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EXTENSION AND TORSION FUNCTORS WITH
RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI∗

Abstract. In this paper we generalize the Rigidity Theorem and
Zero Divisor Conjecture for an arbitrary Serre subcategory of
modules. For this purpose, for any regular M -sequence x1, ..., xn

with respect to S we prove that if TorR2 (
R

(x1,...,xn)
,M) ∈ S, then

TorRi (
R

(x1,...,xn)
,M) ∈ S, for all i ≥ 1. Also we show that if

Extn+2
R ( R

(x1,...,xn)
,M) ∈ S, then ExtiR(

R
(x1,...,xn)

,M) ∈ S, for all
integers i ≥ 0 (i ̸= n).

1. Introduction

Throughout this paper, R denotes a commutative and Noetherian
ring with non-zero identity, I denotes an arbitrary ideal and M
denotes a finitely generated R-module. Let S be a Serre subcategory of
the category of R-modules. In 1961, M. Auslander proposed the Zero
Divisor Conjecture in [2] as follows:

Zero divisor conjecture. Let R be a local ring and M be a finitely
generated R-module of finite projective dimension. If x ∈ R is a non-
zerodivisor on M , then x is a non-zerodivisor of R.

This conjecture was proved by M. Hochster, L. Szpiro, C. Peskin,
and P. Robert (see [6]), in special cases. Also M. Auslander introduced
rigidity concept as a generalization of Zero Divisor Conjecture.
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Definition. Let (R,m) be a local ring. An R-module M is called
rigid if TorRi (M,N) = 0 for some finitely generated R-module N , then
TorRj (M,N) = 0 for any j ≥ i (see [2]).

He also stated the following theorem.
Rigidity Theorem. Let (R,m) be a regular local ring and M be a

finitely generated R-module. Then M is rigid.
The Rigidity Theorem was proved by M. Auslander in unramified

case. S. Lichtenbaum proved the theorem for arbitrary regular local
rings in 1966 (see [5]). In this paper, we generalize the Zero Divisor
Conjecture and Rigidity Theorem for an arbitrary Serre subcategory of
modules. An R-module M is called S-rigid if TorRi (M,N) ∈ S for some
finitely generated R-module N , then TorRj (M,N) ∈ S for any j ≥ i.
Also for an R-module M , Generalized Zero Divisor Conjecture holds
if every regular M -sequence with respect to S is a regular R-sequence
with respect to S. For this purpose, we prove the following two main
theorems.

Theorem 1. Let R be a Noetherian (not necessary local) ring and
M be a non-zero finitely generated R-module. Let x1, ..., xn be a poor
regular M -sequence with respect to S. If TorR2 ( R

(x1,...,xn)
,M) ∈ S, then

TorRi (
R

(x1,...,xn)
,M) ∈ S, for any i ≥ 1 (see theorem 3.4).

Theorem 2. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S − E .gradR(I,M) = n ⩾ 1. Assume that x1, ..., xn ∈ I is a maximal
regular M -sequence with respect to S. If Extn+2

R ( R
(x1,...,xn)

,M) ∈ S,
then ExtiR(

R
(x1,...,xn)

,M) ∈ S, for all integers i ≥ 0 (i ̸= n) (see theorem
3.9). Finally, as a consequence of the above theorems, we prove some
corollaries for top local cohomology modules (see theorems 3.5 and
3.10).

2. Preliminaries

A subcategory of the category of R-modules and R-homomorphisms
S is said to be a Serre class (or Serre subcategory), if for any exact
sequence of R-modules

0 → L → M → N → 0,

the R-module M belongs to S if and only if each of L and N belong
to S.

Definition 2.1. [1, Definition 2·2] Suppose that M is an R-module. A
sequence x1, ..., xn of elements of R is called a poor regular M -sequence
with respect to S if for each i = 1, ..., n the R-module (0: M

(x1,...,xi−1)M
xi)
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belongs to S. If in addition M
(x1,...,xn)M

/∈ S, we say that x1, ..., xn is a
regular M -sequence with respect to S.

