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DERIVATIONS OF PRIME FILTER THEOREMS
GENERATED BY VARIOUS ∩-STRUCTURES IN

TRANSITIVE GE-ALGEBRAS

M. SAMBASIVA RAO

Abstract. Properties of prime filters and maximal filters
of transitive GE-algebras are investigated. An element-wise
characterization is derived for the smallest GE-filter containing
a given set. It is proved that the set of all GE-filters of a
transitive GE-algebra forms a complete distributive lattice. Four
different versions of a prime filter theorem are generalized in
transitive GE-algebras. A necessary and sufficient condition is
derived for a proper filter of a commutative GE-algebra to become
a prime filter.

Introduction

In 1966, Imai and Iseki introduced BCK-algebras [5] as the
algebraic semantics for a non classical logic possessing only implication.
Since then, the generalized concepts of BCK-algebras have been
studied by many researchers. H.S. Kim and Y.H. Kim introduced the
notion of a BE-algebra as a generalization of a dual BCK-algebra [6].
Hilbert algebras were introduced by Henkin and Skolem in the fifties
for investigations in intuitionistic and other non classical logics. R.A.
Borzooei and J. Shohani [3] introduced the notion of a generalized
Hilbert algebra and studied its properties. As a generalization of
Hilbert algebras, R. Bandaru et al., introduced the notion of
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GE-algebras and investigated several properties of GE-filters of GE-
algebras [10, 1]. Recently in 2021, M.A. Öztürk et.al., [9] investigated
the properties of strong GE-filters and strong GE-ideals of transitive
GE-algebras. In [11], Rezaei et.al studied the properties of promi-
nent GE-filters with respect to GE-morphisms of GE-algebras. In [12]
A. B. Saeid et.al studied certain properties of balanced GE-filters and
voluntary GE-filters are investigated. In [2], R.K. Bandaru et.al
studied the relationships between a GE-filter and a belligerent GE-
filter. In [4], S. M. Hong and Y. B. Jun characterized the deductive
systems and maximal deductive systems of Hilbert algebras. In [7],
Meng introduced the notion of prime filters in BCK-algebras, and
then gave a description of the filter generated by a set, and obtained
some of fundamental properties of prime filters. In [6], some proper-
ties of prime ideals in BCK-algebras were investigated. In 2016, A. S.
Nasab and A. B. Saeid [8] introduced the notions of prime filters of the
first kind, prime filters of the second kind and prime filters of the third
kind in Hilbert algebras. They made an extensive study to characterize
the prime filters of three kinds and to establish interconnections among
these classes of prime filters.
GE-filters are important substructures in a GE-algebra and play an

important role. It is well understood that GE-filters are the kernels
of congruences. From a logical stand point, different filters correspond
to different sets of valid formulas in an appropriate logic. The theory
of prime filters is crucial in the study of any class of logical algebras.
Designing various types of ∩-structures in some logical algebra is
algebraically interesting in proving prime filter theorems. With this
motivation, we introduce various types of ∩-structures in GE-algebras
and derive four versions of prime filter theorem in GE-algebra.

The main objective of this paper is to derive four versions of prime
filter separation theorems in GE-algebras. For this purpose, the
notions of ∩-structures are introduced in transitive GE-algebras by
the names of ∩-closed subset, finite ∩-structure, commutative closed
set, and ∨-closed subset. Some significant properties of prime filters
and maximal filters of transitive GE-algebras are investigated. Prime
filters of subalgebras of transitive GE-algebras are characterized. An
element-wise characterization is derived for the smallest GE-filter that
is containing a given set. It is proved that the set of all GE-filters
of a transitive GE-algebra forms a complete distributive lattice. A
necessary and sufficient condition is derived for a proper filter of a
commutative GE-algebra to become a prime filter.
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1. Preliminaries

In this section, we present certain definitions and results which are
taken mostly from the research paper [10] for the ready reference.
Definition 1.1. [10] An algebra (X, ∗, 1) of type (2, 0) is called a
GE-algebra if it satisfies the following properties:
(GE1) x ∗ x = 1,
(GE2) 1 ∗ x = x,
(GE3) x ∗ (y ∗ z) = x ∗ (y ∗ (x ∗ z)) for all x, y, z ∈ X.

