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 Back-break is one of the adverse effects of blasting, which results in unstable mine 
walls, high duration, falling machinery, and inappropriate fragmentation. Thus, the 
economic benefits of the mine are reduced, and safety is severely affected. Back-break 
can be influenced by various parameters such as rock mass properties, blast geometry, 
and explosive properties. Therefore, during the blasting process, back-break must be 
accurately predicted, and other production activities must be done to prevent and 
reduce its adverse effects. In this regard, a hybrid model of extreme gradient boosting 
(XGB) is proposed for predicting back-break using gray wolf optimization (GWO) 
and particle swarm optimization (PSO). Additionally, validation of the hybrid model 
is conducted using XGBoost, gene expression programming (GEP), random forest 
(RF), linear multiple regression (LMR), and non-linear multiple regression (NLMR) 
methods. For this purpose, the data obtained from 90 blasting operations in the 
Chadormalu iron ore mine are collected by considering the parameters of the blast 
pattern design. According to the results obtained, the performance and accuracy level 
of hybrid models including GWO-XGB (R2 = 99, RMSE = 0.01, MAE = 0.001, VAF 
= 0.99, a-20 = 0.98), and PSO-XGB (99, 0.01, 0.001, 0.99, 0.98) are better than the 
XGBoost (97, 0.185, 0.132, 0.98, 95), GEP (96, 0.233, 0.186, 0.967, 0.935), RF (97, 
0.210, 0.156, 0.97, 0.94), LMR (96, 0.235, 0.181, 0.964, 0.92), and NLMR (96, 0.229, 
0.177, 0.968, 0.93) models. Notably, the GWO-XGB hybrid model has superior 
overall performance as compared to the PSO-XGB model. Based on the sensitivity 
analysis results, hole depth and stemming are the essential effective parameters for 
back-break. 
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Highlights: 

 Prediction of back-break using the hybrid 
XGBoost 

 Comparing the real back-break with the results 
of more than six AI models 

 Investigating the effects of the drilling pattern 
parameters on the back-break 

1. Introduction 
Drilling and blasting are cost-effective 

techniques for removing overburden and extraction 
in open-pit mines [1]. However, with the current 
blasting techniques, only a tiny amount (20-30%) 
of the blast energy is used for fragmentation. Most 
(70-80%) of the blast energy is lost with varying 

degrees of adverse consequences such as back-
break, fly rock, ground vibration, and air blast [2-
4]. The leading cause of energy loss in blasting 
operations is the mismatch and coordination 
between the design parameters of the blast pattern, 
the properties of explosives, and rock mass [5]. 
Among the undesirable consequences of blasting, 
back-break is considered a fundamental challenge 
primarily caused by improper design [2]. The term 
back-break refers to the phenomenon of breaking 
rocks beyond the blast zone and the last row. This 
can occur due to a variety of reasons such as 
improper fragmentation, instability of high walls, 
falling machinery, high duration, lower efficiency, 
and safety. 
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Back-break control and minimization is one of 
the ongoing concerns of designers, planners, and 
environmental specialists [6]. The review of the 
literature indicates that the researchers have 
proposed several parameters to happening back-
break and its remedial actions [7]. According to 
Mohammadnejad et al., controllable and 
uncontrollable parameters are the two well-known 
parameters that contribute to back-break results 
during blast operations [8]. In this way, the 
uncontrollable parameters are related to a rock 
mass's physical and mechanical properties. On the 
other hand, controllable parameters are related to 
blast design and explosive parameters [9]. Also in 
other studies, the parameters affecting the back-
break have been divided into three categories: 
geometric parameters of explosion model design, 
explosives properties, and rock mass 
characteristics and discontinuities [5, 10]. 

Konya and Walter described some causes of 
back-break such as high burden, stiff benches, long 
stemming length, and wrong time delay [11]. 
Monjezi et al. stated that the hole depth, spacing, 
burden, and stemming length are the most critical 
parameters that affect the spread of the back-break 
[12]. Gate et al. believed that a combination of 
factors in blasting such as hyper-stemming and 
short time delays in the blasting sequence may lead 
to a severe back-break [7]. Roy et al. and Singh et 
al. stated that inappropriate lag distance between 
rows and longer stemming length leads to back-
break in stiff benches [13, 14]. The reason for this 
phenomenon is the excessive trapping of gases in 
the last row of holes due to unacceptable delay. 

As mentioned, the properties of explosives are 
among the influencing parameters that can be 
controlled on back-break. Enayatollahi and 
Aghajani used salt and ANFO to reduce back-break 
and controlled explosion [15]. The coupling ratio 
is a crucial parameter affecting back-break 
severity. This parameter shows the amount of 
direct contact of the explosive material with the 
walls of the blast hole. For this purpose, Iverson et 
al. evaluated the blast damage caused by fully 
coupled explosive powder. They showed that 
reducing the coupling ratio can reduce the back-
break [16]. 

It is challenging to accurately and quickly 
predict and evaluate the back-break based on 
various effective parameters. Considering the 
diversity of effective parameters and the 

complexity of their interactions, using new 
techniques such as artificial intelligence (AI) may 
help solve this problem. Therefore, various studies 
have been conducted to predict the back-break 
using artificial neural networks, genetic 
programming, fuzzy set theory, random decision 
trees, support vector machines, and random forest 
(see Table 1). Some recent work with soft 
computing techniques for back-break prediction is 
shown in Table 1. On the other hand, many studies 
have been done to predict the consequences of 
blasting using XGBoost and GEP methods [17-22]. 
According to the above and Table 1, the XGBoost 
and GEP methods were not used to predict the 
back-break. On the other hand, GEP has the 
advantage of providing a precise relationship for 
prediction compared to other methods. 

The study on the prediction of back-break is 
significant in the field of mine blasting as it can 
help in reducing the associated risks and costs. 
Back-break is a common issue in blasting 
operations that can lead to safety hazards, damage 
to equipment, and delays in production. Accurate 
prediction of back-break can help in optimizing 
blasting parameters such as hole size, explosive 
type, and blast design, ultimately leading to better 
fragmentation and reduced back-break. In addition, 
the use of predictive models can aid in minimizing 
the need for trial-and-error methods, reducing 
operational costs, and increasing productivity. This 
study proposes a hybrid model that combines the 
strengths of both artificial neural networks and 
decision trees to accurately predict back-break. The 
significance of this study lies in its contribution to 
the development of more effective and efficient 
blasting practices, ultimately leading to safer and 
more profitable mining operations. 