For an R-module L, we denote

S− SuppR L := {p ∈ SuppR L :
R

p
/∈ S}

and
S−AssR L := {p ∈ AssR L :

R

p
/∈ S}.

Lemma 2.2. [1, Lemma 2 · 1] Let M be a finitely generated R-module.
Then M ∈ S if and only if R

p
∈ S for all p ∈ SuppR M . In particular,

for any two finitely generated R-modules N and L with
SuppR N = SuppR L, we have N ∈ S if and only if L ∈ S.

The following statements are equivalent by the definition.

Lemma 2.3. [1, Lemma 2 · 3] Let M be a finitely generated R-module
and x1, ..., xn a sequence of elements of R. Then the following are
equivalent:

(1) xi /∈
∪

p∈S−AssR
M

(x1,...,xi−1)

p for all i = 1, ..., n.

(2) The sequence x1, ..., xn is a poor regular M-sequence with respect
to S.

(3) For any p ∈ S − SuppR M , the elements x1

1
, ..., xn

1
of the local

ring Rp form a poor regular Mp-sequence.
(4) The sequence xt1

1 , ..., x
tn
n is a poor regular M-sequence with

respect to S for all positive integers t1, ..., tn.

Definition 2.4. [1, Definition 2 · 6] Let M be an R-module and a be
an ideal of R. The notation of Ext grade of a on M with respect to S
is defined as follows:

S−E .gradeR(a,M) := inf{i ∈ N0 : Ext
i
R(

R

a
,M) /∈ S}.

3. Main results

Similar to the property of regular sequences we have the following.

Lemma 3.1. Let x1, ..., xn be a poor regular M-sequence with respect
to S, then

TorR1 (
R

(x1, ..., xn)
,M) ∈ S.
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Proof. Let x1, ..., xn is a poor M -sequence with respect to S, then for
every p ∈ S−SuppR(M), x1

1
, ..., xn

1
is a poor regular Mp-sequence. Thus

Tor
Rp

1 ( Rp

(
x1
1
,...,xn

1
)
,Mp) = 0, by [4, Exercise 1 · 1.12]. This implies that

S − SuppTorR1 (
R

(x1,...,xn)
,M) = ∅. Hence TorR1 (

R
(x1,...,xn)

,M) ∈ S. □

Lemma 3.2. Let R be a Noetherian (not necessary local) ring and M
be a non-zero finitely generated R-module. Let x be a poor regular M-
sequence with respect to S. If TorR2 ( R

(x)
,M) ∈ S, then (0:Rx)⊗RM ∈ S.

Proof. The exact sequence

0 → Rx → R → R

Rx
→ 0 (3.1)

implies that TorR2 (
R
Rx

,M) ∼= TorR1 (Rx,M) and hence

TorR1 (Rx,M) ∈ S. (3.2)
Also, the exact sequence

0 → (0:Rx) → R → Rx → 0 (3.3)
induces the exact sequence

0 → TorR1 (Rx,M) → (0:Rx)⊗RM → R⊗RM
h→Rx⊗RM → 0.

Now, we have the short exact sequence
0 → TorR1 (Rx,M) → (0:Rx)⊗RM → Kerh → 0 (3.4)

where Kerh ∼= (0:Rx)M , and (0:Rx)M ∈ S. Thus by (3.2) and exact
sequence (3.4), we get (0 :Rx)⊗RM ∈ S.

□

We now generalize the rigid concept to an arbitrary Serre
subcategory as follows.

Definition 3.3. An R-module M is called S-rigid if TorRi (M,N) ∈ S
for some finitely generated R-module N , then TorRj (M,N) ∈ S for any
j ≥ i.

In the following theorem, we introduce and prove conditions for
S−rigidity.

Theorem 3.4. Let R be a Noetherian (not necessary local) ring and
M be a non-zero finitely generated R-module. Let x1, ..., xn be a poor
regular M-sequence with respect to S. If TorR2 ( R

(x1,...,xn)
,M) ∈ S, then

TorRi (
R

(x1,...,xn)
,M) ∈ S, for any i ≥ 1.
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Proof. It is enough to show that S − SuppTorRi (
R

(x1,...,xn)
,M) = ∅.