Introduce a relation ≤ on a GE-algebra (X, ∗, 1) which is defined by
x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X. Clearly ≤ is reflexive.
Theorem 1.2. [10] Let X be a GE-algebra. For any x, y, z ∈ X,
(1) x ∗ 1 = 1,
(2) 1 ≤ x implies x = 1,
(3) x ∗ (x ∗ y) = x ∗ y,
(4) x ≤ y ∗ x,
(5) x ≤ (x ∗ y) ∗ y,
(6) x ≤ (y ∗ x) ∗ x,
(7) x ≤ (x ∗ y) ∗ x,
(8) x ≤ y ∗ (y ∗ x),
(9) x ∗ (y ∗ z) ≤ y ∗ (x ∗ z),
(10) x ≤ y ∗ z if and only if y ≤ x ∗ z.

Theorem 1.3. [10] Let (X, ∗, 1) be a GE-algebra. For any x, y, z ∈ X,
the following assertions are equivalent:
(1) x ∗ y ≤ (z ∗ x) ∗ (z ∗ y);
(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

Definition 1.4. [10] A GE-algebra (X, ∗, 1) is called transitive if
y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)

for all x, y, z ∈ X.
Theorem 1.5. [10] Let X be a transitive GE-algebra. For x, y, z ∈ X,
(1) x ≤ y implies z ∗ x ≤ z ∗ y,
(2) x ≤ y implies y ∗ z ≤ x ∗ z,
(3) ((x ∗ y) ∗ y) ∗ z ≤ x ∗ z.

Definition 1.6. [10] A non-empty subset F of a GE-algebra X is
called a filter if, for all x, y ∈ X, it satisfies the following properties:
(GEF1) 1 ∈ F ,
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(GEF2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

A GE-algebra X is called self-distributive if x∗(y∗z) = (x∗y)∗(x∗z)
for all x, y, z ∈ X. A GE-algebra X is called commutative if

(x ∗ y) ∗ y = (y ∗ x) ∗ x
(x∗y)∗y = (y ∗x)∗x for all x, y ∈ X. Every commutative GE-algebra
is transitive. If X is commutative, then ≤ is transitive, anti-symmetric
and hence a partial order on X.

2. Lattice of GE-filters of GE-algebras

In this section, the notion of the smallest GE-filter generated by
a non-empty subset of a transitive GE-algebra is introduced. It is
proved that the class of all GE-filters of a transitive GE-algebra forms
a complete distributive lattice.

Theorem 2.1. Let B be a filter of a transitive GE-algebra X. For any
non-empty subset A of X, the set

⟨B ∪ A⟩ = {x ∈ X | a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) ∈ B

for some a1, a2, . . . , an ∈ A; n ∈ N}

is the smallest filter of X containing A.

Proof. Let x ∈ B. Since B is a GE-filter, we get

a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) ∈ B

for any a1, . . . , an ∈ X. Hence x ∈ ⟨B ∪ A⟩. Therefore B ⊆ ⟨B ∪ A⟩
and hence 1 ∈ ⟨B ∪ A⟩. Let x, x ∗ y ∈ ⟨B ∪ A⟩. Then

a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) ∈ B

and b1 ∗ (b2 ∗ (· · · ∗ (bm ∗ (x ∗ y)) · · · )) ∈ B for some a1, a2, . . . , an ∈ A
and b1, b2, . . . , bm ∈ A. Clearly bm ∗ (x ∗ y) ≤ x ∗ (bm ∗ y). Since X is
transitive, by Theorem 1.5(1), we get

b1 ∗ (b2 ∗ (· · · ∗ (bm−1 ∗ (bm ∗ (x ∗ y))) · · · ))
≤ b1 ∗ (b2 ∗ (· · · ∗ (bm−1 ∗ (x ∗ (bm ∗ y))) · · · ))
≤ b1 ∗ (b2 ∗ (· · · ∗ (x ∗ (bm−1 ∗ (bm ∗ y))) · · · ))
≤ · · ·
≤ x ∗ (b1 ∗ (b2 ∗ (· · · ∗ (bm−1 ∗ (bm ∗ y)) · · · )))

Since B is a GE-filter, we get x∗(b1∗(b2∗(· · ·∗(bm−1∗(bm∗y))) · · · )) ∈ B.
Since X is a transitive, by the sequential application of the GE-ordering
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≤, we get that
x ∗ (b1 ∗ (b2 ∗ (· · · ∗ (bm ∗ y) · · · )))
≤ (a1 ∗ (· · · ∗ (an ∗ x) · · · ))
∗(a1 ∗ (· · · ∗ (an ∗ (b1 ∗ (· · · ∗ (bm ∗ y) · · · ))) · · · )).

