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A CLASSIFICATION OF EXTENSIONS GENERATED
BY A ROOT OF AN EISENSTEIN-DUMAS

POLYNOMIAL

A. NIKSERESHT

Abstract. It is known that for a discrete valuation v of a field K
with value group Z, an valued extension field (K ′, v′) of (K, v) is
generated by a root of an Eisenstein polynomial with respect to v
having coefficients in K if and only if the extension (K ′, v′)/(K, v)
is totally ramified. The aim of this paper is to present the analogue
of this result for valued field extensions generated by a root of
an Eisenstein-Dumas polynomial with respect to a more general
valuation (which is not necessarily discrete). This leads to classify
such algebraic extensions of valued fields.

1. Introduction and preliminaries

The earliest and probably best known irreducibility criterion is the
Eisenstein irreducibility criterion:

Eisenstein criterion [3]. Let f(x) = anx
n + · · · + a1x + a0 be a

polynomial with coefficients in the ring Z of integers. Suppose that
there exists a prime number p such that

(i) an is not divisible by p,
(ii) ai is divisible by p for 0 ≤ i ≤ n− 1,
(iii) a0 is not divisible by p2.

Then f(x) is irreducible over the field Q of rational integers.
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The second best known irreducibility criterion based on divisibil-
ity of the coefficients by a prime is the so called Dumas irreducibility
criterion, due to Gustave Dumas:

Dumas criterion [2]. Let f(x) = anx
n+· · ·+a1x+a0 be a polynomial

with coefficients in Z. Suppose that there exists a prime p whose exact
power pri dividing ai (where ri is the largest with this property and
ri = ∞ if ai = 0), 0 ≤ i ≤ n, satisfy

(i) rn = 0,
(ii) ri

n−i
≥ r0

n
for 0 ≤ i ≤ n− 1,

(iii) gcd(r0, n) = 1.
Then f(x) is irreducible over Q.

Example. x3 + 3x2 + 9x+ 9 is irreducible over Q by applying Dumas
criterion.

We note that Eisenstein’s criterion is a special case of Dumas
criterion with r0 = 1.

In 1923, Joseph Kürschák extended Dumas criterion to polynomials
over more general fields by employing the notion of valuation [8]. He
was the first who formulated the formal definition of valuation on a
field in 1912 [9]. It is now well-known that valuations are the basic
and the most important concept in valuation theory. They were first
introduced as “p-adic valuations” over the field Q and later extended
to arbitrary fields.

p-adic valuation of Q. For a given prime number p, let vp stand for
the surjective map vp : Q −→ Z ∪ {∞} defined as follows. Write any
non-zero rational number x = pr a

b
, p ∤ ab. Set vp(x) = r. Then

(i) vp(xy) = vp(x) + vp(y),
(ii) vp(x+ y) ≥ min{vp(x), vp(y)}.

Set vp(0) = ∞ where (by convention) ∞ is a symbol satisfying
∞+∞ = ∞+ γ = γ +∞ = ∞,

for every γ ∈ Z. Then vp is called the p-adic valuation of (or on) Q.

By the above definition for a non-zero integer n and a prime p,
vp(n) stands for the largest integer i such that pi|n. This leads to the
following expression of Dumas criterion:

Dumas criterion (by using p-adic valuations). Let
f(x) = anx

n + · · ·+ a1x+ a0
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be a polynomial with coefficients in Z. Suppose there exists a prime
number p such that

(i) vp(an) = 0,
(ii) vp(ai)

n−i
≥ vp(a0)

n
for 0 ≤ i ≤ n− 1,

(iii) gcd(vp(a0), n) = 1.
Then f(x) is irreducible over Q.

In 1932, Krull generalized the notion of valuations over arbitrary
fields [6] as follows:

Krull valuation of a field K. Let K be a field and G(K) be a totally
ordered additive abelian group. A surjective map

v : K −→ G(K) ∪ {∞}
satisfying

(i) v(xy) = v(x) + v(y),
(ii) v(x+ y) ≥ min{v(x), v(y)},
(iii) v(0) = ∞,

is called a (Krull) valuation of (or on) K; and the pair (K, v) is called
a valued field. Moreover, G(K) is called the value group of (K, v).

For a valued field (K, v), the subring Ov = {x ∈ K| v(x) ≥ 0} of K
is called the valuation ring of v. It has a unique maximal ideal given
by Mv = {x ∈ K| v(x) > 0}. Ov/Mv is called the residue field of v
and denoted by R(K).

