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 The primary purpose of this investigation is contamination mapping in surrounding 
areas of Irankuh Pb–Zn mine, located in central Iran, using an integrated approach of 
principal component analysis (PCA) with the Concentration-Area (C-A) and Power 
Spectrum-Area (S-A) fractal models. PCA categorized the 45 elements into eight 
principal components. Component 2, containing the toxic elements of Pb, Zn, As, Mn, 
Cd, and Ba, was identified as the contamination factor. This multivariate 
contamination factor was modeled using the C-A and S-A fractal methods (in spatial 
and frequency domains) to delineate pollution areas. Modeling of PCA data using the 
C-A fractal method showed four main populations for the contamination factors. Two 
populations with higher fractal dimensions are associated with contamination from 
mining activities or anthropogenic effects. Low fractal dimensions are considered the 
background population, which has not been affected or is less affected by these 
activities. Five geo-chemical populations were obtained for contamination factors 
using the S-A fractal modeling of PCA in the frequency domain. Therefore, various 
geo-chemical populations were achieved using geo-chemical filtering and two-
dimensional inverse Fourier transformation. The geo-chemical populations related to 
classes 2, 3, and 4 containing intermediate frequency signals showed the pollution 
anomaly. The spatial distribution of pollutant geo-chemical signals exhibits excellent 
conformity with the mining operation limit and tailing dam location as pollutant 
sources. The results indicate that the elements Pb, Zn, Cd, and As have significant 
values in the surrounding soils rather than their concentrations in the earth’s crust. The 
results demonstrate that the S-A fractal models can more precisely delineate the 
environmental anomaly than the C-A fractal model, especially in intermediate 
frequency populations. 
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1. Introduction 
Sustaining the soil and agricultural areas from the 

accumulation of toxic and heavy metals holds a 
fundamental role in food security, human health, 
and animals’ survival [1]. Soils are polluted by 
toxic metals from the sources of natural and 
human. Mineral mining, as a human factor, can 
effectively transfer heavy and toxic metals to the 
environment [2, 3]. Sources detecting and spatial 
distribution mapping toxic elements in the soil are 
essential for pollution control [4]. Identifying the 
features of the metal pollution process and 
delineating the polluted areas are fundamental 
tasks to prevent pollution [5]. The anomaly 

mapping methods performed in the mineral 
geochemical exploration can be utilized desirably 
for contamination mapping in environmental geo-
chemistry [6]. 

Various univariate and multivariate methods 
such as fractal models [7-12], probability plots [13-
15], PCA [16, 17] and machine learning algorithms 
[1, 18] have been applied for anomaly mapping in 
mineral geo-chemical exploration. The univariate 
methods of probability plot and fractal models have 
been performed for environmental geochemical 
anomaly mapping [19]. Multivariate methods such 
as principal component analysis have been 
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effectively applied for spatial distribution mapping 
of toxic metals [4, 20, 21].  

Multivariate signatures in mining and 
environmental geo-chemistry are not considered by 
applying simple fractal models. PCA has been 
applied for discerning geochemical patterns in the 
spatial, frequency, and wavelet domains in mining 
geo-chemistry [22-29]. PCA can be used to reduce 
the dimensions of the environmental dataset and 
identify the heavy and toxic elements related to the 
pollution process. This multivariate method has 
been applied for environmental geochemical 
mapping and contamination source detecting 
relevant to mining works [20]. PCA can identify 
the essential influence variables in the pollution 
process concealed in environmental geochemical 
datasets based on correlations and internal relations 
of elements [30, 31]. This method extracts 
desirable information from complicated geo-
chemical datasets [32]. The new multivariate 
features with new scores are calculated for each 
sample in the rotated space that can be analyzed as 
independent integrated factors. The principal factor 
of toxic elements can be modeled and mapped 
using various methods such as C-A and S-A fractal 
approaches. The C-A fractal method has been 
developed to detect exploration geochemical 
anomalies [7, 15, 33, 34] and has been used to map 
contaminated areas of univariate elements [35, 36]. 
S-A fractal method is used to identify frequency 
features relevant to geo-chemical populations 
concealed in the dataset [37, 38]. The geo-chemical 
frequency signals of elements have been frequently 
modeled using a fractal method in mining geo-
chemistry [8, 38, 39]. 

