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POLYMATROIDAL IDEALS AND LINEAR
RESOLUTION

S. BANDARI

ABSTRACT. Let S = KJx1,...,z,] be a polynomial ring over a
field K and I C S be a monomial ideal with a linear resolution.
Let m = (z1,...,2,) be the unique homogeneous maximal ideal
and Im be a polymatroidal ideal. We prove that if either Im is
polymatroidal with strong exchange property, or I is a monomial
ideal in at most 4 variables, then I is polymatroidal. We also show
that the first homological shift ideal of polymatroidal ideal is again
polymatroidal.

1. INTRODUCTION

Throughout the paper, S = Klzy,...,x,] denotes the polynomial
ring in n indeterminates over an arbitrary field K with the unique
homogeneous maximal ideal m = (z,...,2,) and I C S is a monomial
ideal of S. The unique minimal set of monomial generators of [ will
be denoted by G (7). The monomial localization of I with respect to a
monomial prime ideal P is the monomial ideal I(P) which is obtained
from I by substituting the variables x; ¢ P by 1. Observe that I(P)
is the unique monomial ideal with the property that I(P)Sp = ISp.
The monomial localization I(P) can also be described as the saturation
I (I1,,¢p ). When I is a squarefree monomial ideal, we see that
I(P) =1I:uwhere u =[], .px;. Note that I(P) is a monomial ideal
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in S(P), where S(P) is the polynomial ring in the variables which
generate P.

It has been observed that a monomial localization of a polymatroidal
ideal is again polymatroidal ([7, Corollary 3.2]).

The author and Herzog conjectured that a monomial ideal [ is
polymatroidal if and only if I(P) has a linear resolution for all
monomial prime ideals P ([!, Conjecture 2.9]). They gave an
affirmative answer to the conjecture in the following cases: 1) [ is
generated in degree 2; 2) I contains at least n — 1 pure powers; 3) [ is
monomial ideal in at most three variables; 4) I has no embedded prime
ideal and either | Ass (S/I)| < 3 or height (/) =n — 1.

Now, we consider the following statement: (x) Let I be a monomial
ideal with linear resolution such that I'm is polymatroidal. Then [ is
polymatroidal.

Observe that (%) holds if Bandari-Herzog’s conjecture is satisfied,
because I(P) = (Im)(P) for all P # m.

In this paper, we prove the statement () in the following cases: 1)
Im is polymatroidal with strong exchange property; 2) I is a monomial
ideal in at most 4 variables.

Due to experimental evidence, the author, Bayati and Herzog
conjectured that the homological shift ideals of a polymatroidal ideal
are again polymatroidal. This conjecture is still open. There is a
positive answer to the conjecture for matroidal ideals [2], and for
polymatroidal ideals with strong exchange property [0]. In this
paper, we prove that the first homological shift ideal of polymatroidal
ideal is again polymatroidal.

2. MAIN RESULTS

Definition 2.1. Let I C S be a monomial ideal. We say that I has a
d-linear resolution, if I has the following minimal graded free resolution:

0— S™(—(d+t) = - — S"(—=(d+1)) —
St (—(d+(i—1)) = - = S™(=(d+1)) » S™(=d) = I =0

Lemma 2.2. Let I C S be a monomial ideal with d-linear resolution
and f be a homogeneous element of I : m\ I. Then deg(f) =d — 1.

Proof. Let 0 # f € I : m\ I be a homogeneous element of degree r. We
want to show that r = d — 1. We have the homogeneous isomorphism
of degree n,

o: (0:gym) — Hy(xy,...,205/1)
q = ger AN---Aey
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where H,,(x1, ..., x,;S/I) is the nth Koszul homology module of z1, ..., z,

(see (][5, page 268]). Hence, there exists K-module isomorphism

(0:g/1m)y =2 Hy(x1,..., 20, S/1)p4m
Now, since 0 # f 4+ I € (0 :g/; m),, we have that

Hy(x1, ..., 20 8/1)pgn # 0.
Hence, it follows by [5, Corollary A.3.5] that
Brain(S/I) = dimg Hy (21, ..., 205 S/1)pin # 0.