If p ∈ S − SuppR(M) − V (x1, ..., xn), then (x1

1
, ..., xn

1
) = Rp, hence

Tor
Rp

i ( Rp

(
x1
1
,...,xn

1
)
,Mp) = 0. Therefore without loss of generality, we

may assume that S − SuppR M ⊆ V (x1, ..., xn) and M /∈ S. We use
induction on n. Assume that n = 1 and set x := x1. By Lemma 3.2,
we have (0:Rx)⊗RM ∈ S.

On the other hand, SuppTorRi ((0:Rx),M) ⊆ Supp ((0:R x)⊗R M)
for all i ≥ 0. Thus by Lemma 3.2, for all i ⩾ 0

TorRi ((0:Rx),M) ∈ S.
Also, using the exact sequences (3.1) and (3.2), we have

TorRi ((0:Rx) ,M) ∼= TorRi+1 (Rx,M) ∼= TorRi+2(
R

Rx
,M)

for all i ≥ 1. Therefore, by Lemma 3.1, TorRi (
R
Rx

,M) ∈ S, for any
i ≥ 1.
Now assume that n > 1 and the result has been proved for smaller val-
ues of n. Set I := (x1, ..., xn−1) and J := (x1, ..., xn). Let
p ∈ S − SuppRM . By Lemma 2.3, we have the exact sequence

0 → Rp

IRp

xn
1→ Rp

IRp

→ Rp

JRp

→ 0,

which induces the following exact sequence

Tor
Rp

2 (
Rp

IRp

,Mp)
xn
1→Tor

Rp

2 (
Rp

IRp

,Mp) → Tor
Rp

2 (
Rp

JRp

,Mp).

Thus, we obtain

Tor
Rp

2 ( Rp

IRp
,Mp) =

xn

1
Tor

Rp

2 ( Rp

IRp
,Mp),

and then by Nakayama’s Lemma Tor
Rp

2 ( Rp

IRp
,Mp) = 0. This implies that

TorR2 (
R
I
,M) ∈ S. Now, by the inductive hypothesis,

TorRi (
R

I
,M) ∈ S (3.5)

for all i ≥ 1. The exact sequence

0 → (0:R
I
xn) →

R

I
→ J

I
→ 0

induces the exact sequence

TorRi+1(
R

I
,M) → TorRi+1(

J

I
,M) → TorRi ((0:R

I
xn),M).
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By (3.5)

TorRi (
J

I
,M) ∈ S (3.6)

for all i ≥ 1. Finally the exact sequence

0 → J

I
→ R

I
→ R

J
→ 0

induces the exact sequence

TorRi+1(
R

I
,M) → TorRi+1(

R

J
,M) → TorRi (

J

I
,M).

By (3.6) and (3.5), we have TorRi (
R
J
,M) ∈ S, for all i > 1. Hence

TorRi (
R
J
,M) ∈ S, for all i ≥ 1, by Lemma 3.1.

□
Bahmanpour in [3, Corollary 2 · 5] proved that if x1, ..., xn is a poor

regular M -regular sequence, then
TorRn+i(

R
(x1,...,xn)

,Hn
(x1,...,xn)(M)) ∼= TorRi (

R
(x1,...,xn)

,M),

for all i ≥ 0. Therefore, if x1, ..., xn is a poor regular M -sequence with
respect to S, then TorRi (

R
(x1,...,xn)

,M) ∈ S if and only if
TorRn+i(

R
(x1,...,xn)

,Hn
(x1,...,xn)(M)) ∈ S,

for all i ≥ 0. Hence we have the following equivalent statements.
Theorem 3.5. Let R be a Noetherian ring and M be a non-zero finitely
generated R-module. Let n ≥ 1 be an integer and x1, ..., xn be a poor
regular M-sequence with respect to S. Then the following statements
are equivalent:

(1) TorRi (
R

(x1,...,xn)
,M) ∈ S for every i ≥ 1;

(2) TorR2 (
R

(x1,...,xn)
,M) ∈ S;

(3) TorRi (
R

(x1,...,xn)
,Hn

(x1,...,xn)(M)) ∈ S for all integers i ≥ n+ 1;
(4) TorRn+2(

R
(x1,...,xn)

,Hn
(x1,...,xn)(M)) ∈ S.