Therefore, this study aims to develop a hybrid 
model for predicting back-break in open-pit 
blasting. The proposed model combines the power 
of XGBoost with the optimization capabilities of 
PSO and GWO algorithms. To assess the 
performance of the hybrid model, it will be 
compared with other established models including 
XGBoost (optimized with grid search), GEP, 
LMR, RF, and NLMR. This study is expected to 
contribute to the development of accurate and 
efficient models for predicting back-break, which 
can ultimately lead to improved safety and 
productivity in mining operations.  
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Table 1. Some recent works with soft computing techniques for back-break prediction. 
Research Input Method R2 

Monjezi et al. [23] B, S, HD, ST, CPD, PF, SD Fuzzy set theory ܴଶ = 0.95 
Monjezi et al. [24]  UCS, SD, W, B, S, ST, HD, BH, PF, CPD ANN ܴଶ = 0.90 
Ghasemi [25]  B, S, ST, PF, K PSO ܴଶ = 0.98 
Saghatforoush et al. [26]  B, S, ST, PF, HL ANN ܴଶ = 0.83 

Ghasemi et al. [27]  B, S, ST, PF, K RT, ANFIS ܴଶோ் = 0.972 
ܴଶேிூௌ = 0.998 

Shirani et al. [28]  B, S, ST, PF, K GP ܴଶ = 0.98 
Hasanipanah et al. [29]  B, S, ST, PF ANFIS-PSO ܴଶ = 0.92 
Sharma et al. [6]  B, S, ST, PF, K RFA ܴଶ = 0.88 
Yu et al. [30]  PF, B, S/B, N, CPD, LCT, ST/B, JC, UCS, W/B SVM–MFO ܴଶ = 0.985 
Sirjani et al. [5]  HL, B, S, PF, N, UCS ANN ܴଶ = 0.83 
Kumar et al. [31]  S/B, H/St, D, W RF ܴଶ = 0.9791 
Dai et al. [3]  HL, B, S, ST, SD, PF PSO–RF ܴଶ = 0.9961 

Li et al. [32]  HL, B, S, ST, SD, PF 

ELM 
ELM–PSO 
ELM–FOA 
ELM–WOA 
ELM–LOA 
ELM–SOA 
ELM–SSA 

ܴଶ = 0.9671 
ܴଶ–ୗ = 0.9978 
ܴଶ– = 0.9760 
ܴଶாெିௐை = 0.9964 
ܴଶாெ–ௌை = 0.9981 
ܴଶாெ–ௌை = 0.9949 
ܴଶாெ–ௌௌ = 0.9971 

** Symbols are explained in the Abbreviation section.  

 
2. Materials and Methodology 
2.1. Field study and data collection 

Chadormalu open-pit iron mine is located 120 
km northeast of the Yazd city in the center of Iran. 
Figure 1 shows a view of the Chadormalu mine and 

its location in Iran relative to Tehran (the capital of 
Iran) and Yazd. The total amount of mineable ore 
reserves are about 400 million tons. According to 
mineralogical studies, magnetite, hematite, and 
apatite are the main components of the deposit. The 
primary explosive used in mine blasting is ANFO. 

 
Figure 1. Location of the Chadormalu mine in Iran relative to Tehran (the capital) and Yazd city. 

In this research work, the dataset used in the 
developed model consists of input and output 

parameters. The input parameters used for back-
break prediction are given in Table 2. The input 
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parameters burden (B), spacing (S), stemming 
(ST), hole diameter (D), hole depth (H), specific 
charge (SC), and the number of rows (NR) have 
been applied as the output parameters of the 
models to predict back-break (BB). Table 2 shows 
the input and output parameters' details, statistical 
descriptions, and symbols.   

Chadormalu iron ore mine was used as a case 
study to collect the input parameters in this 
research work. A database related to back-break 
prediction was formed based on 90 data pairs for 
model development. From the organized database, 
20% of the dataset was selected to test the model to 
ensure consistency. 

Table 2. Input and output data with details, statistical descriptions, and symbols. 
Type of data Variables Symbol Minimum Maximum Mean Std. Deviation 

Input 

Burden B 5 6 5.24 0.43 
Spacing S 6 8 6.86 0.64 
Stemming ST 1.37 6.68 3.92 1.36 
Hole diameter D 6.5 7.5 6.76 0.44 
Hole depth H 3.74 16.91 10.29 3.59 
Specific charge SC 0.239 0.49 0.34 0.04 
Number of rows NR 2 11 5.26 2.23 

Output Back-break BB 2 7 4.59 1.2 

 
2.2. Hybrid method 

A machine learning model requires past 
experience parameters based on datasets. Many 
studies have shown heuristic algorithms improve 
machine learning accuracy and stability [33, 34]. 
Thus this study aims to predict back-break by 
combining the extreme gradient boosting (XGB) 
framework with optimization algorithms including 
gray wolf optimization (GWO) and particle swarm 
optimization (PSO). The hyperparameters of the 
regression model can be optimized using GWO and 
PSO. In addition, the intelligent optimization 
algorithm adjusts three critical parameters of the 
XGB model (learning_rate, maximum_depth, and 
n_estimator) to achieve a higher accuracy. 
Maximum depth, learning_rate, and n_estimator 
represent a tree's maximum depth, the tree's 
shrinkage coefficient, and the number of trees, 
respectively. 

2.2.1. Extreme gradient boosting (XGBoost) 
This method is proposed based on the gradient 

boosting decision [35-38] by Chen and He [39]. 
XGBoost has been applied in many engineering 
fields for classification and regression problems 
[40]. Due to the advantages of regularization, 
parallel processing, and efficient tree pruning, it 
has performed very well. Many data science 
problems can be solved with XGBoost quickly and 
accurately with parallel tree boosting. Optimizing 
the objective function is the core of this algorithm 
[41]. 

XGBoost uses the residual in each iteration to 
calibrate the previous predictor. This process is 
related to loss function (LOF) optimization. On the 
other hand, in the calibration process, 
regularization is used to reduce the overfitting of 
the objective function. With this description, the 
objective function, according to Equation (1), 
consists of two parts: regularization and training 
loss. 

