for some N > 0.
(ii) |cos |S < v/8M?|cos |T.
(iii) ¢(S) < M ¢(T).

Proof. (i) By Proposition 2.2, for all 2 € H, we have ||Sz| < v8M||Tz|
and so

|cos|T = inf{

|Sz||* < 64M*||Tx||*. (2.11)
Also, (2.10) follows that
(S, z) > < M*|(Tx, x)|*. (2.12)
The relations (2.11) and (2.12) conclude that for some N > 0, we have
VISz,z)[2 + [[Se||t < NV[{T, x) 2 + || T ",
By taking the supremum over z € H such that ||z|| = 1, we get
dw(S) < N dw(T).
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(ii) The hypothesis implies that for all x € H with Sz # 0, x # 0,

[(Sz,7)| [(T'z, z)|
<M ,
S| ||l 1Sz|| (||l

and so by taking the infimum over z € H with Sx # 0, x # 0, we have

T
lcos|S = inf AT D] i 1T 2]
S| {] 1S [l
S]] =]
= Msup ———
(T, z)]
L] [J]
< V/8M? sup H—
(T, z)]
, Tx,z)|
= V/8M?inf Tz, )|
[T]] ]
= V/8M?| cos |T.
In (2.10), if for some = € H, we have (Tx,x) = 0, then (Sz,z) = 0,
and so |cos|S = 0 = |cos|T. Therefore in the above inequalities, we
assume that for all z € H, we have (Sz,z) # 0.
(iii) The relation (2.10) follows part (iii). O]

Let M be a closed subspace of H. If there exists a closed subspace
N of H with H = M & N, then M is called complemented.
By Proposition 2.2, S <, T follows S <p T, and so the following three
proposition hold by [I, Theorem 13, Proposition 6, Proposition 5].

Proposition 2.12. Let S,T € B(H) and S <s T. If R(T) is
complemented, then there exists V- € B(H) such that S = V'T.

Proof. By Proposition 2.2 and [1, Theorem 13], the assertion follows.
]

If ST € B(H) and S <, T, then S inherits some properties of T.
Proposition 2.2 and [, Proposition 6] follow the next proposition.

Proposition 2.13. Let S,T € B(H) and S <; T. Then the following
statements are true.

(i) If T is a compact operator, then S is so.
(i) If T is a weakly compact operator, then S is so.
(iii) If T is a strictly singular operator, then S is so.

For T € B(H), r(T) = lim ||T"||= is the spectral radius of T.
n—oo
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Proposition 2.14. Let S,T € B(H), and S <, T, i.e., there exists
M > 0 such that for all x € H,

|(Sz,x)| < M|(Tz, ).

Then the following statements hold.

(i) If N(T') = N(S) and R(S) is closed, then R(T) is closed.

(ii) If TS = ST, then for all n € N, S" <p T" and
r(S) < V8M r(T) and so if T is quasinilpotent, then S is
s0.

Proof. By Proposition 2.2, there exists M > 0 such that for all z € H,
ISz < VBM||Tx].

Now [1, Proposition 5] implies (i) and (ii). O

3. JOINT STRONG MAJORIZATION

This section deals with the extend of strong majorization for the
d-tuples of operators in B(H)?, as follows.

Definition 3.1. Let S = (Sy,...,5,),T = (Ty,...,Ty) € B(H)? be
two d-tuples of operators. We say that T joint strong majorizes S and
denoted by S < T, if there exists M > 0 such that for all 1 <¢ < d
and all x € H,

[(Siz, z)| < M[(Tiz, z)|.
That is S <, T'if and only if S; <, T; for all 1 <1 < d.

Clearly, the above inequality follows that

2

<ZI<S@»:C,J:>I2> §M<Z|<Tix,x>|2> . (3.1)

Let S* = (S},...,5%) € B(H)? be the adjoint operator of a d-tuples
S = (Si,...,Sq) in B(H)? Clearly, S <;s T if and only if S* <, T*.
We say that S is self-adjoint if S* = S.

