Journal s Mining and Environment (JME) 7

Shahrood University of
Technology

Journal of Mining and Environment (JME), Vol. 14, No. 3, 2023, 1019-1035

(N

Iranian Society of
Mining Engineering
(IRSME)

Journal homepage:

Integration of Fractal and Multivariate Principal Component Models for
Separating Pb-Zn Mineral Contaminated Areas

Hossein Mahdiyanfar! and Mirmahdi Seyedrahimi Niarag?*

1. Department of Mining Engineering, University of Gonabad, Gonabad, Iran
2. Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Article Info

Abstract

Received 6 June 2023

Received in Revised form 21 June
2023

Accepted 28 June 2023
Published online 28 June 2023

DOI:10.22044/jme.2023.13227.2424

Keywords

Fractal model

Principal component analysis
Environmental pollution
Geo-chemical signals

The primary purpose of this investigation is contamination mapping in surrounding
areas of Irankuh Pb—Zn mine, located in central Iran, using an integrated approach of
principal component analysis (PCA) with the Concentration-Area (C-A) and Power
Spectrum-Area (S-A) fractal models. PCA categorized the 45 elements into eight
principal components. Component 2, containing the toxic elements of Pb, Zn, As, Mn,
Cd, and Ba, was identified as the contamination factor. This multivariate
contamination factor was modeled using the C-A and S-A fractal methods (in spatial
and frequency domains) to delineate pollution areas. Modeling of PCA data using the
C-A fractal method showed four main populations for the contamination factors. Two
populations with higher fractal dimensions are associated with contamination from
mining activities or anthropogenic effects. Low fractal dimensions are considered the
background population, which has not been affected or is less affected by these
activities. Five geo-chemical populations were obtained for contamination factors
using the S-A fractal modeling of PCA in the frequency domain. Therefore, various
geo-chemical populations were achieved using geo-chemical filtering and two-
dimensional inverse Fourier transformation. The geo-chemical populations related to
classes 2, 3, and 4 containing intermediate frequency signals showed the pollution
anomaly. The spatial distribution of pollutant geo-chemical signals exhibits excellent
conformity with the mining operation limit and tailing dam location as pollutant
sources. The results indicate that the elements Pb, Zn, Cd, and As have significant
values in the surrounding soils rather than their concentrations in the earth’s crust. The
results demonstrate that the S-A fractal models can more precisely delineate the
environmental anomaly than the C-A fractal model, especially in intermediate
frequency populations.

1. Introduction

Sustaining the soil and agricultural areas from the

mapping methods performed in the mineral

accumulation of toxic and heavy metals holds a
fundamental role in food security, human health,
and animals’ survival [1]. Soils are polluted by
toxic metals from the sources of natural and
human. Mineral mining, as a human factor, can
effectively transfer heavy and toxic metals to the
environment [2, 3]. Sources detecting and spatial
distribution mapping toxic elements in the soil are
essential for pollution control [4]. Identifying the
features of the metal pollution process and
delineating the polluted areas are fundamental
tasks to prevent pollution [5]. The anomaly

geochemical exploration can be utilized desirably
for contamination mapping in environmental geo-
chemistry [6].

Various univariate and multivariate methods
such as fractal models [7-12], probability plots [13-
15], PCA[16, 17] and machine learning algorithms
[1, 18] have been applied for anomaly mapping in
mineral geo-chemical exploration. The univariate
methods of probability plot and fractal models have
been performed for environmental geochemical
anomaly mapping [19]. Multivariate methods such
as principal component analysis have been
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effectively applied for spatial distribution mapping
of toxic metals [4, 20, 21].

Multivariate  signatures in mining and
environmental geo-chemistry are not considered by
applying simple fractal models. PCA has been
applied for discerning geochemical patterns in the
spatial, frequency, and wavelet domains in mining
geo-chemistry [22-29]. PCA can be used to reduce
the dimensions of the environmental dataset and
identify the heavy and toxic elements related to the
pollution process. This multivariate method has
been applied for environmental geochemical
mapping and contamination source detecting
relevant to mining works [20]. PCA can identify
the essential influence variables in the pollution
process concealed in environmental geochemical
datasets based on correlations and internal relations
of elements [30, 31]. This method extracts
desirable information from complicated geo-
chemical datasets [32]. The new multivariate
features with new scores are calculated for each
sample in the rotated space that can be analyzed as
independent integrated factors. The principal factor
of toxic elements can be modeled and mapped
using various methods such as C-A and S-A fractal
approaches. The C-A fractal method has been
developed to detect exploration geochemical
anomalies [7, 15, 33, 34] and has been used to map
contaminated areas of univariate elements [35, 36].
S-A fractal method is used to identify frequency
features relevant to geo-chemical populations
concealed in the dataset [37, 38]. The geo-chemical
frequency signals of elements have been frequently
modeled using a fractal method in mining geo-
chemistry [8, 38, 39].

