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ISOTONIC CLOSURE FUNCTIONS ON A LOCALE
T. HAGHDADI* AND A. A. ESTAJI

ABSTRACT. In this paper, we introduce and study isotonic closure
functions on a locale. These are pairs of the form (L,cl; ), where
L is alocale and clj : S(L) — SU(L) is an isotonic closure function
on the sublocales of L. Moreover, we introduce generalized cl;-
closed sublocales in isotonic closure locales and discuss some of
their properties. Also, we introduce and study the category ICF
whose objects and morphisms are isotonic closure functions (L, cl;)
and localic maps, respectively.

1. INTRODUCTION AND PRELIMINARIES

Hausdorff studied closed spaces and isotonic spaces in [3]. Later on,
Day [2], Hammer [7, 6] and Habil [4, 5] studied some properties of
isotonic spaces. In 1970, Levine [9] initiated the study of the so-called
g-closed sets.

Recall that a subset A of a topological space (X, T) is g-closed if the
closure of A is included in every open superset of A. Since g-closed
sets are natural generalizations of closed sets, they have been widely
studied by topologists in recent years.

Let X be a set, P(X) denote its power set, and cl: P(X) — P(X)
be an arbitrary set-valued function, called a closure function. Then
cl(A), A C X, is called the closure of A, and the pair (X, cl) is called
a generalized closure space.
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Consider the following axioms of the closure function in which A, B,
A, € P(X)

(K0) cl(0) = 0.

(K1) A C B implies cl(A) C cl(B).

(K2) A Ccl(A).

(K3) cl(AU B) C cl(A) Ucl(B).

(K4) cl(cl(A)) = cl(A).

(K5> U)\GA CI(A/\) = Cl(U)\eA AA)'
The dual of a given closure function cl is the interior function

int: P(X) — P(X) defined by
int(A): =X \c(X\A).

Given the interior function int: P(X) — P(X), the closure function
can be recovered via

cl(A): =X\ (int(X \ A)) forall Ae P(X).

A set A € P(X) is closed in the generalized closure space (X, cl) if
cl(A) = A. It is open if its complement X \ A is closed, or equivalently,
A =int(A) (see [2]).

In the pointfree (localic) approach to topology, topological spaces
are replaced by locales, seen as generalized spaces in which points are
not explicitly mentioned. Formally, a locale L is defined as a special
complete lattice (where we denote top (respectively, bottom) by 1
(respectively, 0)), usually called a frame, in which finite meets
distribute over arbitrary joins, that is,

aANVS=V{aAs:seS}
for all a € L and S C L. A sublocale of a locale L is a subset S C L,
closed under arbitrary meets, such that Vo € L,Vs € S(x — s € 5).
Among the important examples of sublocales are, for each a € L, the
closed sublocales ¢(a) =1 a = {b € L: a < b}, the open sublocales
o(a) ={a — b: b € L}. Morover, for every a € L,

b(a)={b—a:be L}

is the smallest sublocale containing a. Throughout the paper L and M
stand for a locales, unless otherwise noted.

The lattice of all sublocales of L is denoted by S/(L). In this lattice,
the meet is the intersection. The join of any collection {S;: i € I} of
SU(L) is given by

\/ Si= {/\M: MESE(L)andMgUSi}.
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The lattice SV(L), partially ordered by inclusion, is a coframe, in the
sense that for any S € S/(L) and any family {7,} of sublocales, the
following distributive law holds.

SV AT, = N\(SVT.).

The smallest sublocale of L is O = {1}, which is known as the void
sublocale. The largest is, of course, L. We say that sublocales S and T'
are disjoint if SNT = O. A sublocale of L is complemented if it has
a (Boolean) complement in the lattice S¢(L). If A is a complemented
sublocale, we denote its complement by A° .

Definition 1.1. The supplement sublocale A of L, denoted by A¥ or
L~ A, is

A#. :ﬂ{BeSé(L);BvA:L}.

Note that, every supplement sublocale is the dual of pseudocomple-
mentary. It is easy to see that A## C A and AV A* = L. Also, if A
is a complemented sublocale of L, then AN A# = O and so, A* is the
complement of A in the coframe SU(L).

A map f: L — M between locales is said to be a localic map
whenever for every a € L, b€ M and S C L,

(L1) f(AS) = AfIS] (in particular, f(1) = 1),

(L2) f(f.(b) = a) =b— f(a), and

(L3) fa)=1=a=1,
where f,: M — L denotes the left adjoint of f provided by (L1).