ܱܾ݆(Θ) = (Θ)ܮ   +  Ω (Θ) (1) 

where Θ is the parameter trained from the data, 
Ω is related to regularization. Regularization is 
intended to avoid overfitting as it can control the 
complexity of the model [42]. Training loss 
functions L are shown, which measure how well 
the model fits the training data. There are different 
ways to define complexity. However, the 
complexity of each tree is often calculated using 
Equation (2). 

Ω (ℱ) = ܶߛ  +
1
2

 ߣ  ߱
ଶ

்

ୀଵ

, (2) 

where the complexity of each leaf is denoted by 
γ, T is the number of DT leaves, λ scales the 
penalty, and ω is the vector of scores on the leaves. 
Next, XGBoost applies the second-order Taylor 
expansion to the loss function (LOF) general 
gradient boosting. Equation (3) can obtain the 
objective function when the mean squared error is 
considered LOF. 
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(௧)ܬ  ≈ ܶߛ   +  ቈቆ ݃
∈ೕ

ቇ ߱ + 0.5ቆ ℎ
∈ೕ

+ ቇ ߣ ߱
ଶ

்

ୀଵ
, (3) 

 
The first and second derivatives of the MSE loss 

function are ݃  and ℎ, respectively. Also q is a 
function that assigns a data point to the 
corresponding leaf. Finally, the XGBoost objective 
function is calculated from Equation (4). 

ܱܾ݆ =   ܩ ߱ +
1
2
൫ܪ + ൯ߣ ߱

ଶ൨
்

ୀଵ

+ ܶߛ  , (4) 

Here, ߱  are independent of each other. The 
definition of the two terms ܩ  and ܪ  are given in 
Equation (5). 

ܩ =   ݃
∈ೕ

ܪ,  =   ℎ
∈ೕ

, (5) 

In general, in XGBoost, the optimization of the 
objective function can be transformed into a 
process for at least one quadratic function. An 
objective function is used to assess the change in 
model performance after splitting a particular node 
in the DT. This division will be accepted if the 
model's performance is higher than before; 
otherwise, the division will stop. XGBoost has a 
more vital ability to prevent over-installation, due 
to the addition of regularization phenomena. Figure 
2 shows the structure of XGBoost. 

 
Figure 2. Structure of the XGBoost method. 

2.2.2. Particle swarm optimization (PSO) 
PSO is an established population-based 

metaheuristic algorithm for solving problems like 
function optimization and network training [43]. 
PSO is derived from two aspects of bird flocks' 
movement behavior: their position and velocity 
[44]. Equation (6) can be used to write the PSO 

formula based on the optimization procedure in the 
lth iteration. 

ܲାଵ = ܲ + ܸାଵ, (6) 

being ܸ and ܲ the particle velocity and particle 
position, respectively. Based on Equation (6), the 
updated velocity can be calculated according to 
finding the most optimal swarm position (Pg) and 
the personal best value (Pb) using Equation (7). 
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ܸାଵ = ܽ. ܸ + ଵܿ . ) ଵݎ ܲ − ܲ) + ܿଶ . ଶ ൫ݎ ܲ − ܲ൯ (7) 

where c1 and c2 are the acceleration coefficients, 
a is the inertia weight, and r1 and r2 are randomly 
generated coefficients at each iteration. Until the 
target criterion is reached, the repetitive procedure 
continues. 

2.2.3. Gray wolf optimization (GWO) 
Similar to PSO, the GWO algorithm is also 

based on natural inspiration. The main idea is 
developed by imitating gray wolves' hunting 
behavior and social hierarchy [45, 46]. Simpleness, 
flexibility, and avoidance of local optima are some 
of the positive features of the GWO when dealing 
with nonlinear and multivariable functions [47]. 

There are five stages in the GWO modeling 
process: 1) social hierarchy, 2) encircling prey, 3) 
tracking and searching for prey (exploration), 4) 
capturing prey (exploitation), and finally, 5) 
hunting (optimization). In wolves, packs usually 
consist of five to twelve individuals grouped into 
alphas (α), betas (β), deltas (ߜ), and omegas (߱). 
Alpha (the highest rank in the hierarchy) makes the 
final decisions for the pack with the help of betas. 
A delta wolf submits to an alpha and beta wolf, 
while an omega wolf always submits to another 
dominant wolf (the last group permitted to 
consume prey). 

Alpha, beta, and delta agents reach the optimal 
solution in the GWO [48]. Assuming G represents 
the wolf's position and Gp represents the prey's 
position; the updated position of a single wolf is 
calculated using Equations (8) and (9). 

ݐ)ܩ + 1) = (ݐ)ܩ  ,ܦ.ܣ−
(8) 

ܦ =  หܩ.ܥ(ݐ)  ห(ݐ)ܩ−

ܣ = × ܣ ଵݎ × 2) − ܥ   ,(1
=  ଶݎ × 2

(9) 

where A and C are coefficient vectors, and t is 
the current iteration. r1 and r2 are random numbers 
ranging from [0, 1], and a is a coefficient that varies 
from 2 to 0. In mathematics, the most optimal 
solution is called the alpha (Gα), and the second and 
third are called the beta (Gβ) and delta (Gδ), 
respectively. In addition to the three most 
appropriate solutions, other solutions are 
connected to omegas (Gω). Thus Equation (10) can 
update one wolf's position. 

ݐ)ܩ + 1) =  
ଵܩ ଶܩ + + ଷܩ 

3
, (10) 

Alpha, beta, and delta wolves are defined by 
G1, G2, and G3, respectively. During position 
updating, they are calculated (Equations (11) and 
(12)). 

ఈܦ = ఈܩ.ଵܥ|  |ܩ−

ఉܦ  (11) = หܥଵ.ܩఉ  หܩ−

ఋܦ  = ఋܩ.ଵܥ| −  |ܩ

ଵܩ = ఈܩ ଵܣ− ఈܦ.  

ଶܩ (12) = ఉܩ ଶܣ− ఉܦ.  

ଷܩ = ఋܩ ଷܣ− ఋܦ.  

Attacking the prey concludes the pack's 
hunting. The prey must be reached and approached 
close to do this. Regularizing the attack typically 
involves reducing a from 2 to 0 in Equation (9). In 
[45], you can find more details about the GWO 
algorithm. Figure 3 illustrates the proposed hybrid 
models for predicting back-break. 