In this study, new integrated techniques were
applied based on the principal component scores
and C-A and S-A fractal models in the spatial and
frequency domains for the first time to characterize
pollution phenomena in the surrounding soils of
mining activities. The PC of the pollution process
has been modeled by fractal techniques in the
spatial and frequency domains. Therefore, the
fractal populations of geo-chemical signals as
multi-element environmental pollution factors
have been distinguished. These methods can
identify the variables related to contamination and
separate the areas affected by toxic metal pollution
with more certainty.
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2. Case Study

Irankuh mine is located in the vicinity of Irankuh
mountain in the Isfahan province, Iran. This area is
part of the Sanandaj-Sirjan zone. This zone is a unit
of the Zagros orogen, which includes metamorphic
rocks [6, 40, 41]. The geological map of the study
area, on which soil geochemical samples and main
land uses are fitted, is shown in Figure 1. This area
hosts Zn-Pb deposits related to Malayer-Isfahan
metallogenic belt. A cretaceous sequence of
dolostone and fossiliferous calcareous rocks
overlay a Jurassic shale layer, which is the lowest
stratigraphic unit in the area [42, 43]. Sulfides and
carbonates include the MVT Pb-Zn mineralization
that occurred in dolostones. Open-pit and
underground mining has been carried out in this
area for several decades. Mineral processing
plants, tailings, and waste piles are located near the
agricultural areas in the southern part of Irankuh.

In the Irankuh region, epigenetic Pb-Zn
mineralization, covered by lower Cretaceous
dolostone and Jurassic shale, has occurred. This
mineralization was formed within the dolomite and
shale host rocks by a series of replacement
processes and appeared in the forms of veinlets,
breccia, and filled spaces [44]. The primary lead-
zinc mineralization is in the form of altered
hydrothermal veins in fractured rocks, reverse
faults, and dilatational spaces. These alterations
include dolomitization and silicification. It can be
concluded that this mineralization occurred during
or after fracturing and faulting [45]. The iron and
manganese-rich dolomite, iron-rich sphalerite,
ankerite, low pyrite, galena, bituminous, calcite +
quartz £ barite are the dominant minerals of this
mineralization [44].

The climate of the study area is semi-arid, and it
is usually windy from March to May and
sometimes from September to October [45]. The
pH of the regional soil is around 7-8, and its
chemical composition is organic compounds,
calcic, and some salt. Regarding soil size, the
approximate percentages of sand, silt, and clay are
44, 39, and 17, respectively [35]. Near the mine,
plants and agricultural products are contaminated
with toxic metals such as lead and zinc. These
metals are dispersed in the region through the dust.
Therefore, it has created concerns for the region’s
farmers [46].
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Figure 1. Geological map of the Irankuh region; location of the soil samples and primary land use is shown on

the map.

3. Materials and Methods
3.1. Dataset

One hundred thirty-seven soil geochemical
samples were taken from the depth of 0 to 30 cm
around the mining areas. These areas include the
spanning small industrial/residential and larger
agricultural areas. To collect these samples, a grid
of 500 x 500 square meters was designed (Figure
1). Considering the situation of the field, the
location of some sampling sites has been adjusted.
The samples were prepared with a four-acid mix
(HCI-HNO3-HCIOs~HF) and analyzed for 44
elements. These samples have been analyzed by
inductively coupled plasma-optical emission
spectrometry in the central laboratory of the
Geological Survey and Mineral Exploration of Iran
with a detection limit of elements of 0.1. Figure 2
shows the carbonate layer located south of the
Irankuh limit, next to which is the farmers'
greenhouses. Also in this figure, close to the
location, the tailing dam located in the southern
part of the area is clearly shown.
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Figure 2. Photo of the carbonate unit, greenhouses,
and tailing dam in the southern part of lrankuh
limit (looking north).
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3.2. C-A fractal modeling of PCA

PCA is a typical multivariate analysis and
dimension reduction technique. It extracts new
uncorrelated components from several correlated
features and reduces the dimensionality of feature
space in the dataset [32]. PCA is performed on a
dataset based on the calculated covariance or
correlations of features. The principal components
as coordinate axes in the new features space have
been achieved using the Varimax rotation method.
The Varimax method reveals the complicated
structures of datasets [47, 48]. This orthogonal
rotation method can simplify structures by
transforming the component subspace of PCA. The
Varimax function maximizes the sums of squares
of the loadings for original variables. The
interpretation of the dataset can be improved by
rotating the matrix of principal components
coefficients [47, 49].