A localic map f: L — M gives rise to two mappings, namely,
fl=]: S¢(L) — SU(M) and f_i[—]: S{(M) — S(L) defined by

f18)={f(z): z € S}
and
falIl=V{AesuD)Ac f1}.

Note that f_;[—] is the right adjoint of f[—] (that is, f[S] C T if and
only if S C f4[T7).

Definition 1.2. Suppose that L is a lattice. A A-closed subset S C L
is called almost saturated, whenever if z,y € L, s € Sand z Ay = s,
then there exist s1, s € S such that z < s1, y < so and s = s1 A $o.

Proposition 1.3. Assume that L is a locale. B C L is a sublocale if
and only if B is closed under arbitrary meets and also almost saturated.
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Proof. =) By the hypothesis, there is a nucleus function j: L — L such
that j(L) = B. It is obvious that B is closed under arbirary meets.
Now, Let © Ay = b in which z,y € L and b € B. Take b; = j(z V b)
and by = j(y vV b). Clearly, by,by € j(L) = B. On other hand, we can
write:

v < jx) <jeVb) =br, y <jly) <ijlyVd) = b
In addition,
b=>bV(zxAy) = (xVOA(yVb) = b=jb) =j(xVb)Aj(yVb) = by Abs.
<) Define j: L — L with j(z) = A\ T = in which
tpr={be B:x <b}.

It is easily seen that j is a closure operator. Only, it suffices to show
that j is a A-homomorphism. Since B is almost saturated, it is easy to
see that the set 15 (z Ay) C {by Aby: 2z < by,y < by}. Hence we can
write:

i@ A jy) = (N 18 2) AN\ T8 Y)
= N{oiAby iz < by < by}

<N\ 18 (zAy)

=Jj(@Ay)
On the other hand, it is clear that j(z A y) < j(z) A j(y). Therefore,
the equivality holds. O

This paper is organized as follows. In Section 2, we introduce and
study isotonic closure functions. These are pairs of the form (L, cl;),
where L is a locale and cl;: SI(L) — SI(L) is an isotonic closure
function on the sublocales of L. We describe connections between
closure functions and interior functions in a locale L. In Section 3, we
introduce generalized cl; - closed and generalized cl;-open sublocales in
an isotonic closure function and study their fundamental properties. In
Section 4, we introduce the category of isotonic closure functions over
a locale L and discuss some of its properties.

2. ISOTONIC CLOSURE FUNCTIONS ON A LOCALE

Let L be a locale, S/(L) be the set of all sublocales of L, and
cl;: SU(L) — SU(L) be an arbitrary set-valued function, called a closure
function. We note that this concept is different from the concept of
clouser of a sublocale. Moreover, almost all the contents of this section
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can be generalized for the locales and frames. Consider the following
axioms of the closure function for arbitrary sublocales A and B.

(KO) ¢l (0) = 0.

(K1) A< B implies cl, (A) < cl, (B).

(K2) A <l (A).

(K3) cl, (AV B) <cl (A) Vvl (B).

(K4) ¢l (cl(A)) = cl(A).

The following proposition is now an immediate consequence.

Proposition 2.1. The following conditions are equivalent for an
arbitrary closure function cl; : S((L) — SU(L).

(1) A< B < L implies cl,(A) < cl, (B).

(2) e, (A) Vel (B) < cl (AV B).

(3) el (AN B) <clp(A) Acl(B).

The dual of a closure function cl; is the interior function
int; : SU(L) — S(L) defined by

int, (A4) = (cl, (A%))".

Proposition 2.2. Let cl, : SI(L) — SI(L) be a closure function that
satisfies the azioms (K0), (K1), (K2) and (K4). Then, the following
statements are true.

(1) int, (L) = L.

(2) A C B implies int; (A) C int, (B).

(3) int, (A) C A.

(4) inty (int;(A)) = int,(A).

Proof. Let A and B be sublocales of L.
(1) By (K0),
it (L) = (el (L))" = (e1,(0))" = (0)* = L.

(2) If A C B, then B¥ C A#. By (K1), cl;(B¥) C cl,(A#) and
so, (cl (A ) C (clL(B#)) . Therefore, by the definition of interior,
int;(A) C int/(B).

(3) By (K2), A* C cl, (A#) and so, (cl, (A#))" C A## C A, which
means that int; (A) C A.
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(4) By (3), int (int (A)) C int;(A). To complete the proof, note
that by (k4) and (K1) we can write

(el (A%) ™ € dly (A%) = el ( (el (49) "

")
— oI, (e, (4%) ") € el (4%)

A sublocale A € SI(L) is cl-closed if cl; (A) = A, and it is cl-open if
int; (A) = A.