In 1981, M. Cho et al. introduced the joint operator norm and the joint
numerical radius for a d-tuples T' = (17, ...,Ty) of operators defined
on H, respectively as follows [1],

d 3
||| := sup (Z HTZJCH2> cx €H, |z =1,
i—1



10 GORJIZADEH AND EFTEKHARI

and

w(T) = sup (Z|me ) cxEH, x| =1

For a d-tuples T' = (T1,...,Ty) € B(H)¢, the Davis-Wielandt radius
and the Crawford number of T', respectively defined by

dw(T) = sup JZT&Z$2 <ZHT.T”2> cx €M, |z =1p,

and
1nf{<ZTm:r > cxeN, xl}.

The total cosine of T is defined by

1

| (LT 2)? a
| cos |T' = inf . ::EE”H,Q:#O,ZHTimH #0

(S, Imal?)* e i=1
Proposition 2.2, Theorem 2.11 and (3.1) follow the next theorem for

two d-tuples of operators.

Theorem 3.2. Let S = (Sy,...,54),T = (T1,...,Ty) € B(H)? be two
d-tuples of operators and S <;s T, i.e., there exists M > 0 such that
forallx € H, and 1 <1 < d we have

(Siz, z)| < M[(Tix, x)].

Then the following statements hold.
(i) For all x € H,

JZS:HCQ (ZI!5$\2> <N JZTJ«"HCQ (ZI!TﬂIz)

and so dw(S) < N dw(T), for some N > 0.
(ii) |cos |S < v/8M?|cos |T.
(iii) ¢(S) < M ¢(T).
(iv) w(S) < Mw(T).
(v) IS < v8MI|T]].

Let S = (S1,...,5), T = (Ty,...,T;) € B(H)? be two d-tuples of
operators. We consider ST by ST = (5114, ..., S4T}).

N ANRINE NG
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Theorem 3.3. Let S = (S1,...,8y),T = (Ty,...,Ty) € B(H)? be two
d

d-tuples of operators such that S <;s T and () R(T;) # {0}. Then there
1

)

p d
exists a d-tuples V' in B (ﬂ R(ﬂ),%) such that S = V'T.
i=1

Proof. Since S < T implies that S; <; T;, for all 1 <7 < d, so by
Proposition 2.6, there are V; € B(R(T;),H) such that S; = V;T;. Thus
d

d
S:VTandV:(Vl,...,Vd)EB(ﬂR(ﬂ),’H) . O
i=1

Theorems 2.7 and 2.8 are satisfied for the d-tuples of operators as
follows.

Proposition 3.4. Let o, 8 € C\{0} and S, R, T € B(H)*. IfS <5 T,
R ~s T, then aS + BR ~s T.

Proof. Let
S = (Sl,...,Sd),R: (R17"'7Rd)aT: (Tla"'7Td) S B(H)d

As S < T and R <5 T conclude that S; <, T; and R; <, T;, for
all 1 < ¢ < d, so by Theorem 2.7, we have aS; + BR; <, T;, for all
1 <14 < d. Therefore aS + BR <5 T. O

Theorem 3.5. Let S,R, T € B(H)¢, and S <;s T. Then
(i) T*S <s T*T and S*T <, T*T,
(i) S*S <;s T*T,
(iii) R*SR <;s R*TR,
(iv) T*S £ S*T <5 T*T.
Proof. Since S <, T" implies that S; <, T;, for all 1 < ¢ < d, the proof
follows by Theorem 2.8 and Proposition 3.4. 0

Theorem 3.6. Let S = (Sy,...,5,),T = (Ty,...,T;) € B(H)? be two
self-adjoint d-tuples of operators and S <;s T. Then S™ <;s T, where
n = 2", for all m € N.

Proof. 1t follows by Theorem 2.10. O

4. CONCLUSION

We define a preordering in B(#H) and call it strong majorization
which is stronger than majorization considered by Barnes. Thus all
results that Barnes proved, are satisfied for strong majorization. In
Example 2.5, we show that S <z T but S 4, T. One can find some
conditions on S, T that Barnes’s majorization implies strong
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majorization, also find the properties of strong majorization that aren’t
inherited from Barnes’s majorization.
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