2.3. Gene expression programming (GEP) 
First, the GEP method, which is a combination 

of genetic algorithm (GA) and genetic 
programming (GP), was introduced by Ferreira 
[49]. GEP, as an AI evolutionary approach, has 
corrected some of the weaknesses of GA and GP 
such as tree systems. Individuals or answers are the 
key reason for the modification of these methods. 
Individuals are known as fixed-length 
chromosomes, defined as binary in the GEP 
algorithm. In the GP method, the answers can 
include tree systems of different sizes. Since the 
GEP method combines both GA and GP, it has 
fixed-length chromosomes and tree systems of 
different shapes and sizes, known as Expression 
Trees (ET). The structure of the GEP algorithm 
includes distinct parts. These include terminal, stop 
criteria, function, operator, and fitness [49]. 

Chromosomes have two parts: head and tail, 
making them a fixed length. The head part includes 
functions and terminals, and the end part also 
includes terminals. Due to the problems' 
complexity, the head part's length, introduced as 
the input of the GEP algorithm, cannot be obtained 
by a specific equation, and the only solution is trial 
and error [50]. By Equation (13) can be obtained 
length of the tail part. 

ݐ = ℎ(݊௫ − 1) + 1, (13) 
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where t, h, and ݊௫  represent the length of the 
tail, head, and the number of arguments of the 
functions. 

Each solitary chromosome in the initial 
population is evaluated using a fitness function 
determined for gap problems. The considered 
chromosomes are adapted using several genetic 
operators. Each chromosome can contain 

functions, positive and negative constants, and 
terminals that depend on the problem conditions 
[51, 52]. The general process of the GEP algorithm 
is presented as follows: 

Step 1: A certain number of chromosomes 
should be defined (randomly) according 
to the conditions (size) of the problem 
under study. 

 
Figure 3. Structure of hybrid model based on XGB for predicting back-break. 

Step 3: Fit the chromosomes according to 
the overall fitness function (root mean 
square error (RMSE) and coefficient of 
determination (R2)). If the stopping 
criterion is not met, other methods such 

as the roulette wheel method are used to 
select the best initial generation. 

Step 4: In this step, the genetic operators 
(identified as the main of the GEP 
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algorithm) must be linked to the other 
remaining chromosomes. 

Step 5: Finally, the creation of the next 
generation begins, and the process is 
repeated to create new structures. 

A new language called Karva (K-Expression) to 
express the codes in the chromosomes was 

invented to decode the programs in the 
chromosomes. Genetic operators introduced so far 
that are used for chromosome modification are 
inversion, mutation, triple recombination 
operators, and triple transposition operators [51]. 
Figure 4 shows the general flowchart of the GEP 
method. 

 
Figure 4. Flowchart of gene expression programming (GEP) algorithm. 

2.4. Random forest (RF) 

The Decision Tree (DT) is a particular area of 
Artificial Intelligence (AI), and within this branch 
lies the Random Forest (RF), which was created by 
Breiman [53]. RF is a sturdy DT model that can 
handle both classification and regression issues. 
Vigneau et al. recommend this model as a way to 
achieve precise predictions based on the varying 
results of the individual trees [54]. An optimal 
outcome is established by taking into account the 
results of each tree in the forest as a whole. Each 
tree has a say in the final decision-making process, 
acting as a voter in RF's ensemble predictions [55]. 
To estimate regression problems like back-break, 
RF follows a three-step approach: (i) generating 
bootstrap samples as the number of trees in the 
forest based on the database; (ii) expanding a 
suitable regression tree for each bootstrap instance 
through the random selection of estimators (mtry), 
then determining the best fit based on a particular 
variable; and (iii) estimating recent perception by 

combining the estimated outcomes from each tree 
in the forest (ntree), with the mean value of 
estimates being applied to the single tree [56]. 

2.5. Non-linear multiple regression (NMLR) 
In the case of multiple input variables, multiple 

regression techniques are available to obtain the 
best-fit equation. A relationship between the input 
and output parameters is generally the goal of such 
techniques. The nonlinear multiple regression 
method (NLMR) finds non-linear relationships 
between input and output parameters. Statistically, 
the line of closest fit represents a line whose sum 
of squares of deviations from the line is the lowest. 
In the NLMR technique, non-linear and linear 
relationships, e.g. exponential and power, can be 
incorporated. In contrast to traditional linear 
regression, NLMR predicts models with arbitrary 
relationships between inputs and outputs [28]. 
There is little focus and effort in research in 
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predicting BB resulting from blasting using the 
NLMR model. 

2.6. Linear multiple regression (MLR) 

This method is based on linear combinations of 
dichotomous, dummy or interval-independent 
variables. Multiple regressions aim to gain more 
information about the relationship between several 
predictor or independent variables and a criterion 
or dependent variable [57]. On the other hand, 
regression analysis aims to determine the values of 
function parameters that make the function best 
match a set of data observations. Multiple 
regression analysis solves the dataset by 
performing least squares fit, so that it creates and 
solves the simultaneous equations by forming the 
regression matrix and solving the coefficient using 
the backslash operator. The multivariate linear 
regression prediction model with n regression 
variables is shown in Equation (14). 

ݕ = ߚ  + ଵݔଵߚ  + ଶݔଶߚ  + ⋯+ ߚ  ݔ   , (14) 

where ߚ is a constant coefficient, indicating 
where the regression line intersects the y-axis. It 
also represents the value of y or the dependent 
variable (when all of them are 0). The regression 
coefficients are ߚଵ, ߚଶ, …, ߚ. These coefficients 
show the value of the dependent variable y with a 
corresponding change of 1 unit of the independent 
variables [58, 59]. 

3. Results and Discussion 
The datasets used in this research work are 

divided into training and testing. This way, 80% 
(72 explosion events) of the entire dataset is used 
for the training process. For the testing process, the 
rest (18 observations) are used. The training data 
and the test dataset are used, respectively, to 
develop the models and evaluate the performance 
of the built models. Five statistical measures, the 
variance accounted for (VAF), mean absolute error 
(MAE), a-20 index (A20), root mean square error 
(RMSE), and determination coefficient (R2), are 
applied to evaluate the performance of the 
constructed models [60]. These parameters are 
calculated using Equations (15) to (19). 