In this study, new integrated techniques were 
applied based on the principal component scores 
and C-A and S-A fractal models in the spatial and 
frequency domains for the first time to characterize 
pollution phenomena in the surrounding soils of 
mining activities. The PC of the pollution process 
has been modeled by fractal techniques in the 
spatial and frequency domains. Therefore, the 
fractal populations of geo-chemical signals as 
multi-element environmental pollution factors 
have been distinguished. These methods can 
identify the variables related to contamination and 
separate the areas affected by toxic metal pollution 
with more certainty. 

2. Case Study 
Irankuh mine is located in the vicinity of Irankuh 

mountain in the Isfahan province, Iran. This area is 
part of the Sanandaj-Sirjan zone. This zone is a unit 
of the Zagros orogen, which includes metamorphic 
rocks [6, 40, 41]. The geological map of the study 
area, on which soil geochemical samples and main 
land uses are fitted, is shown in Figure 1. This area 
hosts Zn-Pb deposits related to Malayer-Isfahan 
metallogenic belt. A cretaceous sequence of 
dolostone and fossiliferous calcareous rocks 
overlay a Jurassic shale layer, which is the lowest 
stratigraphic unit in the area [42, 43]. Sulfides and 
carbonates include the MVT Pb-Zn mineralization 
that occurred in dolostones. Open-pit and 
underground mining has been carried out in this 
area for several decades. Mineral processing 
plants, tailings, and waste piles are located near the 
agricultural areas in the southern part of Irankuh. 

In the Irankuh region, epigenetic Pb-Zn 
mineralization, covered by lower Cretaceous 
dolostone and Jurassic shale, has occurred. This 
mineralization was formed within the dolomite and 
shale host rocks by a series of replacement 
processes and appeared in the forms of veinlets, 
breccia, and filled spaces [44]. The primary lead-
zinc mineralization is in the form of altered 
hydrothermal veins in fractured rocks, reverse 
faults, and dilatational spaces. These alterations 
include dolomitization and silicification. It can be 
concluded that this mineralization occurred during 
or after fracturing and faulting [45]. The iron and 
manganese-rich dolomite, iron-rich sphalerite, 
ankerite, low pyrite, galena, bituminous, calcite ± 
quartz ± barite are the dominant minerals of this 
mineralization [44]. 

The climate of the study area is semi-arid, and it 
is usually windy from March to May and 
sometimes from September to October [45]. The 
pH of the regional soil is around 7-8, and its 
chemical composition is organic compounds, 
calcic, and some salt. Regarding soil size, the 
approximate percentages of sand, silt, and clay are 
44, 39, and 17, respectively [35]. Near the mine, 
plants and agricultural products are contaminated 
with toxic metals such as lead and zinc. These 
metals are dispersed in the region through the dust. 
Therefore, it has created concerns for the region’s 
farmers [46]. 
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Figure 1. Geological map of the Irankuh region; location of the soil samples and primary land use is shown on 

the map. 

3. Materials and Methods 
3.1. Dataset 

One hundred thirty-seven soil geochemical 
samples were taken from the depth of 0 to 30 cm 
around the mining areas. These areas include the 
spanning small industrial/residential and larger 
agricultural areas. To collect these samples, a grid 
of 500 × 500 square meters was designed (Figure 
1). Considering the situation of the field, the 
location of some sampling sites has been adjusted. 
The samples were prepared with a four-acid mix 
(HCl–HNO3–HClO4–HF) and analyzed for 44 
elements. These samples have been analyzed by 
inductively coupled plasma-optical emission 
spectrometry in the central laboratory of the 
Geological Survey and Mineral Exploration of Iran 
with a detection limit of elements of 0.1. Figure 2 
shows the carbonate layer located south of the 
Irankuh limit, next to which is the farmers' 
greenhouses. Also in this figure, close to the 
location, the tailing dam located in the southern 
part of the area is clearly shown. 
 