By Zero Divisor Conjecture any regular M -sequence is a regular R-
sequence. We generalize the Zero Divisor Conjecture as follows.
Zero Divisor Conjecture with respect to S. Every regular M -sequence
with respect to S is a regular R-sequence with respect to S.
In the following, we provide some conditions in which the conjecture is
established.
Lemma 3.6. Let x1, ..., xn be a poor regular M-sequence with respect
to S. Then

Extn+1
R (

R

(x1, ..., xn)
,M) ∈ S.
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Proof. Let x1, ..., xn is a poor M -sequence with respect to S, then for
every p ∈ S − SuppR(M), x1

1
, ..., xn

1
is a poor regular Mp-sequence.

Thus Extn+1
R ( Rp

(
x1
1
,...,xn

1
)
,Mp) = 0, by [3, Lemma 3 · 3]. This implies that

S − SuppExtn+1
R ( R

(x1,...,xn)
,M) = ∅. Hence

Extn+1
R ( R

(x1,...,xn)
,M) ∈ S.

□
Remark 3.7. The concept of S − C.grade(I,M) is defined as the
supremum length of poor M -sequences with respect to S in I. It is
shown that any two maximal regular M -sequences in I with respect
to S have the same length. In [1, Theorem 2 · 8] it is shown that the
concepts S − C.grade(I,M) and S − E.grade(I,M) are the same.

Theorem 3.8. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S−E .gradeR(I,M) = n. Let x1, ...xn be a maximal regular M-sequence
in I with respect to S. If Extn+2

R ( R
(x1,...,xn)

,M) ∈ S, then x1, ..., xn ∈ I

is a regular R-sequence with respect to S.

Proof. We use induction on n. Assume that n=1 and set x := x1. The
exact sequences (3.1) and (3.3) imply that

ExtiR ((0:Rx) ,M) ∼= Exti+1
R (Rx,M) ∼= Exti+2

R (
R

Rx
,M)

for all i ≥ 1. By assumption, Ext3R( R
Rx

,M) ∈ S and so
Ext1R((0:Rx),M) ∈ S. (3.7)

Since x is a regular M -sequence with respect to S and
Supp (0:Rx) ⊆ V (x),

thus
HomR((0:Rx),M) ∈ S (3.8)

by Lemma 2.2. We claim that (0:Rx) ∈ S. Assume the opposite,
then there exists q ∈ Ass (0:Rx) such that R

q
/∈ S. Thus x ∈ q and

q ∈ AssR. Since x is a regular M -sequence with respect to S,
q /∈ AssM and so qRq /∈ AssMq. Therefore depthMq ≥ 1, and so
Mq ̸= 0 and q ∈ S−SuppRM . The exact sequences

0 → (0:Mx) → M → xM → 0

and
0 → xM → M → M

xM
→ 0
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and (3.7) and (3.8) imply that HomR((0:Rx),
M
xM

) ∈ S. So, by Lemma
3.2, HomRq((0:Rq

x
1
), Mq

x
1
Mq

) = 0. Since SuppRq

(
0:Rq

x
1

)
⊆ V (x

1
) and x

1

is a regular Mq-sequence, we have HomRq(
Rq

(x
1
)
, Mq

x
1
Mq

) = 0 which is a
contradiction. Therefore x is a regular R-sequence with respect to S.
Now assume, inductively, that n > 1 and the assertion has been proved
for smaller values of n.

Set a := (x1, ..., xn−1) and b := (x1, ..., xn), and assume that x1, ..., xn

is an regular M -sequence in I with respect to S. We show that
Extn+1

R (R
a
, M
xnM

) ∈ S. For this purpose, we can assume that

S − SuppR M ⊆ V (x1, ..., xn).