ܨܣܸ  (%) =  ቆ1 −
ݕ)ݎܽݒ − (ොݕ
(ݕ)ݎܽݒ

ቇ ×   100  (15) 

ܧܵܯܴ =  ඩ
1
݊
(ݕ − ො)ଶݕ


ୀଵ

  (16) 

ܴଶ = 1 −  
∑ ݕ) − ො)ଶݕ
∑ ݕ) − ത)ଶݕ

  (17) 

ܧܣܯ =  
∑ ොݕ − ݕ
ୀଵ

݊
  

(18) 

20ܣ =  
݉20
ܯ

 (19) 

3.1. XGBoost result 
It is necessary to choose appropriate parameter 

values for an XGBoost model to fit the data. A 
model's hyperparameters should be selected 
optimally to prevent overfitting and underfitting. 
These hyper-parameters are learned and adjusted 
based on the data to achieve the most suitable fit. 
Considering the complexity and the length of time 
of the problem to search for values for these 
hyperparameters, grid search techniques are 
applied. The grid search considers a possible set of 
values. The model is run using all these values, and 
the predictive accuracy is evaluated with different 
statistical metrics including MAE and RMSE. The 
combination of hyper-parameters would be 
selected that produces the lowest error value. An 
accurate model can be generated with grid search 
since it covers all possible combinations of hyper-
parameters [61, 62].  

Hyper-parameter optimization is performed 
using the grid search technique in this model. 
Therefore, to avoid complexity in the modeling of 
the XGBoost method, three stopping criteria, 
namely learning rate (shrinkage coefficient of tree), 
maximum depth (maximum depth of a tree), and n 
estimators (number of trees), were considered. 
Three parameters are evaluated here for tuning 
since they are noted to affect the derived solutions 
strongly. Default values are set for all other hyper-
parameters. According to Table 3, the 
corresponding grid is now constructed with the 
following parameters. 
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Table 3. Adjustment selection and search space of XGBoost model parameters for grid search. 
XGBoost parameters Lower limit Upper limit Scale Number 
Learning rate 0.01 0.15 0.01 15 
Maximum depth 1 3 1 3 
N estimators 50 250 1 200 
 
Table 3 shows the following there are 18000 

possible combinations of hyper-parameters in this 
configuration. After running the model 18000 
times, it is optimized based on its minimum RMSE 

values to determine the optimal hyper-parameters. 
According to Table 4, those hyper-parameters are 
optimal for grid search. 

Table 4. An overview of predictive performance and the model's optimal parameters with grid search. 

Method Search 
approach 

Training data Testing data Parameters R2 RMSE MAE R2 RMSE MAE 

XGB Grid search 0.978 0.185 0.132 0.946 0.291 0.2 
n_estimator = 173 
maximum_depth = 1 
learning_rate = 0.118 

 
The best XGBoost models with the grid search 

approach are shown in Table 4. This optimized 
XGB model has shown high accuracy with an R2 = 
0.978 value. Figure 5 illustrates the scatter plot of 
the predicted and measured back-break with the 
trend line in the selected XGBoost model. 

The testing dataset was used to assess and 
confirm the effectiveness of the XGBoost model. 
Figure 6 illustrates that the test sample points are 
predominantly situated in close proximity to the 
ideal fit line, indicating a strong correlation 
between predicted back-break values and actual 
back-break values. 

  
Figure 5. Predicted and measured values on the training 

dataset by selected XGBoost method. 
Figure 6. Predicted and measured values on the testing dataset 

by selected XGBoost method. 

3.2. Metaheuristic result (Hybrid model) 
Similarly, XGBoost method, three stopping 

criteria 1) maximum depth, 2) n estimators 3) 
learning rate were considered to avoid complexity. 
An assessment of significant values for each 
parameter can result in overfitting. Therefore, 
using gray wolf optimization (GWO) and particle 
swarm optimization (PSO), XGB parameters have 

been optimally determined. In Figure 2, a diagram 
illustrates the methods used to develop models 
based on the XGB data. XGB hybrid model 
parameters must now be set. An overview of the 
optimization algorithm's parameters can be found 
in Table 5. Furthermore, Table 5 displays the 
optimal parameter values for the model based on 
the optimization results. 
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Table 5. An overview of parameters of algorithms and the model's optimal parameters in the hybrid model. 
Algorithm parameters Value Optimal parameters 

GWO Convergence constant a linear decrease [2,0] 
n_estimator = 158 
maximum_depth = 1 
learning_rate = 0.129 

PSO 

Minimum inertia weight 0.2 
learning_rate = 0.123 

Maximum inertia weight 0.9 
Maximum velocity 6 maximum_depth = 1 
Cognitive coefficient 1 2 

n_estimator = 163 
Cognitive coefficient 2 2 

 
In the following step, the two hybrid intelligent 

models based on XGB were trained using the 
trained data, and then prediction performance 
models were compared. According to Figure 7, the 
actual value of the training dataset is correlated 
with the predicted value. In intelligent models, the 

training sample points are primarily distributed 
near the closest fitting line, indicating a relatively 
favorable training effect. A pair of XGB-based 
optimization methods are proposed in this paper, 
with R2 values of 0.99 demonstrating a high 
training effect. 

 

 
Figure 7. Comparison of correlation between predicted and actual values in the training dataset. 

After model training, two hybrid intelligent 
models are evaluated and verified using the testing 
data set. In Figure 8, the points in the test sample 
are mainly located near the perfect fit line. Back-

break values and predicted back-break values show 
a close correlation. Despite the high levels of 
prediction accuracy achieved by both hybrid 
models, the GWO-XGB model is superior.  

 
Figure 8. Comparison of correlation between predicted and actual values in the testing dataset. 
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As a result, the performance of the ordinary 
XGBoost optimized by grid search is close to the 
hybrid models. But using metaheuristic algorithms 
in hyper-parameters tuning has several benefits. 
The major benefit of using metaheuristic 
algorithms in hyper-parameter tuning over grid 
search is the reduction in time and cost. 
Metaheuristic algorithms can explore the hyper-
parameter space more efficiently, reducing the 
number of evaluations needed to find a good 
solution. This leads to faster and more cost-
effective hyper-parameter tuning compared to grid 
search, especially for large datasets or complex 
models. Additionally, metaheuristic algorithms are 
more likely to find near-optimal solutions, which 

can save time and resources in the long run. 
Overall, metaheuristic algorithms can offer a more 
efficient strategy for hyper-parameter tuning than 
grid search, leading to a better model performance 
and reduced computational cost. 