Hence
(a1 ∗ (· · · ∗ (an ∗ x) · · · )) ∗ (a1 ∗ (· · · ∗ (an ∗ (b1 ∗ (· · · ∗ (bm ∗ y) · · · ))) · · · )) ∈ B.

Since a1 ∗ (· · · ∗ (an ∗ x) · · · ) ∈ B, we get
a1 ∗ (· · · ∗ (an ∗ (b1 ∗ (· · · ∗ (bm ∗ y) · · · ))) · · · ) ∈ B

where a1, a2, . . . , an, b1, b2, . . . , bm ∈ A. Thus y ∈ ⟨B ∪ A⟩. Therefore
⟨B ∪ A⟩ is a GE-filter of X. For any x ∈ A, we get

x ∗ (· · · ∗ (x ∗ x) · · · ) = 1 ∈ B.
Hence x ∈ ⟨B∪A⟩. Thus A ⊆ ⟨B∪A⟩. Therefore ⟨B∪A⟩ is a GE-filter
containing B ∪ A.

We now prove that ⟨B ∪ A⟩ is the smallest filter containing B ∪ A.
Let F be a GE-filter of X containing B ∪ A. Let x ∈ ⟨B ∪ A⟩. Then
there exist a1, a2, . . . , an ∈ B ∪ A such that

a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) ∈ B ⊆ B ∪ A ⊆ F .
Since B ∪ A ⊆ F , we get that a1, a2, . . . , an ∈ F . Since a1 ∈ F ,
a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) ∈ F and F is a GE-filter, we get

a2 ∗ (· · · ∗ (an ∗ x) · · · ) ∈ F .
Since a2 ∈ F , a2 ∗ (· · · ∗ (an ∗ x) · · · ) ∈ F and F is a GE-filter, we get
a3 ∗ (· · · ∗ (an ∗ x) · · · ) ∈ F . Continuing in this way, we finally get that
x ∈ F . Hence ⟨B∪A⟩ ⊆ F . Therefore ⟨B∪A⟩ is the smallest GE-filter
containing B ∪ A. □
Example 2.2. Let X = {1, a, b, c, d}. Define a binary operation ∗ on
X as follows:

∗ 1 a b c d
1 1 a b c 1
a 1 1 b c d
b 1 a 1 1 1
c 1 a b 1 d
d 1 a b c 1

Observe that (X, ∗, 1) is a GE-algebra. Clearly B = {1, a} is a GE-
filter of X. Take the subset A = {c} of X. Clearly 1, a, c ∈ ⟨B ∪ A⟩.
Now, c ∗ d = d /∈ B and c ∗ b = b /∈ B. Hence b, d /∈ ⟨B ∪A⟩. Therefore
⟨B ∪ A⟩ = {1, a, c} is the smallest GE-filter containing B ∪ A.
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For any GE-algebra X and a, x ∈ X, let us denote
an ∗ x = a ∗ (· · · ∗ (a ∗ x) · · · )

and a occurs n times. Then the following result is a direct consequence
because of a ∗ (a ∗ x) = a ∗ x:

Corollary 2.3. Let B be a GE-filter of a transitive GE-algebra X.
For any a ∈ X, the set

⟨B ∪ {a}⟩ = {x ∈ X | a ∗ x ∈ B for some n ∈ N}
is the smallest GE-filter containing B ∪ {a}.

Corollary 2.4. Let X be a transitive GE-algebra X. Then we have
(i) For any ∅ ̸= A ⊆ X, the set

⟨A⟩ = {x ∈ X | a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) = 1

for some a1, a2, . . . , an ∈ A; n ∈ N}
is the smallest GE-filter containing A.
(ii) For any a ∈ X, ⟨{a}⟩ = {x ∈ X | a ∗ x = 1} is the smallest
GE-filter containing a.