A valuation is said to be discrete if its value group is isomorphic to
Z. p-adic valuations of Q are the most famous examples of discrete
valuations. With the above definitions and notations, we are now in a
position to present a generalization of Eisenstein irreducibility criterion
by applying discrete valuations of an arbitrary field K (see [10, Chapter
3, C]):

Theorem 1.A. Let K be a field and v be a discrete valuation of K. If
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Ov[x]

is such that ai ∈ Mv for every 0 ≤ i ≤ n− 1 and a0 ̸∈ Mv
2, then f(x)

is irreducible over K.

Eisenstein polynomial with respect to v. A polynomial which
satisfies the hypothesis of Theorem 1.A is called an Eisenstein polyno-
mial with respect to v (or (K, v)).

Another generalization of Eisenstein irreducibility criterion, which is
more general and strengthened than the above one, was provided by
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Khanduja and Saha in 1997 [5]. They presented the following test over
arbitrary valued fields (not necessarily discrete) [5, Corollary 1.2]:

Theorem 1.B. Let v be a valuation of a field K and
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0

be a polynomial over K. If
(i) v(ai)

n−i
≥ v(a0)

n
> 0 for 0 ≤ i ≤ n− 1, and

(ii) there does not exist any integer d > 1 dividing n such that
v(a0)
d

∈ G(K),
then f(x) is irreducible over K.

The foregoing result led to the definition of Eisenstein-Dumas
polynomial with respect to an arbitrary (Krull) valued field (see [1]):

Eisenstein-Dumas polynomial with respect to v. A polynomial
which satisfies the assumption of Theorem 1.B is called an Eisenstein-
Dumas polynomial with respect to v (or (K, v)).

In order to explain the main result of this paper, we also need
to remark some notions about extension of valued fields in valuation
theory.

Let K ′/K be a field extension, v a valuation of K and v′ a valuation
of K ′. We say that (K ′, v′) is an extension of (K, v) (or v′ is an extension
of v to K ′) if v′|K = v (i.e., v is the restriction of v′ to K) and denote
it by (K ′, v′)/(K, v) (or briefly by K ′/K whenever the valuations are
clear from the context).

A valued field (K, v) is said to be henselian if it has a unique
extension to the algebraic closure K̃ of K, or equivalently, if it
admits a unique extension of the valuation to every algebraic
extension field. Henselian valuations have a prominent position in
valuation theory (see for example [4, Chapter 4] or [10, Section 3.2]).

For a valued field extension (K ′, v′)/(K, v), G(K) is a subgroup of
G(K ′) and also R(K) is a subfield of R(K ′) (see [4, Section 3.2]). When
K ′/K is finite, the extension (K ′, v′)/(K, v) is called totally ramified if
[K ′ : K] = [G(K ′) : G(K)].

In [10, Chapter 4, H], it is provided a characterization of finite
extensions generated by a root of some Eisenstein polynomial with
respect to a discrete valuation. More precisely, it is proved that a finite
extension (K ′, v′) of a discrete valued field (K, v) is generated by a root
of some Eisenstein polynomial with respect to v having coefficients in
K if and only if the extension (K ′, v′)/(K, v) is totally ramified. Here
we present a similar characterization of the extensions generated by a
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root of some Eisenstein-Dumas polynomial with respect to a (Krull)
henselian valuation. Indeed, it is shown that

Theorem 1.1. Let (K, v) be a henselian valued field and K ′/K be a
finite extension of fields. Denote by K̃ the algebraic closure of K. Then
the following statements are equivalent:

(i) K ′ = K(θ) for some θ ∈ K̃, where the minimal polynomial of θ
over K is an Eisenstein-Dumas polynomial with respect to v.

(ii) The extension K ′/K is totally ramified and the quotient group
G(K ′)/G(K) is cyclic.

2. Defectless extensions

This section is devoted to provide some definitions and preliminary
results related to the concept of defectless extensions needed in the last
section.

Take an arbitrary extension of valued fields (K ′, v′)/(K, v). As we
have mentioned in the introduction, the value group G(K) is a
subgroup of the value group G(K ′) and the residue field R(K) is
a subfield of the residue field R(K ′). Accordingly, the index
[G(K ′) : G(K)] is called the ramification index of this extension and
the degree [R(K ′) : (K)] is called its inertia degree (see [4, Section 3.2]).
The following result gives an important relation between the degree of
a finite extension, its ramification indexes and its inertia degrees (see
[4, Theorem 3.3.4] or [7, Theorem 7.49]).

Theorem 2.1. (Fundamental inequality) Let (K, v) be a valued field
and K ′ a finite extension of K. Let v1, . . . , vr be all distinct extensions
of v to K ′. Then we have the fundamental inequality

[K ′ : K] ≥
r∑

i=1

[G′
i(K

′) : G(K)][R′
i(K

′) : R(K)], (2.1)

where G′
i(K

′) and R′
i(K

′) are respectively the value group and the
residue field of the valued field (K ′, v′i) for every 1 ≤ i ≤ r.