Definition 2.3. An isotonic closure function is a pair (L, cl; ), where
L is a locale and cl; : SI(L) — SU(L) is a closure function that satisfies
the axioms (K0) and (K1).

Example 2.4. Let L = {J_, a,b,c,d, T} be a locale with the following
Hass diagram.

By Proposition 1.3, we have n

SU(L) = {{T}, {0, TH{ce, TH{d, THA{L THL,b, T}H{L, ¢ T},
{L,d, T} Ab,d, T}, {c,d, T}, {L,b,d, T}, {L,c,d, T},
{a,b,¢, T}, {a,b,c,d, T} {L, a,b,c, T},L}.

(1) We define a set-valued function cl,: SI(L) — SU(L) by
c,({L,b, T}) ={a,b,c, T} and cl; (A) = A for every sublocale
A # {L,b,T}. Then, cl; is a closure function which satisfies
(K0) but not (K1). Hence, (L,cl;) is not an isotonic closure
function.
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(2) Define a closure function cl; : SI/(L) — SU(L) by

C—IL({Ca T}) = C—lL({d> T}) = C—IL({J—a G T})
= C_IL({Ca d, T) = C_IL({J—7 d, T})
={L, T}
cd,{L,e,d, T}) = {L,b,d, T} and for other sublocales A,
cl; (A) = A. Then, (L, cl,) is an isotonic closure function which
satisfies (K4). Note that (L,cl; ) does not satisfy (K3). To see
this, consider the sublocales A = {b, T} and B = {¢, T}. Then
AV B ={a,b,c, T} and so,
cd (AvB) =d, ({a,b,c, T}) ={a,b,c, T}
On the other hand,

Therefore, cl; (AV B) € cl; (A)Vvl, (B). Also, A={Ll,c,d, T}
implies A Z cl; (A), which means that cl; does not satisfy (K2).

(3) Define a closure function cl; : S{(L) — SI(L) by

C_IL({L, b, T}) ={l,a,b,¢c, T}
and cl; ({L,b,d, T} = L. Then, cl; satisfies the axioms (K0),
(K1) and (K2).

(4) Define a closure function cl,: S(L) —  SI(L) by
c;,({L,b,d, T}) = L and cl; (A) = A for other sublocales A
of L. Then, cl; satisfies the axioms (K0), (K1), (K2) and
(K3).

Remark 2.5. Assume that a closure function cl;: SI(L) — SU(L)
satisfies (K2). Then, cl; (L) = L and int; (O) = O.

Remark 2.6. Let L be a locale, cl;: SI(L) — SU(L) be a closure
function, and A be a sublocale of L.
(1) L\ el (A) C int, (L \ 4).
(2) If A is complemented, then L\ cl; (A) =int, (L \ A), because
it (L\ A) = int; (A%) = (I (4##))" = (el (4))" = L\ I, (A).

(3) L\ int, (L A) C el (A)
(4) If Aand cl; (A) are complemented, then L\int; (L\A) = cl; (A),
because
L\ int, (L\ A) = (int, (A%))7 = (cl (A%#))7F = cl, (A).

The condition that A and cl; (A) are complementary is necessary.
This is the content of the following example.
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Example 2.7. (1) Let the locale L and cl: S/(L) — S(L) be as
in Example 2.4(2). Consider the sublocale A = {¢, T}. Then,
it is clear that no complement exists for A. Also,

iLtL<({Ca T})#> = int; (L) = L.
On the other hand, (C_IL({C, T})># ={a,b,c,d, T}. Therefore,

#
int, (({e, TH*) # (. ({e, 7))
(2) Let the locale L and cl: S((L) — S/(L) be as in Example
2.4(1). Consider the sublocale A = {b, T}. It is clear that no
complements exist for the sublocales A and cl; (A). Moreover,

iLtL({l% T}#) =int, (L) =L
and so, <iltL({b7T}#)># = (L)# = {T}. On the other hand,

cl, ({5, TY) = {0, T}. Then, el ({b.T}) # (int, ({5, T}#))”

The proof of the following lemma is straightforward.

Lemma 2.8. Let (L, cl;) be an isotonic closure function which satisfies
(K2). Then, for every sublocale A of L, the following statements are
true.

(1) (clp(A)" C el (A%).
(2) int, (A) C el (A).