New values for each sample are calculated based
on the rotated axes in the new space. Therefore,
each sample holds an absolute principal component
score related to any principal component. These
scores as new multivariate geochemical features
can be analyzed instead of concentrations of
elements. The scores of samples related to
pollution factors are computed using the below
equation:

Score(Pnllutinn Factor) — b1X1 + bZXZ + et prp (1)

where coefficients of b are related to
the regression weight of principal components
calculated during the PCA procedure, and X values
are the initial concentration of elements that
contribute to making the pollution factor. The PCs
extracted by PCA can be modeled using fractal
methods. Determining the fractal dimension is the
basis of the fractal method for determining
geochemical patterns. A smooth model of the
spatial distribution of elements is provided by
contour maps. If, in these maps, A(p) is an area of
a contour with a concentration of p, then the area
decreases with increasing concentration. To define

Journal of Mining & Environment, Vol. 14, No. 3, 2023

the background and geochemical anomaly, the

concentration-area fractal model is defined as
follows [7]:

A(p)-pyap~P @)
where A(p) is the contour area with a

concentration more significant than the value of p,
and D is exponential features or fractal dimensions.

A grid of cells can be overlapped over the study
area. In this case, A(p) can be obtained by counting
cells with a raw concentration of elements. In this
method, for concentrations higher than the desired
counter, A(p) is equal to the number of cells
multiplied by the area of the cells. Considering that
in geo-chemical surveys, anomalies show
concentrations related to mineralization processes,
these values will have power functions or fractal
dimensions different from background values. This
difference in fractal dimensions is used to separate
anomalous areas from the background [7, 34, 36,
50]. Geochemical anomalies have larger fractal

dimensions than the populations of the
geochemical background. Therefore, the border
between these fractal dimensions can be

considered threshold values. The threshold value
separates anomalous values from the geochemical
background. The C-A fractal modeling of PCA
categorizes the contamination populations and
intensifies the environmental geochemical
anomaly.

3.3. S-A fractal modeling of PCA

PCA can extract new principal factors using the
Varimax rotation method. The pollution factor
containing the mentioned scores for each sample
can be interpreted as a new geochemical index.
Spectral analysis of this pollution index in the
frequency domain is a mathematical approach for
pollution mapping. Hence, the pollution factor can
be converted to the frequency domain using two
dimensional Fourier transformation function as
follows [51]:

F(K,.K,))=[ [ f(xy)cos(K, x+K,y)dxdy i

—00 —00

0

[ ] £00y)sin(K, x+K, y)dxdy

0

©)

—00 —00

where f(x, y) is the pollution factor as a spatial
function, and Kx and Ky indicate the wave humber
values in the x and y directions. F(Kx, Ky)
containing the real part, R(Kx, Ky), and imaginary
part, 1(Kx, Ky), is a transferred function in the
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frequency domain. The power spectrum values are
calculated as follows [51]:

E(K,.K,)=R* (K, ,K)+I1*(K, K, (4
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The log-log plot of fractal based on the power
spectrum and cumulative areas are delineated, and
different straight lines are fitted on points of the
log-log graph. The threshold values for geo-
chemical classes are detected using the breakdown
points of the graph and show the various power-
law relationships. The S-A fractal models are
defined as follows:

A(=S)aS2* ®)

where A(>S) indicates the areas larger and equal
to power spectrum value (S), and P is the amount
of anisotropy, and d is the generalized scale
invariance parameter. The geo-chemical classes
are separated using low, high, and band pass
filtering, and then are transferred to the spatial
domain using inverse Fourier transformation.
These separated classes can illustrate the various
geochemical populations consisting of
geochemical noise, background, and anomaly.

