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EXTENSION AND TORSION FUNCTORS WITH
RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI*

ABSTRACT. In this paper we generalize the Rigidity Theorem and
Zero Divisor Conjecture for an arbitrary Serre subcategory of
modules. For this purpose, for any regular M-sequence x1, ..., T,
with respect to S we prove that if Torf(ﬁ,]\/l) € S, then
Torf(—L_—~ M) € S, for all i > 1. Also we show that if
Ext}t?(—L—— M) € S, then Exth(—L—, M) € S, for all

(T1,eyT0n) (Z15eesTn)”

integers i > 0 (i # n).

1. INTRODUCTION

Throughout this paper, R denotes a commutative and Noetherian
ring with non-zero identity, I denotes an arbitrary ideal and M
denotes a finitely generated R-module. Let S be a Serre subcategory of
the category of R-modules. In 1961, M. Auslander proposed the Zero
Divisor Conjecture in [2] as follows:

Zero divisor conjecture. Let R be a local ring and M be a finitely
generated R-module of finite projective dimension. If z € R is a non-
zerodivisor on M, then x is a non-zerodivisor of R.

This conjecture was proved by M. Hochster, L. Szpiro, C. Peskin,
and P. Robert (see [0]), in special cases. Also M. Auslander introduced
rigidity concept as a generalization of Zero Divisor Conjecture.
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Definition. Let (R,m) be a local ring. An R-module M is called
rigid if Tor/*(M, N) = 0 for some finitely generated R-module N, then
Torl(M,N) = 0 for any j > i (see [2]).

He also stated the following theorem.

Rigidity Theorem. Let (R, m) be a regular local ring and M be a
finitely generated R-module. Then M is rigid.

The Rigidity Theorem was proved by M. Auslander in unramified
case. S. Lichtenbaum proved the theorem for arbitrary regular local
rings in 1966 (see [5]). In this paper, we generalize the Zero Divisor
Conjecture and Rigidity Theorem for an arbitrary Serre subcategory of
modules. An R-module M is called S-rigid if Tor’ (A, N) € S for some
finitely generated R-module N, then Torf‘(M ,N) € § for any j > i.
Also for an R-module M, Generalized Zero Divisor Conjecture holds
if every regular M-sequence with respect to § is a regular R-sequence
with respect to §. For this purpose, we prove the following two main
theorems.

Theorem 1. Let R be a Noetherian (not necessary local) ring and
M be a non-zero finitely generated R-module. Let x4, ..., x, be a poor
regular M-sequence with respect to S. If Torl( 0 M) € S, then

R
T1yeensTn)’
Torﬁ(ﬁ, M) € S, for any i > 1 (see theorem 3.4).

Theorem 2. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S —E.gradg(I,M) =n > 1. Assume that zy,...,x, € I is a maximal
regular M-sequence with respect to S. If E><1;71‘;“2((361 R —, M ) €S,
then EXtZR(m
3.9). Finally, as a consequence of the above theorems, we prove some

corollaries for top local cohomology modules (see theorems 3.5 and
3.10).

2. PRELIMINARIES

A subcategory of the category of R-modules and R-homomorphisms
S is said to be a Serre class (or Serre subcategory), if for any exact
sequence of R-modules

0—-L—->M-—N—0,

the R-module M belongs to § if and only if each of L and N belong
to S.

Definition 2.1. [I, Definition 2-2] Suppose that M is an R-module. A
sequence xq, ..., T, of elements of R is called a poor regular M-sequence
with respect to S if for each i = 1,...,n the R-module (0: M x;)

[T z;,_1)M
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belongs to §. If in addition m ¢ S, we say that xq,...,x, is a
regular M-sequence with respect to S.

For an R-module L, we denote

R
S—Suppy L := {p € Suppy L : " ¢ S}

and

S—AsspL:={p € Assg L : ? ¢ S}.

Lemma 2.2. [, Lemma 2- 1] Let M be a finitely generated R-module.
Then M € S if and only if% € S for all p € Suppyp M. In particular,

for any two finitely generated R-modules N and L with
Supprp N = Suppy L, we have N € § if and only if L € S.

The following statements are equivalent by the definition.

Lemma 2.3. [I, Lemma 2- 3] Let M be a finitely generated R-module
and x1,...,x, a sequence of elements of R. Then the following are
equivalent:

(1) z; ¢ U p foralli=1,...,n.

peS—Assp e

2) The sequence x1, ..., x, is a poor reqular M -sequence with respect
g
to S.
3) For any p € S — Suppp M, the elements £t ..., %2 of the local
R 1 1
ring R, form a poor reqular M,-sequence.
(4) The sequence x%',...,xt" is a poor reqular M-sequence with

respect to S for all positive integers ty, ..., t,.