Lemma 2.9. Let L be a locale whose all sublocales are complemented.
Then, (L,cl;) is an isotonic closure function if and only if
int; : SU(L) — SU(L) satisfies the following conditions.

(1) inty (L) = L.

(2) For arbitrary sublocales A and B of L with A < B, int; (A) <

int, (B).
Proof. =) Let A < B. Then, by (K1), cl; (B*) < cl; (A%). Therefore
(cl, (A#%))" < (el (B#))", which means that int; (A) < int; (B).
Also,
int (L) = (el (L*))" = (c1,(0))" = (0)* = L.
<) If int; (L) = L, then

cl(0) = (int, (0%))" = (int, (L))" = (£)* = 0.

Now, let A < B. Then, by (2), (int, (A# )# < (th (B* ) . Then by
Remark 2.6, cl; (A) < ¢l (B). Therefore, (L, cl;) is an isotonic closure
function. 0J
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Definition 2.10. Let (L,cl;) be a closure function and M be a
sublocale of L. Then cl,,: S{(M) — SI(M), defined by

A— Mncl,(A),

is the relativization of cl, to M. The pair (M,cl,,) is called a
sub-closure function of (L,cl;).

It is easy to see that, if (L,cl;) is an isotonic closure function, then
(M, cly,) is an isotonic closure function.

Definition 2.11. A property B of a closure function (L,cl;) is
hereditary if every sub-closure function (M,cl,,) of (L,cl;) also has
the property B.

Lemma 2.12. The properties (K0), (K1) and (K2) are hereditary in
any closure function (L,cl;).

Proof. This is straightforward. OJ

In the following example, we show that the axiom (K4) is not
hereditary.

Example 2.13. Let the locale L and cl: S((L) — SU(L) be as in
Example 2.4(2). Consider the sublocale M = {1, ¢,d, T} of L. By
Definition 2.10,

cy({e, T} = dy({d, T} =y ({ L, T})
= C_IM({C> d> T}) = C_lM({J—? d’ T})
- {—L7 T}v
cy({TH={T}and cl,({L,c,d, T}) ={L,d, T} Hence
C—IM (C—lM({—L7 ¢, d7 T})) = {La T}7
which implies that cly, (cly, ({L,¢,d, T})) # cly,({L,e,d, T}).
Definition 2.14. Let L be alocale and cl; : S/(L) — SI(L) be a closure
function on L. Then, the neighborhood function N': L — P(SI(L)) and
the convergent function N*: L — P(S(L)) are respectively defined as
follows:
N(w) = {N € SIL) ; = € ing, (V)
and
N*(z)={NeS8I(L); zcc,(N)}.
A sublocale B is a neighborhood of sublocale A, if B € N (x) for all
x € A.

By the above definition, the following lemma is obvious.
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Lemma 2.15. For any isotonic closure function (L,cl;), B € N(A)
if and only if A Cint; B.

Proposition 2.16. Let (L,cl;) be an isotonic closure function. Then,

N(a) = N(b(a)) for every a € L.

Proof. Let N € N(a). Then a € int;(N) and so N'(b(a)) C int, (N).
Hence by Lemma 2.15, N € N (b(a)). Now, let N € N (b(a)). Then,
N eN(z—a)foreveryz € L. Putz =1,50 N € N(1 = a) = N(a).
Therefore, N'(b(a)) = N (a). O

Proposition 2.17. Let (L,cl) be a closure function. If A and cl;(A)
are complemented sublocales of L and A € N*(x), then A* & N () for
every T #x € L.

Proof. Let T # x € L and A be a complemented sublocale of L. Then
by Remark 2.6,

Ae N (z)=uz ¢ (C_IL(A))# = r & int(A%*) = A* ¢ N(z).
0J

The condition that A is complemented is necessary. This is the
content of the following example.

Example 2.18. Let the locale L and cl;: SI(L) — SU(L) be as in
Example 2.4(2). Then,

N () = {o(e), ¢(b), o(d). (e), b(a). ela), < L,d >,< L,b,d >,
< L,c,d>,L}.
and
N () = {b(b),0(c), €(b), b(a), c(a), o(d), < L,b,d >, L }.

Now, let A =< L1,b,d >. Therefore, A is not a complemented
sublocale. It is easy to see that A € N*(b) and A% € N (b).

In the following example we show that the converse of the above
proposition is not necessarily true.