Proof. (i) Taking of B = {1} in the main theorem, it is clear.
(ii) Taking A = {a} and B = {1} in the main theorem, it is clear. □

It is obvious that ⟨A ∪ {1}⟩ = ⟨A⟩. For any non-empty subset A
of a transitive GE-algebra, ⟨A⟩ is called the GE-filter generated by A.
Obviously we have ⟨A⟩ ⊆ ⟨B⟩ whenever A ⊆ B for any two subsets A
and B of a transitive GE-algebra X. We denote ⟨{a}⟩ simply by ⟨a⟩
and call this a principal GE-filter generated by a.

Proposition 2.5. Let F and G be two GE-filters of a transitive
GE-algebra X. Then

⟨F ∪G⟩ = {x ∈ X | a ∗ (b ∗ x) = 1 for some f ∈ F and g ∈ G }

Proof. Let
A = {x ∈ X | a ∗ (b ∗ x) = 1 for some f ∈ F and g ∈ G }.

We now prove that A = ⟨F ∪G⟩. Let x ∈ A. Then f ∗ (g ∗ x) ∈ G for
some f ∈ F and g ∈ G. Since f, g ∈ F ∪ G, by Corollary 2.3, we get
x ∈ ⟨F ∪G⟩. Therefore A ⊆ ⟨F ∪G⟩.

Conversely, let x ∈ ⟨F ∪G⟩. Then there exists
a1, a2, . . . , ai, . . . , an ∈ F ∪G

such that an ∗ (· · · ∗ (a1 ∗ x) · · · ) = 1. By rearranging the a′is as seen in
Theorem 2.1, we get
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an ∗ (· · · ∗ (ai+1 ∗ (ai · · · ∗ (a1 ∗ x) · · · )) · · · ) = 1 ∈ G

such that a1, . . . , ai ∈ F and ai+1, . . . , an ∈ G. Since an ∈ G and G is
a filter, we get that

an−1 ∗ (· · · ∗ (ai+1 ∗ (ai · · · ∗ (a1 ∗ x) · · · )) · · · ) ∈ G.

By continuing this, we get ai ∗ (· · · ∗ (a1 ∗ x) · · · ) ∈ G. Put
g = ai ∗ (· · · ∗ (a1 ∗ x) · · · ). Then

1 = g ∗ g
= g ∗ (ai ∗ (· · · ∗ (a1 ∗ x) · · · ))
≤ ai ∗ (· · · ∗ (a1 ∗ (g ∗ x)) · · · )

Hence ai ∗(· · ·∗(a1 ∗(g∗x)) · · · ) = 1 ∈ F . Since ai ∈ F and F is a GE-
filter, we get ai−1∗(· · ·∗(a1∗(g∗x))) ∈ F . By continuing this argument,
we get g ∗x ∈ F . Put f = g ∗x. Then f ∗ (g ∗x) = (g ∗x) ∗ (g ∗x) = 1.
Since f ∈ F and g ∈ G, it implies that x ∈ A. Hence ⟨F ∪ G⟩ ⊆ A.
Therefore A = ⟨F ∪G⟩. □

In what follows, F(X) denotes the class of all GE-filters of a
transitive GE-algebra X. Then, for any two GE-filters F and G
of a transitive GE-algebra, it can be easily seen that F ∩ G is the
infimum of both F and G. Now, in the following theorem, we obtain
that F(X) forms a complete distributive lattice.

Theorem 2.6. For any transitive GE-algebra X, F(X) forms a
complete distributive lattice.

Proof. For any two GE-filters F,G of a transitive GE-algebra, define

F ∨G = ⟨F ∪G⟩ = {a ∈ X | x ∗ (y ∗ a) = 1 for some x ∈ F and y ∈ G }

By Proposition 2.5, ⟨F ∪G⟩ is the supremum of both F and G. Then
clearly (F(X),∩,∨) is a complete lattice with respect to set inclusion.
Let F,G,H ∈ F(X). Then clearly

(F ∩G) ∨ (F ∩H) ⊆ F ∩ (G ∨H).