A valued field (K, v) is called defectless in a finite extension K ′ of K
if equality holds in (2.1).

From the multiplicativity of extension degree, ramification index and
inertia degree, we obtain the multiplicativity of the defectlessness.

Proposition 2.2. [7, Lemma 11.6] Let (K, v) be a valued field, L/K
a finite extension and K ′/K a subextension of L/K. Let v1, . . . , vr be
all extensions of v from K to K ′. Then (K, v) is defectless in L if and
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only if (K, v) is defectless in K ′ and (K ′, vi) is defectless in L for every
1 ≤ i ≤ r.

Finally we remark some facts about henselian valued fields needed
in the proof of Theorem 1.1. Take a henselian valued field (K, v). We
always fix a unique extension of v to the algebraic closure K̃ of K and
denote it by ṽ. For every algebraic extension K ′ of K, the unique
extension of v to K ′ is the restriction of ṽ to K ′, denoted again by ṽ.
In this case, we mostly drop the valuation on K ′; and hence express
the extension (K ′, ṽ)/(K, v) by K ′/K. Thus, by the property of being
henselian and the above notions, a finite extension K ′/K of henselian
valued fields is said to be defectless if

[K ′ : K] = [G(K ′) : G(K)][R(K ′) : R(K)].
Accordingly, we can present an immediate consequence of Proposition
2.2 for henselian valued field extensions:

Corollary 2.3. Suppose that (K, v) is a henselian valued field, L/K
is a finite extension and K ′/K is a subextension of L/K. Then (K, v)
is defectless in L if and only if (K, v) is defectless in K ′ and (K ′, ṽ) is
defectless in L.

3. Proof of Theorem 1.1

Set [K ′ : K] = n and consider the unique extension of v to the
algebraic closure K̃ of K by ṽ.

To prove (i)⇒(ii), suppose that K ′ = K(θ) for some θ ∈ K̃ with the
minimal polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ K[x]

being an Eisenstein-Dumas polynomial with respect to v. Let
θ = θ1, . . . , θn ∈ K̃ be the roots of f(x). Since ṽ is henselian, we
have ṽ(θ1) = · · · = ṽ(θn) (see [4, Proposition 3.2.16]). This implies
that

v(a0) = v((−1)nθ1 · · · θn) = v(θ1 · · · θn) = nṽ(θ).

Denote ṽ(θ) = v(a0)
n

by δ. It is clear that
G(K) ⊆ G(K) + Zδ ⊆ G(K(θ)). (3.1)

We claim that the order of δ +G(K) in the quotient group G(K)+Zδ
G(K)

is
equal to n. It is obvious that n(δ+G(K)) = v(a0)+G(K) = G(K); and
n is the smallest positive integer with this property because if (other-
wise) there would exist r < n (r | n) with rδ ∈ G(K), then there would
also exist d > 1 dividing n such that v(a0)

d
∈ G(K), which contradicts

to the hypothesis that f(x) is an Eisenstein-Dumas polynomial with
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respect to v. Therefore, one has [G(K) + Zδ : G(K)] = n; hence the
fundamental inequality (2.1) together with (3.1) implies that

n = [K ′ : K] = [K(θ) : K] ≥ [G(K(θ)) : G(K)]
≥ [G(K) + Zδ : G(K)]
= n.

So one obtains [K(θ) : K] = [G(K(θ)) : G(K)], showing that K(θ)/K
(or K ′/K) is totally ramified. Moreover, the equation

[G(K(θ)) : G(K)] = [G(K) + Zδ : G(K)]

together with (3.1) shows that G(K(θ)) = G(K) + Zδ. Since the
quotient group G(K)+Zδ

G(K)
is cyclic, we deduce that G(K(θ))

G(K)
(or G(K′)

G(K)
) is

cyclic too, which completes the proof.
For (ii)⇒(i), since the extension K ′/K is totally ramified, one

observes
n = [K ′ : K] = [G(K ′) : G(K)]. (3.2)

Keeping in mind the hypothesis that G(K′)
G(K)

is cyclic, so there exists
θ ∈ K ′ such that ṽ(θ) + G(K) is a generator of the quotient group
G(K′)
G(K)

of order n. Hence by the properties of the valuation ṽ (i.e.,
ṽ(θ−1) = −ṽ(θ) (see [4, Section 2.1])), we may assume that ṽ(θ) > 0.

We first show that K ′ = K(θ). Since θ ∈ K ′, one sees that
G(K(θ)) ⊆ G(K ′).

Besides, ṽ(θ) +G(K) ∈ G(K(θ))
G(K)

is a generator of G(K′)
G(K)

; hence
G(K ′) ⊆ G(K(θ)).