Example 2.19. Let L = {J_,a Ab=x,a,b,T =aV b}. It is obvious
that by Proposition 1.3,

SUL) = {{TH AL T e, TH {6, TH{L,a, TH{L,b, T},

{z,a,b, T}, L}.
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It is easily seen that S¢(L) is a Boolean algebra. Supposing the function
cl, is identity, clearly, the function int; is also identity. Now, if we
take A = {a, T}, then x ¢ A = cl;(A) and so A ¢ N*(x). In addition,
v {L, b T}= A% =int, (A#) and consequently A#* € N(z).

Lemma 2.20. Let L be a locale whose all sublocales are complemented.
Then, (L,cl;) is an isotonic closure function if and only if the
neighborhood function N: L — P(SI(L)) satisfies the following

conditions.

(1) For everya € A, L € N(a).
(2) A€ N(a) and A < B imply B € N (a), for every a € L.

Proof. =) Let a € A. By Lemma 2.9, int; (L) = L and so, a € int, (L).
This means that L € N(a). Let A € N(a) and A < B. Since A < B,
by Lemma 2.9, int; (A) < int;(B). So, a € int; (B).

<) It is clear that int; (L) < L. Let a € L. By (1), L € N'(a), which
means that @ € int; (L). Hence, int; (L) = L. Now, let A < B and
a € int;(A). Then, A € N(a) and so by (2), B € N(a). Hence,
a € int;(B) and consequently, int; (A) C int;(B). Therefore, by
Lemma 2.9, (L, cl;) is isotonic. O]

Proposition 2.21. Let L be a locale whose all sublocales are
complemented. Let cly, and cly, be closure functions on L. Then,
the following conditions are equivalent.

(1) chi, (A) Ccly, (A) for all A€ SI(L).
(2) 1nt2L( ) C 1nt1L( ) for all A e SI(L).
(3) Nao(z) C Ni(z) for all x € L.

(4) Ny (x) C NS () for all x € L.

Proof. The proof is straightforward. 0

Definition 2.22. Let (L,cl;) and (M,cl,,) be isotonic closure
functions. A localic map f: L — M is

(1) continuous if cl; (f_1[B]) < f-1[cly,(B)] for every B € SI(L);
(2) closure-preserving if f(cl;(A)) < cly (f(A)) for any A € SI(L).

Proposition 2.23. Let (L,cl;) and (M,cly;) be isotonic closure
functions, and f: L — M a localic map. Then, the following
statements are equivalent.

(1) f: L — M s continuous.

(2) f: L — M is closure-preserving.

(3) If f(A) < B, then f(cl (A)) < cly(B) for all A € SI(L) and
B e SI(M).
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Proof. 1 = 3) Suppose that f: L — M is a continuous localic map,
A e S(L), Be S(M)and f(A) < B. Then A < f_4[B] and so,
cl; (A) < cl(f-1[B]). Hence, by (1),

cp(A) <dp(f[B]) € faldy(B)).
Now, since f_1[.] is the right adjoint of f].],

Hede(D) < fFa(du((B) < ey (B).
3 = 1) Let B be a sublocale of M and set A = f_;[B]. Then
F(A) < B and so by (3), f(cl,(A)) C clyy(B). Thus,

f(dL(f—l[B])) = f(C_lL(A)) < C_lM(B)

and so, cl; (f_1[B]) < f-1(cly;(B)). This means that f is continuous.
2 = 3) Let f be closure-preserving and f(A) < B. Since f: L - M
is closure-preserving, f(cl,(A)) < cly (f(A)) and by (K1),

cly (F(A)) <y (B).

Hence, f(cl,(4)) < cly(B).
3 = 2) Let A be a sublocale of L and set B = f(A). By (3),

F(ddi(4)) < iy (B) = dy (£(4)),
which means that f is closure-preserving. 0

Proposition 2.24. Let (L,cl;) and (M,cl,,) be two isotonic closure
functions that satisfies in aziom (K2) and (k4). Then localic map

f: L — M is continuous if and only if for every cl-closed sublocale B
of M, f_1[B] is a cl-closed sublocale of L.

Proof. =) Let B be a cl-closed sublocale M. Since, f: L — M is
continuous and B is cl-closed, we infer that

dp(f-1(B)) < f-1(cly(B)) = f-1(B).

Now, by (K2), f-1(B) < cl (f-1(B)). Hence f_1[B] is a cl-closed
sublocale of L.