Definition 2.4. [I, Definition 2 - 6] Let M be an R-module and a be
an ideal of R. The notation of Ext grade of a on M with respect to S
is defined as follows:

R
S—E .gradeg(a, M) := inf{i € Ny : EXt;—i(E, M) ¢ S}.

3. MAIN RESULTS
Similar to the property of regular sequences we have the following.

Lemma 3.1. Let zq,...,x, be a poor reqular M -sequence with respect
to S, then

Torff(——
! ((:vl,...,xn)
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Proof. Let x1,...,x, is a poor M-sequence with respect to S, then for
every p € S—Suppg(M), &, ..., % is a poor regular M,-sequence. Thus

Torl™ (

M) eS. O

(G Tn)

Lemma 3.2. Let R be a Noetherian (not necessary local) ring and M
be a non-zero finitely generated R-module. Let x be a poor reqular M -

sequence with respect to S. [fTor?(%, M) € S, then (0:gx)@pM € S.

Proof. The exact sequence

0—>Rz—>R—>%—>O (3.1)
implies that Torg(%, M) = Torf(Rx, M) and hence
Torf(Rx, M) € S. (3.2)
Also, the exact sequence
0— (0:gzr) > R— Rx — 0 (3.3)

induces the exact sequence

0 — Tor®(Re, M) — (0:r2)@rM — RORM -5 Re@zM — 0.
Now, we have the short exact sequence
0 — Tor®(Rxz, M) — (0:px)®@rM — Kerh — 0 (3.4)

where Kerh = (0:gz)M, and (0:gz)M € S. Thus by (3.2) and exact
sequence (3.4), we get (0:,2)@rM € S.
Il

We now generalize the rigid concept to an arbitrary Serre
subcategory as follows.

Definition 3.3. An R-module M is called S-rigid if Tor (M, N) € S
for some finitely generated R-module N, then Torf(M ,N) € S for any
J =

In the following theorem, we introduce and prove conditions for
S—rigidity.

Theorem 3.4. Let R be a Noetherian (not necessary local) ring and
M be a non-zero finitely generated R-module. Let xy,...,z, be a poor
reqular M -sequence with respect to S. If Torf”(( ,M) € S, then

R
TLyeeey In)
Tor( M) e S, foranyi>1.

]

R
(21,4eeesTn)
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Proof. 1t is enough to show that & — Supp Torf(L M) = 0.
If p € S — Suppr(M) — V(z1,...,2y), then (F,.., %) = R,, hence

q>
may assa;ﬁ.é that S — Suppp M C V(zxq,...,z,) and M ¢ S. We use
induction on n. Assume that n = 1 and set x := x;. By Lemma 3.2,
we have (0:gpz)®@pM € S.
On the other hand, Supp Tor?((0:zz), M) C Supp ((0:r z)®p M)
for all # > 0. Thus by Lemma 3.2, for all i > 0
Torf((0:gx), M) € S.
Also, using the exact sequences (3.1) and (3.2), we have
R
Torf ((0:gx) , M) = TorfH (Rx, M) = Torfiz(R—,
x
for all # > 1. Therefore, by Lemma 3.1, Torf(%,M) € S, for any
1> 1.
Now assume that n > 1 and the result has been proved for smaller val-

ues of n. Set I := (z1,...,2,-1) and J = (x1,..,2,). Let
p eSS — SupprM. By Lemma 2.3, we have the exact sequence

M)

IR, IR, JR,

which induces the following exact sequence

0— — 0,

Tori"(]%, M,) 4%&(%, M) = Tor§v<%p, My).

Thus, we obtain

R R
TOT2P(IRT’JP, Mp) = IT" T0r2p<%a Mp),

and then by Nakayama’s Lemma Tor;” (IRT‘;, M,) = 0. This implies that
Torg(% M) € §. Now, by the inductive hypothesis,

R
Torf(T, M)eS (3.5)
for all 4 > 1. The exact sequence

O—>(O:z}zxn)—>?—>%—>0

induces the exact sequence

J
Torf (=, M) — Torﬁrl(T,M) — TorlR((O:?xn),M).