 
Figure 2. Photo of the carbonate unit, greenhouses, 

and tailing dam in the southern part of Irankuh 
limit (looking north). 
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3.2. C-A fractal modeling of PCA 
PCA is a typical multivariate analysis and 

dimension reduction technique. It extracts new 
uncorrelated components from several correlated 
features and reduces the dimensionality of feature 
space in the dataset [32]. PCA is performed on a 
dataset based on the calculated covariance or 
correlations of features. The principal components 
as coordinate axes in the new features space have 
been achieved using the Varimax rotation method. 
The Varimax method reveals the complicated 
structures of datasets [47, 48]. This orthogonal 
rotation method can simplify structures by 
transforming the component subspace of PCA. The 
Varimax function maximizes the sums of squares 
of the loadings for original variables. The 
interpretation of the dataset can be improved by 
rotating the matrix of principal components 
coefficients [47, 49]. 

New values for each sample are calculated based 
on the rotated axes in the new space. Therefore, 
each sample holds an absolute principal component 
score related to any principal component. These 
scores as new multivariate geochemical features 
can be analyzed instead of concentrations of 
elements. The scores of samples related to 
pollution factors are computed using the below 
equation: 
(௉௢௟௟௨௧௜௢௡ ி௔௖௧௢௥)݁ݎ݋ܿܵ = ଵܾ ଵܺ + ܾଶ ଶܺ + ⋯+ ܾ௣ܺ௣ (1) 

where coefficients of b are related to 
the regression weight of principal components 
calculated during the PCA procedure, and X values 
are the initial concentration of elements that 
contribute to making the pollution factor. The PCs 
extracted by PCA can be modeled using fractal 
methods. Determining the fractal dimension is the 
basis of the fractal method for determining 
geochemical patterns. A smooth model of the 
spatial distribution of elements is provided by 
contour maps. If, in these maps, (ߩ)ܣ is an area of 
a contour with a concentration of ߩ, then the area 
decreases with increasing concentration. To define 

the background and geochemical anomaly, the 
concentration-area fractal model is defined as 
follows [7]: 

 ஽ (2)ିߩߙ(ఘ≺)(ߩ)ܣ

where (ߩ)ܣ is the contour area with a 
concentration more significant than the value of ߩ, 
and D is exponential features or fractal dimensions. 

A grid of cells can be overlapped over the study 
area. In this case, (ߩ)ܣ can be obtained by counting 
cells with a raw concentration of elements. In this 
method, for concentrations higher than the desired 
counter, (ߩ)ܣ is equal to the number of cells 
multiplied by the area of the cells. Considering that 
in geo-chemical surveys, anomalies show 
concentrations related to mineralization processes, 
these values will have power functions or fractal 
dimensions different from background values. This 
difference in fractal dimensions is used to separate 
anomalous areas from the background [7, 34, 36, 
50]. Geochemical anomalies have larger fractal 
dimensions than the populations of the 
geochemical background. Therefore, the border 
between these fractal dimensions can be 
considered threshold values. The threshold value 
separates anomalous values from the geochemical 
background. The C-A fractal modeling of PCA 
categorizes the contamination populations and 
intensifies the environmental geochemical 
anomaly. 

3.3. S-A fractal modeling of PCA 
PCA can extract new principal factors using the 

Varimax rotation method. The pollution factor 
containing the mentioned scores for each sample 
can be interpreted as a new geochemical index. 
Spectral analysis of this pollution index in the 
frequency domain is a mathematical approach for 
pollution mapping. Hence, the pollution factor can 
be converted to the frequency domain using two 
dimensional Fourier transformation function as 
follows [51]: 

 

( , ) ( , ) cos(K ) ( , ) sin(K )x y x y x yF K K f x y x K y dxdy i f x y x K y dxdy
   

   

        (3) 

 
where f(x, y) is the pollution factor as a spatial 

function, and Kx and Ky indicate the wave number 
values in the x and y directions. F(Kx, Ky) 
containing the real part, R(Kx, Ky), and imaginary 
part, I(Kx, Ky), is a transferred function in the 

frequency domain. The power spectrum values are 
calculated as follows [51]: 

2 2(K , K ) (K , K ) (K , K ) x y x y x yE R I  (4) 
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The log-log plot of fractal based on the power 
spectrum and cumulative areas are delineated, and 
different straight lines are fitted on points of the 
log-log graph. The threshold values for geo-
chemical classes are detected using the breakdown 
points of the graph and show the various power-
law relationships. The S-A fractal models are 
defined as follows: 

 /dS)S(A 2  (5) 

where A(>S) indicates the areas larger and equal 
to power spectrum value (S), and β is the amount 
of anisotropy, and d is the generalized scale 
invariance parameter. The geo-chemical classes 
are separated using low, high, and band pass 
filtering, and then are transferred to the spatial 
domain using inverse Fourier transformation. 
These separated classes can illustrate the various 
geochemical populations consisting of 
geochemical noise, background, and anomaly.  