Journal of Mining & Environment, Vol. 14, No. 3, 2023

4, Results

The agricultural, industrial, and residential
backgrounds, which include surrounding areas of
the Pb-Zn mine, have been affected by pollution
from mining activities. In this research work, the
data obtained from the analysis of 137 soil samples
were collected. The histogram and some statistical
parameters of Pb, Zn, Cd, As, and Ba are presented
in Figure 3. The average concentration of these
elements in the earth's crust are 12.5, 70, 0.2, 1.8,
and 425 ppm, respectively [52]. Figure 3 shows
that the histograms of lead, zinc, cadmium, and
arsenic follow an abnormal distribution, and
barium has a normal distribution. The highest
frequency is around the average concentration of
these elements in the study area. This amount is
several times the Clark of the elements. The results
obtained from geo-chemical surveys and patterns
of contaminant elements and the relationship
between these elements show that the leading cause
of environmental pollution of surrounding areas
with toxic metals is dust [35, 40].
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Figure 3. Histogram of the toxic elements along with some statistical parameters in the studied area.

The ratio of the average and maximum
concentration of samples in the studied area to the
average concentration of the toxic elements in the

1023

earth's crust [52] has been delineated in Figure 4.
These values demonstrate that mining activities
polluted the surrounding areas of the Irankooh Pb-
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Zn mine with toxic elements, especially Cd, Pb,
Zn, and As. In this investigation, the contaminated
surrounding areas were mapped using the C-A and

Journal of Mining & Environment, Vol. 14, No. 3, 2023

S-A fractal modeling of multivariate pollution
factors obtained by PCA.
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Figure 4. Ratio of the average and maximum concentration of samples in the studied area to the average
concentration of the toxic elements in the earth’s crust.

4.1. PCA method

The surrounding areas of the Irankooh Pb-Zn
mine have been contaminated by toxic elements
especially lead and zinc. In this study, the
multivariate pollution factor consisting of toxic
elements was investigated. The concentrations of
45 elements were applied for detecting the
pollution factor using PCA based on the correlation
matrix of elements. The log-ratio geo-chemical
data were analyzed using PCA. The integrated
environmental anomaly caused by toxic elements
can be obtained by PCA. The relevance of toxic
metals in the soil samples was quantified using
PCA as a feature extraction method. The
correlation matrix, Varimax rotation, and Kaiser
normalization methods were performed for
extracting the PCs.

1024

The Kaiser normalization method was applied to
the dataset. Then the geochemical data were
rotated in the new coordinate system using the
Varimax rotation method. The PCs as new features
are obtained based on the new rotated axes. The 45
elements were categorized in 8 PCs with a
cumulative variance of 86% for initial eigenvalues
using PCA. The variances of these deriving PCs are
shown in Figure 5. Figure 6 shows the component
loadings of elements in the second PC. The
elements of Pb, Zn, As, Ba, Cd, and Mn have
component loadings of more than 0.5 and
significantly affect this component as a pollution
factor. These toxic elements have also been
separated from other elements in the plot of PCs of
1, 2, and 3 in rotated space (Figure 7). The PC
scores of deriving pollution factors that indicate the
contamination magnitude of soil are calculated for
all samples using PCA equations.
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Figure 5. Variances of the deriving PCs from PCA.

4.2. C-A fractal modeling of PCA

In order to C-A fractal modeling of PCA, the
fractal model for the positive values is drawn,
modeled, and calculated as the threshold value for
the anomalous sub-population. To model the PCA
scores by fractal method, the negative PCA values
must convert to a positive value. For this aim, the
PCA scores can be shifted by adding a constant
positive number. The spatial location of the

anomaly samples and mineralized zones are not
changed using this transformation. Modeling the
negative scores of the PCA in order to determine
the threshold values is one of the development of
the article. Firstly, the usual PCA method was done
on the log-ratio geochemical data to prepare the
input for modeling. In the next step, to generate
positive data, a fixed number was added to all
pollution factor scores. Then new PCA scores were
used and modeled by the C-A fractal method.