77
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By (3.5)
rd
Tor; (T’M) S (3.6)
for all 7 > 1. Finally the exact sequence
J R R
0— 7 — T — 7 — 0

induces the exact sequence

R R J
Torfil(T, M) — Torﬁl(j, M) — Torf(Y,M).
By (3.6) and (3.5), we have Tor/(%,M) € S, for all i > 1. Hence

Torﬁ(?, M) € S, for all i > 1, by Lemma 3.1.
O]

Bahmanpour in [3, Corollary 2 - 5] proved that if 21, ..., z, is a poor
regular M-regular sequence, then

Tor? H? (M)) = Tor®(—E— M),

R
n+i(M’ (z1,..2n) (T1,eyTm )
for all © > 0. Therefore, if z1, ..., x, is a poor regular M-sequence with
respect to S, then Torf(%, M) € § if and only if

(xlz-“ywn

R n
Torn—l-i(ﬁ’ (wl,,azn)(M)) S 87

-----

for all « > 0. Hence we have the following equivalent statements.

Theorem 3.5. Let R be a Noetherian ring and M be a non-zero finitely
generated R-module. Let n > 1 be an integer and xy,...,x, be a poor
reqular M -sequence with respect to S. Then the following statements
are equivalent:

M) e S for everyi > 1;

R
T1yeesTn)’

) Gy M) €S
3) Torf(—L— H (M)) € S for all integers i > n+ 1;
)

(wl,...@n)’ (Il,...,xn)

(xl,“.’xn) Y H?xl,,l'n)(M>> e S'

By Zero Divisor Conjecture any regular M-sequence is a regular R-
sequence. We generalize the Zero Divisor Conjecture as follows.
Zero Divisor Conjecture with respect to S. Every regular M-sequence
with respect to § is a regular R-sequence with respect to S.
In the following, we provide some conditions in which the conjecture is

established.

Lemma 3.6. Let x4, ...,x, be a poor reqular M -sequence with respect
to S. Then

Ext? (—M—,

R ((xl,...,xn)
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Proof. Let x1,...,x, is a poor M-sequence with respect to S, then for

every p € S — Suppgr(M), %, ..., % is a poor regular M,-sequence.

st M,) =0, by [3, Lemma 3 - 3]. This implies that

.....

S — Supp Ext’5( - R —~, M) = 0. Hence

Extit (—L— M) e S.
U

Remark 3.7. The concept of & — C.grade(l, M) is defined as the
supremum length of poor M-sequences with respect to S in I. It is
shown that any two maximal regular M-sequences in I with respect
to S have the same length. In [I, Theorem 2 - 8] it is shown that the
concepts S — C.grade(I, M) and S — E.grade(I, M) are the same.

Theorem 3.8. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S—E .grader(I, M) =n. Letxy,...x, be a mazimal reqular M -sequence
in I with respect to S. If EXt%+2(($1 fxn),M) €S, then xq,...,x, € 1
is a reqular R-sequence with respect to S.

Proof. We use induction on n. Assume that n=1 and set x := x;. The
exact sequences (3.1) and (3.3) imply that

Ext% ((0:px), M) = Ext%! (Ra, M) = Extﬁ,f(%, M)
for all i > 1. By assumption, Ext}(4, M) € S and so
Extp((0:pz), M) € S. (3.7)
Since x is a regular M-sequence with respect to S and
Supp (0:pz) €V (2),
thus
Hompg((0:gz), M) € S (3.8)

by Lemma 2.2. We claim that (0:gz) € S. Assume the opposite,
then there exists q € Ass(0:gz) such that % ¢ S. Thus z € q and
q € AssR. Since x is a regular M-sequence with respect to S,

q ¢ AssM and so qRy ¢ AssM,. Therefore depth M; > 1, and so
M, # 0 and q € S—SupprM. The exact sequences

0— (0:pyx) = M —aM — 0

and

0—>xM—>M—>£—>O
M
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and (3.7) and (3.8) imply that Hompg((0:pz), 25) € S. So, by Lemma
3.2, Homp, ((0:, ) Myy — 0. Since Suppr, (0:5,%) C V(%) and £

Rq 1/ §Mq

is a regular M,-sequence, we have Hoqu((R 3 zj\f\} ) = 0 which is a
contradiction. Therefore = is a regular R—sequence w1th respect to S.
Now assume, inductively, that n > 1 and the assertion has been proved
for smaller values of n.