<) Let B be a sublocale of M. Then by (K4), cl,,(B) is a cl-closed
sublocale of M and so f_;(cl);(B)) is a cl-closed sublocale of L. Now,
by (K2), B < cly(B). Since f_;(cly(B)) is cl-closed, we have

oy (f1(B) < dp(f-1(cy(B))) = f-1(cly(B)).
Therefore, localic map f: L — M is continuous. O
Proposition 2.25. Let L be a locale such that sublocales A, B, cl; (A)

and cl; (B) be complemented. Then, the following conditions are
equivalent for any isotonic closure function (L,cl;).
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(1) c(A)AB=AANd, (B)=0.
(2) There exist U € N(A) and V € N(B) such that
ANV =UANB=0.

Proof. 1 = 2) Let A and B be sublocales of L and
d(A)ANB=ANd (B)=0.
Since cl; (A) A B =0,
B < (l(4)" = (int, (4%))"" < int, (4%),

that is, A* € N(B). Thus, there exists V = A% € N(B) such that
ANV = AN A# = O. Similarly, we obtain A < int; (B*), that is,
there exists B# € N(A) with B¥ A B = 0.

2 = 1) Let A and B be sublocales of L. By (2), there exist sublocales
U and V of L such that A < int, (U), B < int,;(V), ANV = O, and
UAB = 0. Since AAV = O implies V < A%, Propositition 2.2 shows
that B < int, (V) < int, (A#). Hence, cl, (A) = (int, (4#))* < B*.
Since B is a complemented sublocale, we conclude that cl; (A)AB = O.
The same argument yields A A cl; (B) = O. O

3. G-CLOSED SUBLOCALES

In this section, we introduce generalized closed sublocales in isotonic
closure function and discuss some of their properties.

Definition 3.1. Let (L, cl;) be an isotonic closure function.

(1) A sublocale A of L is called a generalized cl-closed sublocale
(briefly, g-cl-closed sublocale) if cl, (A) C G whenever G is a
cl-open sublocale of (L,cl;) with A C G.

(2) A sublocale A of L is called a generalized cl-open sublocale
(briefly, g-cl-open sublocale) if F' C int;(A) whenever F is a
cl-close sublocale of (L,cl;) with F' C A.

Example 3.2. Let (L,cl;) be an isotonic closure function. Then, the
sublocales O and L are g-cl-closed and g-cl-open.

Remark 3.3. Every cl-closed sublocale is g-cl-closed. The converse is
not true, as can be seen from the following example.

Example 3.4. Let (L,cl;) be the isotonic closure function given in
Example 2.4 and A = o(c). It is easy to see that A is a g-cl-closed
sublocale. But cl; (0(c)) = o(d) and so A is not cl-closed.

Proposition 3.5. Let (L,cl;) be an isotonic closure function such
that cl; satisfies (K2). Then, the set Ge(L) of all g-cl-closed sublocales
forms a \/-semilattice.
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Proof. Let A and B be g-cl-closed sublocales of L, and G be an open
sublocale of L such that AV B C G. Then, A C G and B C G. Since
A and B are g-cl-closed, cl; (A) C G and cl; (B) C G. Then, by (K2),

el (AV B) C dl, (4) Vel (B) C G.
Therefore, AV B is g-cl-closed. 0

In the following example, we show that the intersection of two
g-cl-closed sublocales need not be a g-cl-closed sublocale.

Example 3.6. Let (L,cl;) be the isotonic closure function given in
Example 2.4. Consider the g-cl-closed sublocales A =< 1,¢,d > and
B =b(a). Then, AN B = b(c) is not g-cl-closed. To see this, consider
the open sublocale G = ¢(c). Then, AN B C G but cl;,(ANB) € G.
Therefore, AN B is not g-cl-closed.

Lemma 3.7. Let F' be a complemented sublocale of L such that
cl, (F)=F. Then, F* is a cl;-open sublocale of L.

Proof. By the definition of interior,
int, (F¥) = (o (F##))" = (d, (F))" = F*,
which means that F# is a cl;-open sublocale of L. 0J

Lemma 3.8. Let (L,cl;) be an isotonic closure function such that cl
satisfies (K2). If A and B are cl;-open sublocales, then AV B is
cl; -open.

Proof. Let A and B be cl;-open sublocales. Then by Proposition 2.2,
int; (A) Vint,(B) € int;(AV B)
and so, AV B Cint; (A V B). Since cl; satisfies (K2),
int,(AvB) C AV B.

Then, int; (A V B) = AV B. This means that AV B is a cl;-open
sublocale. O

Proposition 3.9. Let (L, cl;) be an isotonic closure function such that
cl; satisfies (K2). If A is a g-cl-closed sublocale and, F' is complemented
and cl-closed in (L,cl;), then AN F is g-cl-closed.