3.3. LMR result 
Multiple regression was performed on the 

parameters of back-break (BB) and burden(B), 
spacing (S), stemming (ST), diameter (D), hole 
depth (H), specific charge (SC), and the number of 
rows (NR). Below is the developed multiple 
regression model to predict back-break: 

 

ܤܤ =  0.4D − 0.09B + 0.19S +  0.23ST + 0.26H + 2.96SC + 0.04NR −  3.72 

(20) Training data: ܴଶ =  0.965     , RMSE = 0.235     ,   MAE = 0.181 

Testing data:   ܴଶ =  0.937     , RMSE = 0.257     ,   MAE = 0.196 

 
According to the explanation, MAE, RMSE, 

and R2 were calculated to control the performance 
of the forecasting capacity of the predictive model 

in this study. Figure 9 shows the scatter plot of the 
predicted and measured back-break with the trend 
line. 

 

 
Figure 9. Predicted and measured values on the training dataset by LMR method. 

3.4. GEP results 
The gene expression programming (GEP) 

modeling process is presented in the flowchart 
shown in Figure 3. Similar to the previous 
modeling sections, the same training and testing 
datasets have been used to design the GEP. This 
research work used the GEP algorithm software 
(GeneXproTools 5.0) to analyze and obtain the 
final relationship between the initial data and 

Backbreak. Various mathematical operators (e.g., 
+, −, *, /, x2, inverse, Ln, and Exp) have been used 
to predict BB and develop a mathematical 
relationship using GEP. 

One should consider the fitting parameters to 
build an efficient model. The execution time, vital 
in the model's performance, is controlled by the 
number of chromosomes. In addition, the number 
of genes and the head size must be involved to have 
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a suitable architecture. The head size and number 
of genes determine each component's complexity 
and the number of related equations, respectively. 

A trial-and-error mechanism was applied regarding 
the above elements to achieve the best GEP model 
(Table 6). 

Table 6. Constructed 10 GEP models for predicting Backbreak. 

GEP parameters 
Value 

GEP model number 
1 2 3 4 5 6 7 8 9 10 

Fitness function RMSE RMSE RMSE MAE MSE RMSE RMSE RMSE RMSE RMSE 
No. chromosomes 30 40 40 40 40 40 50 60 40 40 
Head size 8 8 8 8 8 8 8 8 10 10 
No. genes 4 4 3 4 4 4 4 4 4 3 
Linking function + + + + + × + + + + 

 
According to other methods, using R2, MAE, 

and RMSE indices, the performance prediction of 
GEP models was evaluated for training and testing 
datasets. Among the ten models stated in Table 6, 
which had the highest performance predicting 
back-break, five models were selected and shown 

in Table 7. As a result, as shown in Table 7, model 
No. 2 is the best model among all the models made 
by the GEP method. Figure 10 illustrates the scatter 
plot of the predicted and measured back-break with 
the trend line in the selected GEP model. 

Table 7. GEP models with Performance indices 

Rank 
Testing Training  Model No. 

Table (6) Method 
MAE R2 RMSE MAE R2 RMSE 

1 0.197 0.958 0.25 0.186 0.965 0.233 2 

GEP 
2 0.205 0.959 0.257 0.186 0.963 0.237 3 
3 0.231 0.937 0.310 0.166 0.962 0.245 4 
5 0.216 0.947 0.266 0.208 0.959 0.252 5 
4 0.259 0.94 0.33 0.168 0.96 0.25 9 

 
Figure 10. Predicted and measured values on the training dataset by selected GEP method. 

The number of genes and head size in Model 
No. 2 is 4 and 8, respectively. The expression tree 
(sub-ETs of each gene) of the selected model is 
displayed in Figure 11. The expression trees were 
eventually linked with addition by linking the 

functions to create a large and complex ET. 
Equations (21) to (24) show the mathematical 
equations of each of these genes. Finally, Equation 
(25) shows the developed GEP equation for 
predicting setbacks. 
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ቈ5.44 :1 ݁݊݁ܩ +  
1

൫(ܴܰ − 7.44) ∗ ܪ) + +൯(ܦ ܦ) ∗ ܵܶ)
 (21) 

൬ܵܶ :2 ݁݊݁ܩ +
0.59 − ܵܶ
ܪ − ܦ

൰ + ܥܵ) +  ଶ൨ (22)(ܥܵ

 :3 ݁݊݁ܩ
1
ܵ
∗ (−14.79 ܶܵ))ݔܧ− ∗ −4.46) + 7.76)൨ (23) 

× −3.51    :4݁݊݁ܩ ൬(ݔܧ ൬
ܵܶ
ܤ
൰ − 5.26) ∗  ൰൨ (24)ܥܵ

݇ܽ݁ݎܾ݇ܿܽܤ =        ቈ5.44 + 
1

൫(ܴܰ − 7.44) ∗ ܪ) + ൯(ܦ + ܦ) ∗ ܵܶ)
+       ൬ܵܶ +

0.59− ܵܶ
ܪ − ܦ

൰ + ܥܵ) + ଶ൨(ܥܵ     

+               
1
ܵ
∗ (−14.79− ܶܵ))ݔܧ ∗ −4.46) + 7.76)൨ + −3.51 × ൬(ݔܧ ൬

ܵܶ
ܤ
൰ − 5.26) ∗  ൰൨ܥܵ

(25) 

 

 
Figure 11. Sub-ETs of each gene for the best GEP model with addition as a linking function. 

3.5. NLMR result 
Using the same data for training and testing, 

multiple equations for back-break prediction were 
proposed utilizing NLMR. An NLMR equation 
was created using version 26 of the SPSS package. 
The model inputs were burden (B), spacing (S), 
stemming (ST), hole diameter (D), hole depth (H), 
specific charge (SC), and the number of rows (NR). 

Simple regression functions were employed to 
develop the NLMR equation. Equation 24 shows 
how the NLMR model predicts the back-break. For 
the training and testing datasets of the newly 
constructed NLMR equation, R2 values of 0.966 
and 0.959 were obtained. The scatter plot of the 
predicted and measured back-break with the trend 
line is shown in Figure 12. 
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ܤܤ =  2.021D .ଶଷ + 3.9Bି.ଵସ + 0.001Sହ.ଶସ +  0.2ST + 0.989Hଷ + 36.65SCହ.ଵହ + 0.32NRଵ. −  7.37  

(26) Training data:  ܴଶ =  0.966, RMSE = 0.229     ,   MAE = 0.177 

Testing data:    ܴଶ =  0.959, RMSE = 0.255     ,   MAE = 0.191 

 

 
Figure 12. Predicted and measured values on the training dataset by NLMR method. 