Let p ∈ S−SuppRM . The exact sequence

0 → b

a
→ R

a
→ R

b
→ 0

induces the exact sequence

Extn+1
R (

R

b
,M) → Extn+1

R (
R

a
,M) → Extn+1

R (
b

a
,M)

→ Extn+2
R (

R

b
,M).

Also the exact sequence

0 → (0:R
a
b) → R

a
→ b

a
→ 0

induces the exact sequence

ExtnR(
R

a
,M) → ExtnR((0:R

a
b),M) → Extn+1

R (
b

a
,M)

→ Extn+1
R (

R

a
,M).

If Extn+1
R (R

a
,M) ∈ S, then by Lemma 3.6, (3.9) and (3.9),

ExtnR((0:R
a
b),M) ∈ S.

If Extn+1
R (R

a
,M) /∈ S, then by Lemma 3.6 and hypothesis,

Extn+1
Rp

(
Rp

aRp

,Mp) ∼= Extn+1
Rp

(
bRp

aRp

,Mp). (3.9)

Thus by (3.9) and (3.9) ExtnR((0:R
a
b),M) ∈ S. On the other hand,

by assumption, ExtiR(Rb ,M) ∈ S for all integers 0 ≤ i ≤ n− 1. Thus

ExtiR((0:R
a
b),M) ∈ S (3.10)
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for all integers 0 ≤ i ≤ n. We conclude that ExtiR(
R
b
,M) ∈ S, for all

integers 0 ≤ i ≤ n, by Lemma 2.2. Now, we claim that (0:R
a
b) ∈ S.

Assume the opposite, then there exists q ∈ Ass(0:R
a
b) such that R

q
/∈ S.

Since q ∈ Ass(R
a
), there is r ∈ AssR such that r ⊆ q and R

r
/∈ S. Since

x1 is a regular M -sequence with respect to S and S−Supp(M) ⊆ V (x1),
so r /∈ AssM . This implies that Mr ̸= 0 and so r ∈ S − Supp(M). The
exact sequences

0 → (0:Mx1) → M → x1M → 0

and
0 → x1M → M → M

x1M
→ 0

and (3.10) imply that

Exti−1
R ((0:R

a
b), M

x1M
) ∈ S

for all integers 0 ≤ i < n. Therefore

Exti−1
Rr

((0: Rr
aRr

bRr),
Mr

x1
1
Mr

) = 0

for all integers 0 ≤ i ≤ n, specially HomRr((0: Rr
aRr

bRr),
Mr

x1
1
Mr

) = 0. Since

SuppRr

(
0: Rr

aRr

bRr

)
⊆ V

(
x1

1

)
, implies that

HomRr(
Rr

(
x1
1
)
, Mr

x1
1
Mr

) = 0,

which is a contradiction. Therefore xn is a regular R
a
-sequence with

respect to S. Now, the exact sequence

0 → Rp

aRp

xn
1→ Rp

aRp

→ Rp

bRp

→ 0

induces the exact sequence

Extn+1
Rp

(
Rp

aRp

,Mp)
xn
1→Extn+1

Rp
(
Rp

aRp

,Mp) → Extn+2
Rp

(
Rp

bRp

,Mp)

→ Extn+2
Rp

(
Rp

aRp

,Mp)
α→Extn+2

Rp
(
Rp

aRp

,Mp).

By hypothesis Extn+2
Rp

( Rp

bRp
,Mp) = 0 and so α is monomorphism. On

the other hand, the exact sequence

0 → Mp

xn
1→Mp →

Mp
xn

1
Mp

→ 0
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induces the exact sequence

Extn+1
Rp

(
Rp

aRp

,Mp) → Extn+1
Rp

(
Rp

aRp

,
Mp

xn

1
Mp

) → Extn+2
Rp

(
Rp

aRp

,Mp)

α→Extn+2
Rp

(
Rp

aRp

,Mp).