Proof. Let G be a cl-open sublocale of (L,cl;) such that AN F C G.
Then, A C G U F#. By Lemmas 3.7 and 3.8, G U F# is a cl-open
sublocale and so, cl; (A) C GU F#. Then, cl; (A)NF C G. Since F is
cl-closed,

d (ANF) Cc(A)Nd(F) =d, (A)NFCG.
Hence, AN F is g-cl-closed. O
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Proposition 3.10. Let (L,cl;) be an isotonic closure function such
that cl; satisfies (K2). Also, let A be a sublocale of L which is both
cl-open and g-cl-closed. Then, A is cl-closed.

Proof. By (K2), A C cl;(A). On the other hand, A C A and, A is both
cl-open and g-cl-closed. Thus, cl; (A) C A. Therefore, cl; (A) = A and
so, A is cl-closed. O

Proposition 3.11. Let (L,cl;) be an isotonic closure function such
that cl; satisfies (K4). If A is a g-cl-closed sublocale of (L,cl;) such
that A C B C cl; (A), then B is a g-cl-closed subset of (L,cl;).

Proof. Let G be a cl-open sublocale of (L, cl; ) such that B C G. Then,
A C G. Since A is g-cl-closed, cl; (A) C G. Now, by (K4),

cp(B) Cc(c (A) =l (A) CG.

Hence, B is a g-cl-closed sublocale. 0

4. THE CATEGORY OF ISOTONIC CLOSURE FUNCTIONS

In this section, we introduce the category of isotonic closure functions
over a locale L and discuss some of its properties.

Definition 4.1. Let (L, cl; ) and (M, cl,,) be isotonic closure functions.
A function ¢ : L(L,cl;) — (M,cl,,) is called a morphism if ¢ as a
function from L to M is a localic map and also ¢(cl;(A)) C cly, (¢(A))
for every A € SU(L).

Proposition 4.2. Isotonic closure functions and morphisms of isoton-
ics form a category denote by ICF.

Proposition 4.3. The category ICF has an initial object.

Proof. We show that (O, cly) is an initial object, where O = {T} and
clg : SI(O) — &(O), defined by clg(O) = O, is an isotonic
closure function.  Let (L,cl;) be an arbitrary isotonic closure
function. Then f : (O,cly) — (L,cl;), defined by f(1) = 1., is a
localic map. Moreover, for the sublocale O, f(cly(0)) = f(O) = Oy,
and cl; (f(0)) = cl,(0) = Op. Hence, f: (0,clp) — (L,cly) is a
morphism. It is clear that f is unique. ]

Theorem 4.4. The category ICF has a terminal object.

Proof. We show that (2,cl,) is a terminal object, where 2 is the
locale {0,1} and cl, : SI(2) — &¢(2) is defined by cl,(0) = O and
cly(2) = 2. Tt is clear that (2,cl,) is an isotonic closure function. Let
(L,cl;) be an arbitrary isotonic closure function. Then f : L — 2,
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defined by f(1) =1 and f(a) = 0 for every 1 # a € L, is a localic map.
Now, let A be a sublocale of L. If f(A) = O, then A = O and so,

f(C_lL(A)) =0= cly (f(A))

If f(A) # O, then C_lz(f(A)) = 2 and so, f(C_lL(A)) - C_lz(f(A))
Hence, f : (L,cl;) — (2,cly) is a morphism. It is clear that f is
unique. 0

We consider LOC as the category with locales for objects and the
localic maps for morphisms.

Remark 4.5. [I1] The epimorphisms in LOC are precisely the onto
localic maps.

Lemma 4.6. Let f : (L,cl;) — (M,cl,,) be a morphism in ICF.
Then, f is an epimorphism in ICF if and only if f is an epimorphism
in Loc.

Proof. Necessity. Suppose that f is an epimorphism in ICF and
fi,fo + M — K are localic maps such that fj o f = fyo f. We
define cly : SU(K) — SUK) by clx(0) = O and clg(A) = K for
every O # A € SI(K). Then, (K, cly) is an isotonic closure function.
For any sublocale A of M,

S (C—IM(A)) < C_lK(fl(A))‘

SUM) 2 Si(M)

W

SI(K) — = SU(K)

Hence, f1 : (M,cly,) — (K, clg) is a morphism. Similarly,
fo: (M,cly,) — (K, cly) is a morphism and f; o f = fy 0 f. Since f
is right-cancellable in ICF, we obtain f; = f5. Then, f: L — M is an
epimorphism in LOC.