 

4. Results 
The agricultural, industrial, and residential 

backgrounds, which include surrounding areas of 
the Pb-Zn mine, have been affected by pollution 
from mining activities. In this research work, the 
data obtained from the analysis of 137 soil samples 
were collected. The histogram and some statistical 
parameters of Pb, Zn, Cd, As, and Ba are presented 
in Figure 3. The average concentration of these 
elements in the earth's crust are 12.5, 70, 0.2, 1.8, 
and 425 ppm, respectively [52]. Figure 3 shows 
that the histograms of lead, zinc, cadmium, and 
arsenic follow an abnormal distribution, and 
barium has a normal distribution. The highest 
frequency is around the average concentration of 
these elements in the study area. This amount is 
several times the Clark of the elements. The results 
obtained from geo-chemical surveys and patterns 
of contaminant elements and the relationship 
between these elements show that the leading cause 
of environmental pollution of surrounding areas 
with toxic metals is dust [35, 40]. 

 
Figure 3. Histogram of the toxic elements along with some statistical parameters in the studied area. 

The ratio of the average and maximum 
concentration of samples in the studied area to the 
average concentration of the toxic elements in the 

earth's crust [52] has been delineated in Figure 4. 
These values demonstrate that mining activities 
polluted the surrounding areas of the Irankooh Pb-
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Zn mine with toxic elements, especially Cd, Pb, 
Zn, and As. In this investigation, the contaminated 
surrounding areas were mapped using the C-A and 

S-A fractal modeling of multivariate pollution 
factors obtained by PCA. 

 
Figure 4. Ratio of the average and maximum concentration of samples in the studied area to the average 

concentration of the toxic elements in the earth's crust. 

4.1. PCA method 

The surrounding areas of the Irankooh Pb-Zn 
mine have been contaminated by toxic elements 
especially lead and zinc. In this study, the 
multivariate pollution factor consisting of toxic 
elements was investigated. The concentrations of 
45 elements were applied for detecting the 
pollution factor using PCA based on the correlation 
matrix of elements. The log-ratio geo-chemical 
data were analyzed using PCA. The integrated 
environmental anomaly caused by toxic elements 
can be obtained by PCA. The relevance of toxic 
metals in the soil samples was quantified using 
PCA as a feature extraction method. The 
correlation matrix, Varimax rotation, and Kaiser 
normalization methods were performed for 
extracting the PCs. 

The Kaiser normalization method was applied to 
the dataset. Then the geochemical data were 
rotated in the new coordinate system using the 
Varimax rotation method. The PCs as new features 
are obtained based on the new rotated axes. The 45 
elements were categorized in 8 PCs with a 
cumulative variance of 86% for initial eigenvalues 
using PCA. The variances of these deriving PCs are 
shown in Figure 5. Figure 6 shows the component 
loadings of elements in the second PC. The 
elements of Pb, Zn, As, Ba, Cd, and Mn have 
component loadings of more than 0.5 and 
significantly affect this component as a pollution 
factor. These toxic elements have also been 
separated from other elements in the plot of PCs of 
1, 2, and 3 in rotated space (Figure 7). The PC 
scores of deriving pollution factors that indicate the 
contamination magnitude of soil are calculated for 
all samples using PCA equations. 
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Figure 5. Variances of the deriving PCs from PCA. 

4.2. C-A fractal modeling of PCA 

In order to C-A fractal modeling of PCA, the 
fractal model for the positive values is drawn, 
modeled, and calculated as the threshold value for 
the anomalous sub-population. To model the PCA 
scores by fractal method, the negative PCA values 
must convert to a positive value. For this aim, the 
PCA scores can be shifted by adding a constant 
positive number. The spatial location of the 

anomaly samples and mineralized zones are not 
changed using this transformation. Modeling the 
negative scores of the PCA in order to determine 
the threshold values is one of the development of 
the article. Firstly, the usual PCA method was done 
on the log-ratio geochemical data to prepare the 
input for modeling. In the next step, to generate 
positive data, a fixed number was added to all 
pollution factor scores. Then new PCA scores were 
used and modeled by the C-A fractal method. 