Since α is monomorphism, we get Extn+1
Rp

( Rp

aRp
, Mp

xn
1
Mp

) = 0, by Nakayama.
Thus Extn+1

R (R
a
, M
xnM

) ∈ S. Now, since

S−E .gradR(I,
M

xnM
) = S−E .gradR(I,M)− 1,

it follows from the inductive hypothesis that x1, ..., xn−1 is a regular
R-sequence with respect to S. But we have already proved that xn is
a regular R

a
-sequence with respect to S. Therefore x1, ..., xn−1, xn is a

regular R-sequence with respect to S. □
Next, we prove that for any maximal regular M -sequence x1, ..., xn

in I with respect to S, if Extn+2
R ( R

(x1,...,xn)
,M) ∈ S, then

ExtiR

(
R

(x1,...,xn)
,M

)
∈ S

for all i ≥ 0 (i ̸= n).

Theorem 3.9. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S − E .gradR(I,M) = n ⩾ 1. Assume that x1, ..., xn ∈ I is a maximal
regular M-sequence with respect to S. If Extn+2

R ( R
(x1,...,xn)

,M) ∈ S, then
ExtiR(

R
(x1,...,xn)

,M) ∈ S, for all integers i ≥ 0 (i ̸= n).

Proof. Let p ∈ S− Supp(M). By Theorems 2.3 and 3.8, x1

1
, ..., xn

1
is a

poor regular Rp-sequence. We show that

ExtiRp
( Rp

(
x1
1
,...,xn

1
)
,Mp) = 0

for all i ≥ n+1. For this purpose, we may assume that p ∈ V (x1, ..., xn).
Since pdRp

( Rp

(
x1
1
,...,xn

1
)
) = n, clearly ExtiRp

( Rp

(
x1
1
,...,xn

1
)
,Mp) = 0 for all

i ≥ n+ 1. So ExtiR(
R

(x1,...,xn)
,M) ∈ S for all i ≥ n+ 1. □

Corollary 3.10. Let R be a Noetherian (not necessary local) ring, M
be a non-zero finitely generated R-module, and I be an ideal of R with
S−E .gradR(I,M) = n ⩾ 1. Assume that x1, ..., xn ∈ I is a maximal
regular M-sequence with respect to S. Then the following statements
are equivalent:

(1) x1, ..., xn is an regular R-sequence with respect to S;
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(2) ExtiR(
R

(x1,...,xn)
,M) ∈ S for all i > n;

(3) Extn+2
R ( R

(x1,...,xn)
,M) ∈ S;

(4) Ext2R(
R

(x1,...,xn)
,Hn

(x1,...,xn)(M)) ∈ S;
(5) ExtiR(

R
(x1,...,xn)

,Hn
(x1,...,xn)(M)) ∈ S for all integers i ≥ 1.

Proof. This is an immediate consequence of Theorems 3.8 and 3.9. □
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EXTENSION AND TORSION FUNCTORS WITH
RESPECT TO SERRE CLASSES

S. ARDA AND S. O. FARAMARZI

سر رده های به نسبت تابدار و توسیعی تابعگون های

فرامرزی٢ اله سعادت و اردا١ سجاد

ایران تهران، نور، پیام دانشگاه تکمیلی تحصیلات مرکز ریاضی، ١,٢دانشکده ی

مدول ها از دلخواه سر رسته ی یک برای صفر مقسوم علیه حدس و صفرشونده قضیه ی ما مقاله، این در
اگر S به نسبت x١, . . . , xn منظم M-رشته ی هر ازای به منظور، این برای می دهیم. تعمیم

TorR٢ (
R

(x١,...,xn)
,M) ∈ S,

که، می دهیم نشان ما هم چنین .TorRi ( R
(x١,...,xn)

,M) ∈ S داریم ،i ⩾ ١ هر ازای به آن گاه
داریم (i ̸= n (که i ≥ ٠ صحیح عدد هر ازای به آن گاه ،Extn+٢

R ( R
(x١,...,xn)

,M) ∈ S اگر
.ExtiR( R

(x١,...,xn)
,M) ∈ S

کوهمولوژی مدول بالاترین صفرشونده، قضیه ی صفر، علیه مقسوم حدس سر، رده های کلیدی: کلمات
موضعی.
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