Therefore B, ,4n4+1(1) = Brrn(S/I) # 0. Now, since I has a d-linear
resolution, it follows that r +n+1=n+d, and sor =d — 1. O

The next result has been proven in [I, Page 760]. We provide more
explanations of the proof by using Lemma 2.2.

Lemma 2.3. Let I C S be a monomial ideal with linear resolution.
Then [ = Im : m.

Proof. Obviously we have I C Im : m. Assume that the inclusion is
strict. Then there exists a homogeneous element f € Im : m\ [ and so
f is a homogeneous element of I : m\ /. Let I have a d-linear resolution.
it follows by Lemma 2.2 that deg(f) = d — 1. On the other hand, since
Im has (d + 1)-linear resolution and f € I'm : m\ Im, it follows again
by Lemma 2.2 that deg(f) = d, which is a contradiction. O

Definition 2.4. Let I C S be a monomial ideal. We say that [ has
linear quotients, if there exists an order wuq,...,u, of G (I) such that
for j = 2,...,r, the minimal monomial generators of the colon ideal
(w1, ...,uj_1) : u; are variables.

Definition 2.5. Let I C S be a monomial ideal generated in a single
degree. The ideal I is polymatroidal if for any two elements u,v € G (1)
such that

deg,,(u) > deg,,(v)
there exists an index j with deg, (u) < deg, (v) such that z;(u/z;) € I.

In the case that the polymatroidal ideal I is squarefree, it is called
matroidal.

Any polymatroidal ideal I has linear quotients ([8, Lemma 1.3]),
which implies that I has a linear resolution ([3, Lemma 4.1]). We have
also the product of polymatroidal ideals is again polymatroidal (|3,
Theorem 5.3]). In particular, if I is a polymatroidal ideal, then Im is
polymatroidal.
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The author and Herzog conjectured that a monomial ideal I is
polymatroidal if and only if all monomial localizations of I have a linear
resolution. If the conjecture is satisfied, then the following statement
holds:

(%) Let I be a monomial ideal with linear resolution such that I'm is
polymatroidal. Then I is polymatroidal.

The following example shows that the linear resolution condition of
the statement (x) cannot be weakened.

Example 2.6. The ideal I = (2%, 2179, 23, 2913) C S = K|[z1, 79, 73]
is generated in a single degree, but it does not have a linear resolution.
On the other hand Im is polymatroidal, but I is not.

Definition 2.7. Let [ C S be a monomial ideal. We say that [
satisfies the strong exchange propertyif I is generated in a single degree,
and for all u,v € G (I) and for all 4,j with deg, (u) > deg, (v) and
deg, (u) < deg,, (v), one has z;(u/z;) € I.

Now, we show that () holds if Im is a polymatroidal with strong
exchange property.

Proposition 2.8. Let I C S be a monomial ideal with a linear
resolution and Im be polymatroidal with strong exchange property.
Then I is polymatroidal with strong exchange property.

Proof. Let u,v € G (I) with deg, (u) > deg, (v) and
deg,, (u) < deg, (v).
So uxy,vr, € Im for each £ =1,...,n. Now, since
deg, (uzy) > deg,, (vak)

and deg, (uxy) < deg, (vzy), it follows that x;(uzy/z;) € Im for each
k=1,...,n. Hence xj(u/xz;)m C Im. Since [ has a linear resolution,
it follows by Lemma 2.3, x;(u/x;) € I. O

Lemma 2.9. ([, Lemma 3.1]) Let I C S be a polymatroidal ideal.

Then for any monomials u = z{* - - - 2% andv = 2% - - - 2% in G (I) and

for eachi with a; < b;, one has j with a; > b; such that x;(u/x;) € G (I).
Lemma 2.10. Let I C S = K[xy,...,x,] be a monomial ideal with
assumption I = Im :m. Let uw € G (I) and Im be a polymatroidal ideal.

If for 1 <i#j <n, (u/x;)z? € Im, then (u/z;)x; € 1.

Proof. Since I = Im : m, it is enough to show that (ux;/x;)m C Im.
We have (ux;/z;)z; = uz; € Im and (u/z;)x? € Im. Now, let k # i, j.
Then with considering Lemma 2.9 for monomials (u/z;)z? € Im and
uzy € Im, we have (uz;/x;)zxy € Tm.
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Finally, we are ready to prove that (x) holds for monomial ideals in
at most 4 variables.