 
Figure 6. Component loading of elements in the pollution factor obtained by PCA and the practical toxic 

elements. 
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A grid net of 91 × 91 m2 (with a total number of 
9498 grids) was used to estimate the concentration 
and interpolate the data using the ordinary kriging 
technique. The mentioned interpolation technique 
was implemented on the PCA scores. After the 
estimation stage of the network and classification 
of the estimated data, the logarithmic plot of the 
concentration-area was drawn on the variables. On 
this graph, different populations with different 
fractal dimensions were recognized (Figure 8). 
There are four main populations on the C-A fractal 

diagram for multivariate pollution factors. Fractal 
dimensions generally increase from low to high 
concentration populations. The anthropological 
effects of mining activities or anomalous 
populations were recognized with high fractal 
dimensions. Low fractal dimensions are also 
related to the background populations that have not 
been affected or are less affected by these activities 
[7, 34, 53, 54]. Fractal dimensions obtained from 
primary populations identified four populations 1 
to 4 are 0.06, 2.14, 0.75, and 7.35, respectively.  

 

 
Figure 7. Component plot of principal components 1, 2, and 3 in rotated space, the toxic elements related to 

pollution phenomena have been detected. 
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Figure 8. C–A fractal model of PC2 data. 

4.3. S-A fractal modeling of PCA 
The multivariate geochemical map can be 

created using S-A fractal modeling of PCA [36]. In 
this study, PCA was applied to identify the 
pollution factor. The pollution factor (PC2), 
integrated from the toxic elements of Pb, Zn, As, 
Ba, Cd, and Mn, improves the multi-element 
geochemical signature. This integrated factor was 
modeled using the S-A fractal method. For this 

aim, the pollution factor was transformed to the 
frequency domain, and the power spectrum values 
relevant to the contamination signals were 
calculated using the two-dimensional fast Fourier 
function. The power spectrum distribution map of 
the pollution factor is depicted in Figure 9. This 
map indicates the wavenumbers and the power 
values of the constituent signals of the pollution 
factor.  

 
Figure 9. Distribution map of logarithmic power spectrum values related to the multivariate integrated pollution 

factor (containing As, Pb, Zn, Cd, Ba, Mn elements). 
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The distribution map of the power spectrum 
related to the integrated pollution factor was 
applied for delineating the logarithmic S-A fractal 
plot (Figure 10). The logarithmic values of the 
power spectrum (PS) versus area were plotted in 
this modeling. Based on the least squares method, 

five straight lines were fitted to these data points, 
and five geochemical classes were detected with 
various power-law relationships. The features of 
these frequency classes extracted from fractal 
modeling have been represented in Table 1.  

 

 
Figure 10. S-A fractal plot of the power energy, Log (PS), versus cumulative area, Log (area), related to the 

multivariate pollution factor of PCA. 

Table 1. Characteristics of 5 geo-chemical classes obtained from the S-A fractal model of pollution factor. 
Geo-chemical class Class 1 Class 2 Class 3 Class 4 Class 5 

Thresholds (PS) 2271082-3713604 206298-2271082 2403- 206298 0.083 - 2403 0.00044 – 0.083 
Frequency 
signals Very low Low Moderate High Very high 

Fractal dimension 3.46 0.3 0.6 0.21 0.04 
 
5. Discussion 

Figure 11 shows a multivariate geo-chemical 
map. This map is obtained from the fractal 
concentration-area modeling of PCA data. In this 
integrated method, contour maps with pixels of 
acceptable size were provided using a kriging 
interpolation technique on PCA scores. Based on 
variables Pb, Zn, As, Ba, Mn, and Cd, four multi-
element different populations are separated on this 

map. Higher populations are shown with magenta 
and purple colors, the intermediate population with 
dark turquoise color, and the background 
population with turquoise color. Higher 
concentrations of elements are included in the 
mining limit and its surroundings. The open-
ground limit is related to concentrations with an 
intermediate population (Figure 1). The center and 
southwest of the area are also related to the 
background population. 
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Figure 11. Geochemical pollution map resulted from C-A fractal modeling of PC2 with four populations in the 

studied area. 