1
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Figure 6. Component loading of elements in the pollution factor obtained by PCA and the practical toxic
elements.
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A grid net of 91 x 91 m? (with a total number of
9498 grids) was used to estimate the concentration
and interpolate the data using the ordinary kriging
technique. The mentioned interpolation technique
was implemented on the PCA scores. After the
estimation stage of the network and classification
of the estimated data, the logarithmic plot of the
concentration-area was drawn on the variables. On
this graph, different populations with different
fractal dimensions were recognized (Figure 8).
There are four main populations on the C-A fractal

Journal of Mining & Environment, Vol. 14, No. 3, 2023

diagram for multivariate pollution factors. Fractal
dimensions generally increase from low to high
concentration populations. The anthropological
effects of mining activities or anomalous
populations were recognized with high fractal
dimensions. Low fractal dimensions are also
related to the background populations that have not
been affected or are less affected by these activities
[7, 34, 53, 54]. Fractal dimensions obtained from
primary populations identified four populations 1
to 4 are 0.06, 2.14, 0.75, and 7.35, respectively.
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Figure 7. Component plot of principal components 1, 2, and 3 in rotated space, the toxic elements related to
pollution phenomena have been detected.
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Figure 8. C-A fractal model of PC2 data.

4.3. S-A fractal modeling of PCA

The multivariate geochemical map can be
created using S-A fractal modeling of PCA [36]. In
this study, PCA was applied to identify the
pollution factor. The pollution factor (PC2),
integrated from the toxic elements of Pb, Zn, As,
Ba, Cd, and Mn, improves the multi-element
geochemical signature. This integrated factor was
modeled using the S-A fractal method. For this

x10°

aim, the pollution factor was transformed to the
frequency domain, and the power spectrum values
relevant to the contamination signals were
calculated using the two-dimensional fast Fourier
function. The power spectrum distribution map of
the pollution factor is depicted in Figure 9. This
map indicates the wavenumbers and the power
values of the constituent signals of the pollution
factor.

2 N 6
x10°

Figure 9. Distribution map of logarithmic power spectrum values related to the multivariate integrated pollution
factor (containing As, Pb, Zn, Cd, Ba, Mn elements).
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The distribution map of the power spectrum five straight lines were fitted to these data points,
related to the integrated pollution factor was and five geochemical classes were detected with
applied for delineating the logarithmic S-A fractal various power-law relationships. The features of
plot (Figure 10). The logarithmic values of the these frequency classes extracted from fractal
power spectrum (PS) versus area were plotted in modeling have been represented in Table 1.

this modeling. Based on the least squares method,

Class 5
o= 3.5

—\ Class 4

3

2.5
Class 3

Log (area) ,

1.5
Class 2

1 ‘”\‘
0.5 Class 1

Log (PS)

-4 -2 0 2 4 6 8

@®

Figure 10. S-A fractal plot of the power energy, Log (PS), versus cumulative area, Log (area), related to the
multivariate pollution factor of PCA.

Table 1. Characteristics of 5 geo-chemical classes obtained from the S-A fractal model of pollution factor.

Geo-chemical class Class 1 Class 2 Class 3 Class 4 Class 5
Thresholds (PS) 2271082-3713604  206298-2271082  2403- 206298  0.083-2403  0.00044 - 0.083
Erequency Very low Low Moderate High Very high
signals
Fractal dimension 3.46 0.3 0.6 0.21 0.04
5. Discussion map. Higher populations are shown with magenta

and purple colors, the intermediate population with
dark turquoise color, and the background
population  with  turquoise color.  Higher
concentrations of elements are included in the
mining limit and its surroundings. The open-
ground limit is related to concentrations with an
intermediate population (Figure 1). The center and
southwest of the area are also related to the
background population.

Figure 11 shows a multivariate geo-chemical
map. This map is obtained from the fractal
concentration-area modeling of PCA data. In this
integrated method, contour maps with pixels of
acceptable size were provided using a kriging
interpolation technique on PCA scores. Based on
variables Ph, Zn, As, Ba, Mn, and Cd, four multi-
element different populations are separated on this
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Figure 11. Geochemical pollution map resulted from C-A fractal modeling of PC2 with four populations in the
studied area.

Different PS-based filter functions were designed
to separate the geochemical classes detected by the
fractal plot. The PS-based filter functions only
filter some PS values and ignore the frequencies
and wavelength values [24, 55].

The right-hand line in the fractal plot containing
very low-frequency signals is relevant to
background values. The left-hand population
represents the very high-frequency signals
commonly considered noise factor in geochemical
data. The geochemical noises can be related to
inaccuracy and imprecision of sampling,
preparation, and analyzing steps. The intermediate
frequency signals commonly indicate anomaly

signatures in the frequency domain. In this
investigation, five geochemical contamination
classes were identified using fractal modeling of
the integrated pollution factor of PCA. Five PS-
based filter functions were designed and applied to
separate the five fractal classes (Table 2). These
filters have been defined using the obtained
threshold values of the fractal diagram. The inverse
Fourier transform was applied for transforming the
five frequency classes to the spatial domain. The
geochemical populations of background, noise, and
anomaly classes are effectively identified using the
S-A fractal model.