Proposition 2.11. Let I C S = K|[xy,...,x,] be a monomial ideal
with n < 4. Let I have a linear resolution and Im be polymatroidal.
Then I is polymatroidal.

Proof. We have already noted that the claim is true for n < 3. Now,
let n = 4. Since [ has a linear resolution, it follows by Lemma 2.3
that I = Im : m. Let deg, (u) > deg, (v), so there exists an index j
with deg, (u) < deg, (v). For convenience, we assume that j = 2. So
deg,,(u) < deg,,(v). Now, we consider the following cases:

Case 1: deg,,(u) < deg,,(v) and deg, (u) < deg, (v). With
considering Lemma 2.9 for uzy and vz, we have (uxs/x1)xe € Im.
So by Lemma 2.10, it follows that (u/z1)xs € 1.

Case 2: deg,, (u) > deg,,(v) and deg,, (u) > deg,, (v). With consid-
ering exchange property between ux, and vy, we have

(uzy/x1)Ty € TM.

So Lemma 2.10, implies that (u/x1)zs € I.

Case 3: deg,,(u) < deg,,(v) and deg, (u) > deg, (v). With
considering exchange property between uxy and wvxy, it follows that
either (uxy/x1)xe € Im or (uxy/x1)x3 € IM.

- Assume (uz4/z1)x2 € Im. With considering Lemma 2.9 for uxs
and vz, we have either uz?/z; € Im, so there is nothing to prove, or
urs/zy € Im. Now with comparing (uzy/z1)zs and ux3/z,, we have
ux3/zy € Im, which implies that (u/x;)xs € 1.

- Assume (uzy/x1)xs € Im. With considering Lemma 2.9 for uz;
and vz3, we have either uzi/z; € Im, so there is nothing to prove, or
urs/zy € Im. Now with comparing (uzy/z1)z3 and uz3/z,, we have
uzs/zy € Im, which implies that (u/x)xs € 1.

Case 4: deg,,(u) > deg,,(v) and deg,, (u) < deg,, (v). This follows
by a similar argument of case (3). O

In the sequel, we want to show that the first homological shift ideal
of polymatroidal ideal is again polymatroidal. Let a = (a4, ...,a,) be
an integer vector with a; > 0. For a monomial ideal I, we set

I=*=(ueG()| deg, (u) <a;fori=1,...,n).

Obviously, if I is polymatroidal, then /=2 is again polymatroidal.

A monomial z{* --- z% will be denoted by x2.
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Definition 2.12. Let [ C S be a monomial ideal with minimal multi-
graded free S-resolution

FO=-FK—=F,— - —=F—=>FK—=>1—=0

where F; = @?’:1 S(—ayj) for i = 0,...,t. The vectors a;; are called

the multigraded shifts of the resolution F. The monomial ideal
HS;(I)= x| j=1,...,b)

is called the ith homological shift ideal of I.

Proposition 2.13. Let I C S be a polymatroidal ideal. Then
HS (1) = (Im)=2,
where a = (ay, . ..,a,) and
a; = max{deg, (u) |u € G(I)}.
In particular, HS 1(I) is polymatroidal.

Proof. Let ux; € (Im)=? such that u € G (I). So deg, (u) < a;. Hence
there exists v € G (/) such deg, (v) > deg, (u). Now, since I is
polymatroidal it follows by Lemma 2.9 that there exists an index j
such that deg, (v) < deg, (u) and w = z;(u/z;) € G(I). Hence
ziu — z;w = 0. Now, let

G(I)={u,...,u}

and F' be the free S-module with basis e1,...,e;. Let ¢ : F' — I be
the S-module homomorphism with ¢(e;) = u; for i = 1,...,¢. Then
the multi-degree of e; is the same as that of u;. We assume that u = u,
and w = u, for r,s € {1,...,t}. So

o(xie, —xjes) = xu — xjw =0,

hence z;e, — ze, € Ker (¢). Therefore, z;u € HS {([).

Conversely, By [0, Proposition 1.3], HS 1(I) is generated by all
monomials of the form z;u with u € G (/) for which there exists j # i
and v € G (I) such that z;u = x;v. Therefore HS {(I) C (Im)=*. O
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