Conversely, let x ∈ F ∩ (G ∨H). Then x ∈ F and x ∈ G ∨H. Then
there exists g ∈ G and h ∈ H such that g ∗ (h ∗ x) = 1. Now letting

b1 = h ∗ x and b2 = b1 ∗ x,

it is clear that b1 ∈ F and b2 ∈ F . Now g ∗ b1 = g ∗ (h ∗ x) = 1 ∈ G.
Since g ∈ G and G is a GE-filter, we get that b1 ∈ G. Hence b1 ∈ F∩G.
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By Theorem 1.2(9), we get
1 = (h ∗ x) ∗ (h ∗ x)
≤ h ∗ ((h ∗ x) ∗ x)
= h ∗ (b1 ∗ x)
= h ∗ b2

Hence h ∗ b2 = 1 ∈ H. Since h ∈ H, we get that b2 ∈ H. Thus
b2 ∈ F ∩H. Now

1 = ((h ∗ x) ∗ x) ∗ ((h ∗ x) ∗ x)
≤ (h ∗ x) ∗ (((h ∗ x) ∗ x) ∗ x)
= (h ∗ x) ∗ ((b1 ∗ x) ∗ x)
= b1 ∗ (b2 ∗ x)

which gives that b1 ∗ (b2 ∗x) = 1. Since b1 ∈ F ∩G and b2 ∈ F ∩H, we
get that x ∈ (F ∩G)∨(F ∩H). Hence F ∩(G∨H) ⊆ (F ∩G)∨(F ∩H).
Thus F ∩ (G ∨H) = (F ∩ G) ∨ (F ∩H). Therefore (F(X),∩,∨) is a
complete distributive lattice. □
Corollary 2.7. Let F be a GE-filter of a transitive GE-algebra X.
For any a ∈ X,

⟨F ∪ {a}⟩ = F ∨ ⟨a⟩

Corollary 2.8. Let X be a transitive GE-algebra. Then the class F(X)
of all filters of X is a complete lattice with respect to the
inclusion ordering ⊆ in which for any set {Fα}α∈∆ of filters of X,
inf{Fα}α∈∆ =

∩
α∈∆

Fα and sup{Fα}α∈∆ = ⟨
∪

α∈∆
Fα⟩.

inf{Fα}α∈∆ and sup{Fα}α∈∆ are also denoted by
∧

α∈∆
Fα and

∨
α∈∆

Fα

respectively. Also, it can be easily observed that the lattice F(X) of all
filters of X is an algebraic lattice too, in which the compact elements
are precisely the finitely generated filters of X.

3. Prime filters of GE-algebras

In this section, the notion of prime GE-filters is introduced in GE-
algebra. Some characterizations of prime filters are derived in transitive
GE-algebras. Finally, two different versions of prime filter theorem are
established in transitive GE-algebras.

Lemma 3.1. Let X be a transitive GE-algebra. For any a, b ∈ X,
(1) ⟨1⟩ = {1},
(2) a ≤ b implies ⟨b⟩ ⊆ ⟨a⟩,
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(3) For any GE-filter F , a ∈ F implies ⟨a⟩ ⊆ F .
Proof. It can be proved by routine verification. □
Definition 3.2. A proper GE-filter P of a GE-algebra X is called a
prime filter if F ∩ G ⊆ P implies that F ⊆ P or G ⊆ P for any two
GE-filters F and G of X.
Example 3.3. Let X = {1, a, b, c, d, e, f}. Define a binary operation
∗ on X as follows:

∗ 1 a b c d e f
1 1 a b c d e f
a 1 1 1 c c e f
b 1 a 1 d d e f
c 1 a 1 1 1 e 1
d 1 a 1 1 1 e f
e 1 a 1 c c 1 f
f 1 1 b d d e 1

Clearly (X, ∗, 1) is a GE-algebra and P = {1, a, b, c, d, f} is a proper
GE-filter of X. It can be easily seen that P is a prime filter of X. Take
the proper filter Q = {1, a, b}. Now F = {1, b, c, d, f} and G = {1, b, e}
are two GE-filters of X such that F ∩ G = {1, b} ⊆ Q but neither
F ⊆ Q nor B ⊆ Q. Therefore Q is not a prime filter of X.
Theorem 3.4. A proper GE-filter P of a transitive GE-algebra X is
prime if and only if ⟨x⟩ ∩ ⟨y⟩ ⊆ P implies x ∈ P or y ∈ P for all
x, y ∈ X.
Proof. Assume that P is prime. Let x, y ∈ X be such that ⟨x⟩∩⟨y⟩ ⊆ P .
Since P is prime, it implies that x ∈ ⟨x⟩ ⊆ P or y ∈ ⟨y⟩ ⊆ P .