Therefore,
G(K ′) = G(K(θ)). (3.3)

On the other hand, by the fundamental inequality (2.1), one has
[K ′ : K] ≥ [G(K ′) : G(K)][R(K ′) : R(K)].

This together with the assumption that K ′/K is totally ramified (the
equation (3.2)) yields R(K ′) = R(K). Since θ ∈ K ′, we see that
R(K) ⊆ R(K(θ)) ⊆ R(K ′). Hence the equality R(K ′) = R(K) implies
that

R(K ′) = R(K(θ)). (3.4)
Again by applying the assumption of K ′/K being totally ramified,
we conclude that K ′/K is defectless, and hence using Corollary 2.3,
K ′/K(θ) is also defectless. So

[K ′ : K(θ)] = [G(K ′) : G(K(θ))][R(K ′) : R(K(θ))].

Therefore, by virtue of (3.3) and (3.4), one obtains K ′ = K(θ), as
desired.
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Now consider f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 as the minimal

polynomial of θ over K. The proof of the theorem is complete once
we show that f(x) is an Eisenstein-Dumas polynomial with respect
to v. As pointed out in the proof of (i)⇒(ii), v(a0) = nṽ(θ) > 0.
Moreover, we can claim that there exist at least two indices j and k
with 0 ≤ j < k ≤ n such that

min
0≤i≤n

{ṽ(aiθi)} = ṽ(ajθ
j) = ṽ(akθ

k), (3.5)

because (otherwise) there would exist one j, 0 ≤ j ≤ n, such that

min
0≤i≤n

{ṽ(aiθi)} = ṽ(ajθ
j).

So by the strong triangle law (see [4, page 28]),

∞ = ṽ(g(θ)) = ṽ(
n∑

i=0

aiθ
i) = min

0≤i≤n
{ṽ(aiθi)} = ṽ(ajθ

j).

Therefore, ∞ = v(aj)+jṽ(θ); and hence ∞ = v(aj)+j v(a0)
n

. One would
conclude from a0 ̸= 0 that aj = 0, a contradiction. This completes the
proof of the claim and verifies (3.5).

According to (3.5), v(aj) + jṽ(θ) = v(ak) + kṽ(θ); and hence
(k − j)ṽ(θ) = v(aj)− v(ak) ∈ G(K).

From the fact that n is the smallest positive integer such that
nṽ(θ) ∈ G(K), one sees that j = 0 and k = n. Consequently, for
every 0 ≤ i ≤ n, (3.5) becomes

v(a0) = nṽ(θ) ≤ v(ai) + iṽ(θ).

This shows that for every 0 ≤ i ≤ n− 1,
v(ai)

n− i
≥ v(a0)

n
= ṽ(θ) > 0.

It remains to show that there does not exist any integer d > 1

dividing n such that v(a0)
d

∈ G(K). This can be easily obtained
because if (otherwise) there would exist d0 > 1 dividing n such that
v(a0)
d0

∈ G(K), then there would exist a positive integer r < n such
that rṽ(θ) ∈ G(K), contradicting the assumption that ṽ(θ) +G(K) is
a generator of the quotient group G(K′)

G(K)
of order n.
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A ClASSIFICATION OF EXTENSIONS GENERATED BY A ROOT OF
AN EISENSTEIN-DUMAS POLYNOMIAL

A. NIKSERESHT

آيزنشتاين-دوماس چندجمله ای يك از ريشه ای به وسيلۀ توليد شده توسيع های از رده بندی يک

نيک  سرشت آزاده

ايران بروجرد، (ره)، بروجردی اله آيت دانشگاه پايه، علوم دانشكده رياضی، گروه

توسيع ميدان يک ،Z ارزياب گروه با K ميدان يك از v گسسته ارزياب يک براي كه است واضح
ضرايبش كه v به نسبت آيزنشتاين چندجمله ای يک از ريشه ای به وسيله ی (K, v) از (K ′, v′) ارزيابی
اصلی هدف باشد. منشعب تماماً (K ′, v′)/(K, v) توسيع اگر فقط و اگر می   شود توليد می   باشد، K در
يک از ريشه ای به وسيله ی توليدشده ارزيابی ميدان توسيع های برای نتيجه اين مشابه ارائه ی مقاله اين
حصول می  باشد. نيست) گسسته الزاماً (كه كلی تر ارزياب يک به نسبت آيزنشتاين-دوماس چندجمله ای

می شود. ارزيابی ميدان های از جبری توسيع های چنين از رده بندی ارائه ی به منجر نتيجه اين

كلی . ميدان های در چندجمله ای ها ارزيابی، ميدان های جبری، ميدان توسيع های کلیدی: کلمات
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