Table 2. Five geo-chemical classes obtained from the S-A fractal model of pollution factor and their applied filter
functions.

Geo-chemical population Applied filter function

Class 1 G(Kx. Ky) = {%) 222277118223322 f FI::SS
R
Class 3 G(Kx.Ky) = {é 2403 < FS ftﬁgr?iiiz
Class G(Kx. Ky) = {é 0.083 < P(ftrferzv‘\}igz
Class 5 G(Kx.Ky) = {%J PoSthSegl.\?ng
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The frequency signals in fractal class 1 were
separated and transformed into the spatial domain
using 2DFT. The very low-frequency signals are
relevant to the background values, and Figure 12a
indicates the distribution map of these fractal
classes. The pollution areas and the origin of
contamination are not detected using this
frequency class. Figure 12b indicates the
geochemical distribution map of low-frequency
signals in the spatial domain. The fractal class 3,
including the moderated signals, properly deputes
the pollution process (Figure 12c). The geo-
chemical anomaly and origin of contamination
have been detected by interpreting this class.
Pollution anomalies consisting of moderate
frequency signals between the PS of 2403 and
271082 occur around the mining activities.
Significant pollution anomalies related to PS
values between 0.083 and 2403 based on the S-A
fractal model (class 4) are situated near the tailing
dam and the location of mining activities (Figure
12d).

The fractal class 5, consisting of very high-
frequency signals, is relevant to the geochemical
noises. The geo-chemical distribution map of these
very high-frequency signals is shown in Figure
12e. These high-frequency signals create shallow

1030
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scores for pollution factors in the spatial domain.
This map indicates that the low part of the multi-
element pollution factor is related to geo-chemical
Noises.

The fractal classes 2, 3, and 4 containing
frequency signals related to geochemical
anomalies were combined to indicate a proper
prospectively map. Hence, the signals of classes 1
and 5 were filtered and removed from data using
newly designed filter function that preserves the PS
values between 0.083 and 271082. The residual
signals were transformed to the spatial domain
using 2DIFT for mapping the pollution
geochemical anomalies (Figure 12f).  These
integrated fractal classes have yielded a proper
correlation between anomalies and pollution
sources and distinguish essential targets for future
contamination studies. The obtained integrated
environmental anomalies are closely related to
mining activities. The integration of PCA and the
S-A fractal method is a practical scenario for
detecting the sources of toxic metal pollution and
recognizing the polluted areas. The S-A fractal
method that categorizes the various geochemical
frequency signals could more precisely indicate the
contaminated environmental areas rather than the
C-A fractal method.
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Figure 12. Geo-chemical contamination map of the frequency classes compiled using the S-A fractal model, a:
frequency class 1, b: frequency class 2, c: frequency class 3, d: frequency class 4, e: frequency class 5, f:
combined frequency classes 2, 3, and 4.

6. Conclusions areas in the surrounding soils of mining activities.
New integrated techniques were developed based The main findings of this study are as follows:

on modeling of the PCA method results by the C- 1. The PCA method extracted 8 PCs, including a

A and S-A fractal models for identifying pollution cumulative variance of 86% from 45 elements using

the varimax analytic rotation.
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2. The C-A fractal model shows four main geo-
chemical populations for multivariate pollution
factors. High fractal dimensions are associated with
contamination from mining activities. The fractal
dimension of primary populations recognized four
populations.

3. A multivariate geochemical map obtained from
modeling PCA data by the C-A fractal method
determined the concentration of elements in the
mining limit. Also, it revealed the concentration of
toxic elements in the open-ground limit.

4-.The S-A fractal model indicated five geochemical
populations for multivariate pollution factors. The
surrounding areas of Irankooh have mainly been
polluted by toxic elements that are closely relevant
to mining activities.

5. The pollution anomalies detected by C-A and S-
A fractal modeling of PCA coincide closely with
contamination areas and are correlated to pollution
sources. The obtained results demonstrate that the
fractal populations of the S-A method can more
precisely detect the pollution areas rather than the C-
A fractal model.
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