Sufficiency. This is clear. O

Proposition 4.7. Let f : (L,cl;) — (M, cl,,) be a morphism in ICF.
Then, f is an epimorphism in ICF if and only if f is a surjective localic
map.

Proof. By Remark 4.5 and Lemma 4.6, the proof is straightforward. [J

Proposition 4.8. Let f : (L,cl;) — (M,cl,,) be a morphism in ICF.
Then, f is a monomorphism in ICF if and only if f is a monomorphism

in LOC
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Proof. Necessity. Let K % L belocalic maps such that fog = foh.

Consider the isotonic closure function cly : SU(K) — SU(K) defined by
clig(A) = O for all sublocales A of K. For every sublocale A of K,

h(clk(A)) = h(0) =0
and so,
h(clg(A)) € clp (h(T)).

Therefore, h : (K, cly) — (L,cl;) is a morphism in ICF. Similarly,
g: (K,clg) — (L,cl;) is a morphism and fog = foh. Since f is
left-cancellable in ICF, we conclude that g = h.

Sufficiency. This is clear. O
Lemma 4.9. [l 1] Let f: L — M be a localic map, and S a sublocale
of M. Then,
k=C
falS]—1L
b
J=C

is a pullback in LOC.

Lemma 4.10. Let f : (L,cl;) — (M,cly,) be a morphism, and S
a sublocale of M. Then g : (f-1[S],cly 1s) — (S,clg), defined by
g(z) = f(x), is @ morphism in ICF, where (f_1[S], cl; | (g)) and (S, clg)
are sub-closure functions of (L,cl;) and (M, cly,), respectively.

Proof. 1t is clear that g : f1[S] — S is a localic map. Consider a
sublocale B of f_1[S]. Then,

g(ﬂf,l[S](B)) = f(C_lL(B) N f—1[5]>
= F(ddi(B)) N f(Fl9])

This means that g : (f-1[S],cl; 15) — (5, clg) is a morphism in ICF.
0

Proposition 4.11. Let f : (L,cl;) — (M,cl,,) be a morphism and
let S be a sublocale of M. Then, the following square is a pullback in
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ICF.
(falS], el ) — (L, dly)

| &
(S, clg) T i—c (M, cly)

Proof. Let (K, clg) be an isotonic closure function, and let
a: (K,cy) — (L,cl;) and 8 : (K, cly) — (5, clg) be right morphisms
such that foa = j o 8. By Lemma 4.9, there exists a unique localic
map v : K — f_1]5], defined by v(z) = a(z), such that k oy = o and
go~y = . Now, we show that ~ is a right morphism in ICF. Let B be
a sublocale of K. Then, vy(B) is a sublocale of f_1[S]. Therefore,

’Y(C_lK(B)) = k(’Y(C_lK(B)D
— k(7(el(B) N f115])
C k(1(di(B)) k(S [5))

= Oé(ClK B)) N f_l[S

C clp(a(B)) N fa[S]

= cly,i5((B))

= cly 15 (7(B)).
This means that v : (K, clg) — (f-1[5],cl; | g) is @ morphism in ICF,
koy=aand govy=p. OJ

Lemma 4.12. [11] Let fi, fo : L — M be a pair of localic maps. Then,
(E,1g) is the equalizer of (fi1, f2) in LOC, where

E = {s|Vz, filz = s) = falz = s)},
and vg : E — L s the inclusion map.
Proposition 4.13. Let fi,fo : (L,cl;,) — (M,cl,,) be morphisms.
Then (E,cly) is the equalizer of (f1, f2) in ICF, where
E = {s|Vz, fi(zx = s) = folz — )},
and cly is the relativization of cl; to E.

Proof. Let g : (K,cly) — (L,cl;) be a right morphism such that

fiog = fyog. Since E is the equalizer of localic maps L :f;l M | we
2

conclude the existence of a unique localic map h : K — FE, defined
by h(z) = g(x), such that 1z o h = g. We show that
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h: (ch_lK) — (E7C_1E)

is a morphism in ICF. To see this, let T" be a sublocale of K. Then,
h(clg(T)) is a sublocale of E and

h(dwe(T)) = g(cdg(T)) € clp(g(T)).-

clgp
Then
h(C_lK(T)> Cdy (Q(T)) NE=clg (Q(T)> = C_lE(h(T))
and so, h is a unique morphism in ICF. U
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