Conversely, assume that the condition holds. Let F and G be two
GE-filters of X such that F ∩ G ⊆ P . Let x ∈ F and y ∈ G be the
arbitrary elements. Then ⟨x⟩ ⊆ F and ⟨y⟩ ⊆ G. Hence

⟨x⟩ ∩ ⟨y⟩ ⊆ F ∩G ⊆ P .
Then by the assumed condition, we get x ∈ P or y ∈ P . Thus F ⊆ P
or G ⊆ P . Therefore P is a prime filter of X. □
Theorem 3.5. Let X be a transitive GE-algebra and F be a GE-filter
of X. Then A ∩ B ⊆ F if and only if ⟨F ∪ A⟩ ∩ ⟨F ∪ B⟩ = F for any
two GE-filters A and B of X.
Proof. Assume that ⟨F ∪ A⟩ ∩ ⟨F ∪ B⟩ = F for any two GE-filters A
and B of X. Since A ⊆ F ∪ A and B ⊆ F ∪B, we get

A ∩B ⊆ ⟨F ∪ A⟩ ∩ ⟨F ∪B⟩.
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Hence A ∩B ⊆ F .
Conversely, assume that A ∩B ⊆ F . Clearly

F ⊆ ⟨F ∪ A⟩ ∩ ⟨F ∪B⟩.

Let x ∈ ⟨F ∪ A⟩ ∩ ⟨F ∪ B⟩. Since F is a GE-filter, there exist
a1, a2, . . . , an ∈ A and b1, b2, . . . , bm ∈ B such that

a1 ∗ (· · · ∗ (an ∗ x) · · · ) ∈ F

and b1 ∗ (· · · ∗ (bm ∗ x) · · · ) ∈ F . Then we get

a1 ∗ (· · · ∗ (an ∗ x) · · · ) = h1

and b1 ∗ (· · · ∗ (bm ∗ x) · · · ) = h2 for some h1, h2 ∈ F . Since X is
transitive, by Theorem 1.2(9), we get

1 = h1 ∗ h1

= h1 ∗ (a1 ∗ (· · · ∗ (an ∗ x) · · · ))
≤ a1 ∗ (h1 ∗ (· · · ∗ (an ∗ x) · · · ))
· · ·
· · ·
≤ a1 ∗ (... ∗ (an ∗ (h1 ∗ x)) · · · )

which yields a1 ∗ (...∗ (an ∗ (h1 ∗x)) · · · ) = 1 ∈ A. Since A is a GE-filter
and a1, a2, . . . , an ∈ A, we get h1 ∗ x ∈ A. By the similar argument, we
get h2 ∗ x ∈ B. Since h1, h2 ∈ F , we get

h1 ∗ x ≤ h2 ∗ (h1 ∗ x) ≤ h1 ∗ (h2 ∗ x) and h2 ∗ x ≤ h1 ∗ (h2 ∗ x).

Since h1 ∗ x ∈ A and A is a GE-filter, we get h1 ∗ (h2 ∗ x) ∈ A.
Since h2 ∗ x ∈ B and B is a GE-filter, we get h1 ∗ (h2 ∗ x) ∈ B.
Hence h1 ∗ (h2 ∗ x) ∈ A ∩ B ⊆ F . Since h1, h2 ∈ F and F is a
GE-filter, we get x ∈ F . Hence ⟨F ∪ A⟩ ∩ ⟨F ∪ B⟩ ⊆ F . Therefore
⟨F ∪ A⟩ ∩ ⟨F ∪B⟩ = F . □
Corollary 3.6. Let X be a transitive GE-algebra and F a GE-filter
of X. Then ⟨a⟩ ∩ ⟨b⟩ ⊆ F if and only if ⟨F ∪ {a}⟩ ∩ ⟨F ∪ {b}⟩ = F for
any a, b ∈ X.

Definition 3.7. A proper GE-filter M of a GE-algebra X is called
maximal if there exists a GE-filter F such that M ⊆ F ⊆ X, then
M = F or F = X.

Example 3.8. Consider the GE-algebra X given in Example 3.3.
Clearly M = {1, a, b, e, f} is a proper filter of X. It can be easily
verified that M is a maximal filter of X.
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In the following, we derive a necessary and sufficient condition for
every proper GE-filter of a transitive GE-algebra to become maximal.

Theorem 3.9. A proper GE-filter M of a transitive GE-algebra X is
maximal if and only if ⟨M ∪ {x}⟩ = X for any x ∈ X −M .