3.6. RF result 
Based on the seven variables listed above, the 

RF model was developed. RF models were 
developed using train and test partitions applied to 
all models. This means that 80% of the data (n = 
72) was used for the training phase, and 20% for 
the test phase (n = 18). The random forest (RF) 
method has been applied in several studies for 
backbreak [6, 30, 63]. Thus this model is used as a 
criterion to check the performance of developed 
models. 

According to earlier discussion, RF builds an 
ensemble model that incorporates a wide variety of 
DTs. Based on the methodology of the CART, the 
RF is worth noting. Furthermore, several 
parameters were used for the development and 
fine-tuning of the RF model. A trial-and-error 
method was used by the authors to achieve the 
optimal combination of these parameters. RF 
models with 97.4% accuracy for training datasets 
and 94% accuracy for testing datasets had the 
highest accuracy. Figure 13 depicts the relationship 
between the measured and predicted back-break, 
which demonstrates a high interconnectivity. 

 
Figure 13. Predicted and measured values on the training dataset by RF method. 
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3.7. Validation performance and comparison of 
models 

This section is to evaluate the efficiency of the 
developed models. This study used MAE, R2, and 
RMSE (Equations 15 to 17) to measure the 
performance of the selected prediction models. In 
the first step, optimal models were chosen for each 
approach. Then according to Table 8, the above 

statistical criteria for all models were calculated for 
the training and test datasets. According to these 
results, the performance and accuracy level of the 
GWO-XGBoost technique is better than the PSO-
XGB, XGBoost, GEP, RF, LMR, and NLMR 
models. The performance of the models in 
predicting the back-break caused by the blasting in 
the testing data set is shown in Figure 14. 

Table 8. Selected predictive models with statistical values. 

Model 
Training data Testing data 

R2 RMSE MAE VAF a-20 R2 RMSE MAE VAF a-20 
GWO-XGB 0.99 0.01 0.001 0.99 0.98 0.946 0.281 0.186 0.912 0.91 
PSO-XGB 0.99 0.01 0.001 0.99 0.98 0.934 0.36 0.205 0.901 0.88 
XGBoost 0.978 0.185 0.132 0.98 0.95 0.946 0.291 0.2 0.92 0.98 
GEP 0.965 0.233 0.186 0.967 0.935 0.96 0.25 0.197 0.94 0.96 
RF 0.974 0.210 0.156 0.97 0.94 0.94 0.295 0.215 0.915 0.92 
LMR 0.965 0.235 0.181 0.964 0.92 0.962 0.257 0.196 0.937 0.96 
NLMR 0.966 0.229 0.177 0.968 0.93 0.959 0.255 0.191 0.938 0.93 

 
Figure 14. Predicted and measured values on the training dataset by selected XGBoost method. 
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In the next step, the selected BB prediction 
models' accuracy is compared, as shown in Figure 
15. According to Figure 15, the hybrid XGBoost 

technique gives the most reliable and consistent 
results in BB prediction among the developed 
models. 

 
Figure 15. Selected predictive models with prediction values on testing datasets. 

In this subsection, we present the Taylor 
diagram that illustrates the performance of optimal 
predictive models at various testing stages. Taylor 
diagrams briefly assess a model's accuracy in two 
dimensions [64]. The ratio of standard deviation, 
RMSE, and R indicate the relationship between the 
actual and estimated observations. The Taylor 
diagram represents each model as a point. In an 

ideal model, the point's position would be close to 
the reference point. Figures 16 and 17 illustrate the 
Taylor diagram of this study's models generated for 
testing and training datasets. According to Figure 
17, the GWO-XGB hybrid model is more accurate 
in predicting back-break than other predictive 
models. 

 
Figure 16. Comparative analysis of developed models with testing datasets in Taylor diagrams. 
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Figure 17. Comparative analysis of developed models with training datasets in Taylor diagrams. 

The distribution of predicted values is one way 
to evaluate predictive models. Box plots in Figure 
18 illustrate the distribution functions for the 
measured and predicted back-break values in 
testing data. Due to their similar probability 

distributions with observational results, hybrid 
XGBoost approaches resulted in the most 
promising performance compared to the other 
models. 

 
Figure 18. Box plot of all predictive models for testing data. 

4. Sensitivity Analysis 
During the last modeling stage, the model's 

output is evaluated in relation to the input 
parameters. A sensitivity analysis can assess the 

relative effects of model input parameters on model 
output (objective function). The cosine amplitude 
method (CAM) is one of the methods for 
determining sensitivity analysis [5, 65]. The CAM 



Nabavi et al. Journal of Mining and Environment (JME), Vol. 14, No. 2, 2023 

 

707 

method considers a space (n-dimensional), where n 
is the number of input parameters (Equation (27)). 

ܺ =  { ଵܺ , ଶܺ , ଷܺ … ,ܺ} (27) 

Each member of this input parameter such as X 
is connected to the objective function by a length 
vector. That means: 

ܺ =  { ܺଵ , ܺଶ, ܺଷ … , ܺ} (28) 
The effect of each input parameter X on the 

objective function can be obtained using Equation 
(29). 

ܴ =
∑ ܺ ܺ

ୀଵ

ට∑ ܺ
ଶ

ୀଵ ∑ ܺ
ଶ

ୀଵ

 (29) 

As ܴ  approaches the value of one, it indicates 
more influence of the input parameters on the 
outputs. An output parameter with a value above 
0.9 significantly impacts the input parameter [5]. 
Figure 19 shows the results of the sensitivity 
analysis of the regression prediction parameters. 
According to Figure 19, hole depth and stemming 
had the most significant influential effect among 
the input elements on the back-break. Also the 
number of rows showed the lowest impact on the 
back-break. 

 
Figure 17. Effect and sensitivity analysis of input data on back-break. 