Different PS-based filter functions were designed 
to separate the geochemical classes detected by the 
fractal plot. The PS-based filter functions only 
filter some PS values and ignore the frequencies 
and wavelength values [24, 55]. 

The right-hand line in the fractal plot containing 
very low-frequency signals is relevant to 
background values. The left-hand population 
represents the very high-frequency signals 
commonly considered noise factor in geochemical 
data. The geochemical noises can be related to 
inaccuracy and imprecision of sampling, 
preparation, and analyzing steps. The intermediate 
frequency signals commonly indicate anomaly 

signatures in the frequency domain. In this 
investigation, five geochemical contamination 
classes were identified using fractal modeling of 
the integrated pollution factor of PCA. Five PS-
based filter functions were designed and applied to 
separate the five fractal classes (Table 2). These 
filters have been defined using the obtained 
threshold values of the fractal diagram. The inverse 
Fourier transform was applied for transforming the 
five frequency classes to the spatial domain. The 
geochemical populations of background, noise, and 
anomaly classes are effectively identified using the 
S-A fractal model.  

Table 2. Five geo-chemical classes obtained from the S-A fractal model of pollution factor and their applied filter 
functions. 

Geo-chemical population Applied filter function 

Class 1 G(Kx. Ky) = ቄ1         2271082 ≤ PS
0        2271082 > PS  

Class 2 G(Kx. Ky) = ቄ 1         206298 < PS ≤ 271082
0                                       otherwise 

Class 3 ݔܭ)ܩ (ݕܭ. = ቄ1          2403 < ܲܵ ≤ 206298
0                                 otherwise 

Class 4 ݔܭ)ܩ (ݕܭ. = ቄ1              0.083 < ܲܵ ≤ 2403
0                                 otherwise 

Class 5 G(Kx. Ky) = ቄ1             PS ≤ 0.083
0              otherwise  
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The frequency signals in fractal class 1 were 
separated and transformed into the spatial domain 
using 2DFT. The very low-frequency signals are 
relevant to the background values, and Figure 12a 
indicates the distribution map of these fractal 
classes. The pollution areas and the origin of 
contamination are not detected using this 
frequency class. Figure 12b indicates the 
geochemical distribution map of low-frequency 
signals in the spatial domain. The fractal class 3, 
including the moderated signals, properly deputes 
the pollution process (Figure 12c). The geo-
chemical anomaly and origin of contamination 
have been detected by interpreting this class. 
Pollution anomalies consisting of moderate 
frequency signals between the PS of 2403 and 
271082 occur around the mining activities.  
Significant pollution anomalies related to PS 
values between 0.083 and 2403 based on the S-A 
fractal model (class 4) are situated near the tailing 
dam and the location of mining activities (Figure 
12d). 

The fractal class 5, consisting of very high-
frequency signals, is relevant to the geochemical 
noises. The geo-chemical distribution map of these 
very high-frequency signals is shown in Figure 
12e. These high-frequency signals create shallow 

scores for pollution factors in the spatial domain. 
This map indicates that the low part of the multi-
element pollution factor is related to geo-chemical 
noises.    

The fractal classes 2, 3, and 4 containing 
frequency signals related to geochemical 
anomalies were combined to indicate a proper 
prospectively map. Hence, the signals of classes 1 
and 5 were filtered and removed from data using 
newly designed filter function that preserves the PS 
values between 0.083 and 271082. The residual 
signals were transformed to the spatial domain 
using 2DIFT for mapping the pollution 
geochemical anomalies (Figure 12f).  These 
integrated fractal classes have yielded a proper 
correlation between anomalies and pollution 
sources and distinguish essential targets for future 
contamination studies. The obtained integrated 
environmental anomalies are closely related to 
mining activities. The integration of PCA and the 
S-A fractal method is a practical scenario for 
detecting the sources of toxic metal pollution and 
recognizing the polluted areas. The S-A fractal 
method that categorizes the various geochemical 
frequency signals could more precisely indicate the 
contaminated environmental areas rather than the 
C-A fractal method. 
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Figure 12. Geo-chemical contamination map of the frequency classes compiled using the S-A fractal model, a: 

frequency class 1, b: frequency class 2, c: frequency class 3, d: frequency class 4, e: frequency class 5, f: 
combined frequency classes 2, 3, and 4. 