Set a := (21, ...,x,_1) and b := (21, ..., ¥, ), and assume that z, ..., x,
is an regular M-sequence in I with respect to §. We show that

Ext (£, IMM) € S. For this purpose, we can assume that

S —Suppp M CV(z1,...,z,).
Let p € S—SupprM. The exact sequence

OaE—>E—>EaO
a a b

induces the exact sequence
R R b
Ext’é“(g, M) — Ext’;;l(? M) — Exﬂyl(a, M)

R
— Exti?(

M).
b’)

Also the exact sequence

R
O—>(O:Eb)—>——>9—>0
@ a a

induces the exact sequence
Extg(g M) — Extp((0:2b), M) — Extg“(g, M)
— Extgrl(%, M).
If Ext}™ (£, M) € S, then by Lemma 3.6, (3.9) and (3.9),
Ext%((():%b),M) €Ss.
If Ext?%“(%, M) ¢ S, then by Lemma 3.6 and hypothesis,

Extlpht (—- By , M,) = Ex t"“(bR" M,). (3.9)

alt,’ alt,’
Thus by (3.9) and (3.9) Ext%((0:zb), M) € S. On the other hand,
by assumption, Ext?é(%, M) € S for all integers 0 <i <n — 1. Thus

Extg((():%b),M) €S (3.10)
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for all integers 0 < i < n. We conclude that Exty(£, M) € S, for all
integers 0 < i < n, by Lemma 2.2. Now, we claim that (0:zb) € S.

Assume the opposite, then there exists q € Ass(0:z : b) such that £ ;&S

Since q € Ass(£), there is v € Ass R such that ¢ C gand £ ¢ S. Slnce
xq is a regular M- sequence with respect to S and S— Supp(M ) C V(xy),
so t ¢ Ass M. This implies that M, # 0 and so v € S — Supp(M). The
exact sequences

0— (0:ppzq) > M — 1M — 0

and

0= M — M — —
= ill'lM

and (3.10) imply that

Exto ! ((0:2b), xiw )eS

for all integers 0 < ¢ < n. Therefore

Ext’; ' ((0: e bR) =57) =0

for all integers 0 < i < n, specially HomRt((O Iy bR,), ,clM ) = 0. Since
Suppp, (01%5Rt) cVv (%), implies that

Hompg, (=

which is a contradiction. Therefore x,, is a regular %—sequence with
respect to S. Now, the exact sequence

= R, R
S 5T 50
aR, aR, bR,

induces the exact sequence

Extle(—u};p,Mp) —1>ExtRj1(—a}§p,Mp) — ExtR;L2(—béJp,Mp)
wio R R
— BExtir? (=, My) = Extir? (=2, My).

aRy aR,’

By hypothesis Exth(b 7 ,M,) = 0 and so « is monomorphism. On

the other hand, the exact sequence

—0

i :
0— M,— M, — PR,
1 M
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induces the exact sequence
R, M, ) >
I g;n
alz, M,

— Ex tn+2( R

R,
n+1
Extp (—- aR,

. M,) — Ex t"“
) (&

, My)

a R
%Ext%jz(ﬁ, M,).
p

) = 0, by Nakayama.

tn+l( Ry M,

Since « is monomorphism, we get Ex aRy’ T,

Thus Extj™ (£, J:MM) € S. Now, since

S—E .gradg(I, =S—E.gradg(I,M) — 1,

M
r, M )
it follows from the inductive hypothesis that zq,...,x,_1 is a regular
R-sequence with respect to S. But we have already proved that z,, is
a regular %—sequence with respect to S. Therefore z1,...,2,_1,x, is a
regular R-sequence with respect to S. 0

Next, we prove that for any maximal regular M-sequence x4, ..., T,

in [ with respect to S, if Ext%”((rl ?mn) ,M) € S, then

Bxth (g2, M) €S

for all i >0 (i # n).

Theorem 3.9. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S —E.gradg(I,M) =n > 1. Assume that x,...,x, € I is a mazximal
reqular M -sequence with respect to S. If Ext%”(% M) € S, then

' 1yeesn)’
Ext s ( M) € S, for all integers i > 0 (i # n).

R
(Z1,eeeyn)?
Proof. Let p € S—Supp(M). By Theorems 2.3 and 3.8, %, ..., % is a
poor regular R,-sequence. We show that

EXt?«zp((ﬂR—"M), M,) =0
10071
for all i > n+1. For this purpose, we may assume that p € V (21, ..., z,).

Since pdg, (%) = n, clearly Ext%p((ﬂ]fﬁ,Mp) = 0 for all

i>n+1. SoEth(m, M) e S foralli>n+1. O

Corollary 3.10. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S—E.gradg(I,M) =n > 1. Assume that xy,...,z, € I is a mazximal
reqular M -sequence with respect to S. Then the following statements
are equivalent:

(1) xq,...,z, is an regqular R-sequence with respect to S;
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(2) ExtR(I el M) € S foralli > n;

(3) Ext"“( M) e S;

(4) EXtR(—xn): ?xl, a)(M)) €S;

(5) ExtR(—zn), (e1,em)(M)) € S for all integers i > 1.

Proof. This is an immediate consequence of Theorems 3.8 and 3.9. [
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