5. Conclusions 
Back-break is one of the unintended 

consequences of blasting. This consequence causes 
the reduction of drilling efficiency, the instability 
of walls, the fall of machines, and finally, the 
increase in the cost of mining. Hence, the back-
break must be accurately predicted, and the 
subsequent explosion planned accordingly. This 
plan will improve safety and reduce the production 
cost of mines. This study attempts to predict the 
back-break of the Chadormalu mine blasting 
operation using the hybrid XGBoost machine, 
which is optimized by gray wolf optimization 
(GWO) and particle swarm optimization (PSO). 
Furthermore, XGBoost (optimized with grid 
search), GEP, RF, LMR, and NLMR were used to 
measure the validity of the hybrid model. The 
effectiveness of the models was evaluated by 
measuring their performance using MAE, RMSE, 
and R2 metrics. Finally, the cosine amplitude 

method was utilized to determine the importance of 
each input variable. 

The parameters include burden (B), spacing (S), 
stemming (ST), hole diameter (D), hole depth (H), 
specific charge (SC), and the number of rows (NR) 
involved in developing predictive models. In 
summary, this study suggests that the hybrid XGB 
models have potential in predicting back-break, 
and can effectively assist XGB in adjusting hyper-
parameters. The performance of the predictive 
model for the training data dataset is ranked from 
high to low as follows: GWO-XGB (R2 = 99, 
RMSE = 0.01, MAE = 0.001, VAF = 0.99, a-20 = 
0.98), and PSO-XGB (99, 0.01, 0.001, 0.99, 0.98) 
is better than XGBoost (97, 0.185, 0.132, 0.98, 95), 
GEP (96, 0.233, 0.186, 0.967, 0.935), RF (97, 
0.210, 0.156, 0.97, 0.94), LMR (96, 0.235, 0.181, 
0.964, 0.92), and NLMR (96, 0.229, 0.177, 0.968, 
0.93). Notably, the GWO-XGB hybrid model has 
superior overall performance as compared to the 
other models. The according to the sensitivity 
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analysis results, among the input parameters, hole 
depth and stemming had the most significant effect 
on the prediction of back-break. The proposed 
GWO-XGB model proved robust and applicable to 
predicting back-break in this study. 

In conclusion, the hybrid model developed in 
this study showed promising results in predicting 
backbreak in mining operations. However, there 
are several limitations that should be 
acknowledged. Firstly, the model was trained and 
tested on a single dataset, and its performance on 
other datasets remains to be evaluated. Secondly, 

the model relies on various input parameters, some 
of which may not be readily available in real-world 
scenarios. Finally, the model's accuracy may be 
affected by other factors not considered in this 
study. 

In light of these limitations, future research can 
explore methods to improve the model's robustness 
and generalizability. Additionally, investigations 
can be carried out to assess the model's 
applicability to other mining operations and 
identify ways to streamline data collection and 
input parameter selection. 

Abbreviation 

Symbol Explanation Symbol Explanation 
UCS Uniaxial compressive strength D Diameter 
W Water content B Burden 
S Spacing ST Stemming length 
HD Hole diameter BH Bench height 
PF Powder factor N No. of rows 
K Stiffness ratio HL Hole length 
CPD Charge per delay LCT Last row charge to total charge ratio 
JC Joint condition ANN Artificial neural network 
PSO Particle swarm optimization RT Regression tree 
GP Genetic programming ANFIS Adaptive neuro-fuzzy inference system 
RFA Random forest algorithm MFO Moth flame optimization 
ELM Extreme learning machine FOA Fruit fly optimization 
WOA Whale optimization algorithm LOA Lion swarm optimization 
SOA Seagull optimization algorithm SSA Sparrow search algorithm 
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  چکیده:

منافع  ن،ی. بنابراشودینامناسب م شیو خردا آلاتنیمعدن، رقت بالا، سقوط ماش يهاوارهید يداریاز اثرات نامطلوب انفجار است که منجر به ناپا یکی یزدگعقب
 يخواص توده سنگ، پرامترها مانند یمختلف يپارامترها ریتحت تأث یزدگ. بروز عقبردیگیقرار م ریبه شدت تحت تأث یمنیو ا افتهیکاهش  يمعدنکار ياقتصاد
و کاهش اثرات نامطلوب  يریبه منظور جلوگ يدیتول يهاتیفعال ریانفجار و سا ندیفرآ یدر ط نیقرار داد. بنابرا يانفجار و خواص مواد انفجار يالگو یهندس
با  یزدگعقب ینیبشیپ ي) براXGBشده ( تیتقو انیگراد تمیلگوراز ا یبیمدل ترک کیراستا،  نیشود. در ا ینیبشیپ امدیپ نیا قیبه طور دق دیبا  ،یزدگعقب

مدل  یاعتبارسنج ن،یاست. علاوه بر ا شده شنهادی) پPSOازدحام ذرات ( يسازنهی) و بهGWO( يگرگ خاکستر يسازنهیبه يفراابتکار يهاتمیاستفاده از الگور
چندگانه  ونی) و رگرسLMR( یچندگانه خط ونی)، رگرسRF( ی)، جنگل تصادفGEPژن ( انیب يزیر، برنامهXGBoost یمعمول يهابا استفاده از روش یبیترک

 یطراح يانفجار در معدن سنگ آهن چادرملو با در نظر گرفتن پارامترها اتیعمل 90به دست آمده از  يهامنظور داده نیا ي. براشودی) انجام مNLMR( یرخطیغ
 ,GWO-XGB (R2 = 99, RMSE = 0.01شامل  یبیترک يهاآمده، عملکرد و سطح دقت مدلدستبه جیبه نتا هشده است. با توج يآورانفجار جمع يالگو

MAE = 0.001, VAF = 0.99, a-20 = 0.98 )  وPSO-XGB )99 ,0,01 ,0,001 ,0,99 ,0,98بهتر از (XGBoost (97, 0.185, 0.132, 0.98, 0.95) ،GEP 

(96, 0.233, 0.0.186, 0.967, 0.93) ،RF (97, 0.21, 0.156, 0.97, 0.95) ،LMR )96 ,0,235 ,0,181 ,0,964 ,0,92 و ،(NLMR )96 ,0,229 ,0,177 ,
 ت،یحساس لیو تحل هیتجز جیدارد. بر اساس نتا PSO-XGBنسبت به مدل  يبالاتر یعملکرد کل GWO-XGB یبیدل ترک). قابل ذکر است که م0,93, 0,968

  هستند. یزدگعقب ینیشبیدر پ ریتاث نیشتریبا ب يارامترهاپ يارتفاع چال و طول گلگذار
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