6. Conclusions 
New integrated techniques were developed based 

on modeling of the PCA method results by the C-
A and S-A fractal models for identifying pollution 

areas in the surrounding soils of mining activities. 
The main findings of this study are as follows: 

1. The PCA method extracted 8 PCs, including a 
cumulative variance of 86% from 45 elements using 
the varimax analytic rotation.  
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2. The C-A fractal model shows four main geo-
chemical populations for multivariate pollution 
factors. High fractal dimensions are associated with 
contamination from mining activities. The fractal 
dimension of primary populations recognized four 
populations. 

3. A multivariate geochemical map obtained from 
modeling PCA data by the C-A fractal method 
determined the concentration of elements in the 
mining limit. Also, it revealed the concentration of 
toxic elements in the open-ground limit. 

4-.The S-A fractal model indicated five geochemical 
populations for multivariate pollution factors. The 
surrounding areas of Irankooh have mainly been 
polluted by toxic elements that are closely relevant 
to mining activities. 

5. The pollution anomalies detected by C-A and S–
A fractal modeling of PCA coincide closely with 
contamination areas and are correlated to pollution 
sources. The obtained results demonstrate that the 
fractal populations of the S-A method can more 
precisely detect the pollution areas rather than the C-
A fractal model. 
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  چکیده:

 هاي اصلیتحلیل مؤلفه هدف اصلی این تحقیق، به نقشه درآوردن مناطق آلودة اطراف معدن سرب و روي ایرانکوه واقع در مرکز ایران با استفاده از تلفیق مدل
(PCA) غلظت-هاي فرکتالی عیاربا مدل (C-A) مساحت-و طیف توان (S-A) .است PCA  حاوي 2عنصر را به هشت مولفه اصلی کاهش بعد داد. مؤلفۀ  45تعداد ،

 و  C-A هاي فرکتالاین فاکتور آلودگی چندمتغیره با استفاده از روش  .باریم، به عنوان فاکتور آلودگی شناسایی شد  عناصر سمی سرب، روي، منگنز، کادمیوم، و
S-A هايسازي دادهسازي شد. مدلگی مدلهاي مکانی و فرکانسی) براي ترسیم مناطق آلود(در حوزه PCA با استفاده از روش فرکتال C-A  چهار جامعه اصلی را

ابعاد فرکتال پایین مناطق  .هاي معدنی یا اثرات انسانی مرتبط هستنددو جامعه با ابعاد فرکتالی بالاتر به آلودگی ناشی از فعالیت براي فاکتور آلودگی نشان داد.
پنج جامعۀ ژئوشیمیایی براي فاکتور آلودگی با استفاده از  .تأثیر قرار گرفته استها قرار نگرفته یا کمتر تحتد که تحت تأثیر این فعالیتدهزمینه را نشان می

س با استفاده در حوزه فرکانس به دست آمد. در ادامه، جوامع مختلف ژئوشیمیایی حاصل از مدل فرکتالی در حوزه فرکان PCAهاي داده S-A سازي فرکتالیمدل
هاي فرکانس متوسط، حاوي سیگنال 4و  3، 2هاي جوامع ژئوشیمیایی مربوط به کلاس .از فیلتر ژئوشیمیایی و تبدیل فوریه معکوس دو بعدي به دست آمدند

بع ت معدنی و محل سدباطله به عنوان مناهاي ژئوشیمیایی آلاینده، مطابقت بسیار خوبی با محدودة عملیاناهنجاري آلودگی را نشان دادند. توزیع فضایی سیگنال
ها در پوسته زمین، هاي اطراف در مقایسه با غلظت آندر خاك آرسنیک دهد که غلظت عناصر سرب، روي، کادمیوم ونتایج نشان می  .دهدآلاینده نشان می

ویژه به ،C-Aمحیطی را نسبت به مدل فرکتالی هاي زیستبیشتري آنومالیتواند با دقت می S-A همچنین نتایج حاکی از آن است که مدل فرکتالی توجه است.قابل
 .در جوامع فرکانس متوسط جداسازي کند

  هاي ژئوشیمیایی.محیطی، سیگنالمدل فرکتالی، تحلیل مؤلفۀ اصلی، آلودگی زیست کلمات کلیدي:
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