Proof. Assume that M is a maximal filter of X. Let x ∈ X − M .
Suppose ⟨M ∪ {x}⟩ ̸= X. Choose a /∈ ⟨M ∪ {x}⟩ and a ∈ X. Hence
M ⊆ ⟨M ∪ {x}⟩ ⊂ X. Since M is maximal, we get M = ⟨M ∪ {x}⟩.
Hence x ∈ M , which is a contradiction. Therefore M is maximal.

Conversely, assume the condition. Suppose there is a filter F such
that M ⊆ F ⊆ X. Let M ̸= F . Suppose F ̸= X. Choose x ∈ X such
that x /∈ F . Then clearly x /∈ M because of F ⊆ M . Since x /∈ M ,
by the assumed condition, we get that ⟨M ∪ {x}⟩ = X. Let a ∈ X.
Then a ∈ ⟨M ∪ {x}⟩. Hence x ∗ a ∈ M ⊆ F . Since x ∈ F and F is a
GE-filter, we get a ∈ F . Therefore X ⊆ F , which means F = X. □

Theorem 3.10. Every maximal filter of a transitive GE-algebra is a
prime filter.

Proof. Let M be a maximal filter of a transitive GE-algebra X. Let
⟨x⟩ ∩ ⟨y⟩ ⊆ M for some x, y ∈ X. Suppose x /∈ M and y /∈ M . Then
⟨M ∪ {x}⟩ = X and ⟨M ∪ {y}⟩ = X. Hence

⟨M ∪ {x}⟩ ∩ ⟨M ∪ {y}⟩ = X ̸= M

By Corollary 3.6, we get ⟨x⟩∩⟨y⟩ ⊈ M , which is a contradiction. Thus
x ∈ M or y ∈ M . Therefore M is a prime filter of X. □

Example 3.11. Let X = {1, a, b, c, d, e, f}. Define a binary operation
∗ on X as follows:

∗ 1 a b c d e f
1 1 a b c d e f
a 1 1 1 d d f f
b 1 a 1 c c e e
c 1 a 1 1 1 e f
d 1 a 1 1 1 e f
e 1 a b d d 1 1
f 1 a b c d 1 1

Clearly (X, ∗, 1) is a GE-algebra and P = {1, b, c, d} is a prime
filter of X. Observe that P is a not a maximal filter of X because of
F = {1, a, b, c, d} is a proper filter of X such that P ⊂ F ⊂ X.
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4. Prime filter theorems

In this section, we now generalise and present four versions of the
famous prime filter theorem of various algebraic structures in transitive
GE-algebras. Let us define a ∩-closed subset of a GE-algebra as the
subset S of X in which ⟨a⟩ ∩ ⟨b⟩ ⊆ S for all a, b ∈ S.
Proposition 4.1. Let P be a prime filter of a transitive GE-algebra
X and a ∈ X. Then the set

S = {x ∈ X | ⟨x⟩ ⊆ ⟨a⟩ ∨ F for some filter F with F ⊈ P}
is a ∩-closed subset of X.
Proof. Let P be a prime filter of X and x, y ∈ X. Suppose x, y ∈ S.
Then there exist filters F1 and F2 of X with F1 ⊈ P, F2 ⊈ P such that
⟨x⟩ ⊆ ⟨a⟩ ∨ F1 and ⟨y⟩ ⊆ ⟨a⟩ ∨ F2. Hence

⟨x⟩ ∩ ⟨y⟩ ⊆
{
⟨a⟩ ∨ F1

}
∩
{
⟨a⟩ ∨ F2

}
= ⟨a⟩ ∨

(
F1 ∩ F2

)
.

Since P is prime, we get F1 ∩ F2 ⊈ P . Let t ∈ ⟨x⟩ ∩ ⟨y⟩. Then
⟨t⟩ ⊆ ⟨x⟩ ∩ ⟨y⟩ ⊆ ⟨a⟩ ∨

(
F1 ∩ F2

)
. Hence t ∈ S, which gives that

⟨x⟩ ∩ ⟨y⟩ ⊆ S. Therefore S is ∩-closed subset of X. □
Theorem 4.2. (First prime filter theorem) Let F be a GE-filter
and S be a ∩-closed subset of a transitive GE-algebra X such that
F ∩ S = ∅. Then there exists a prime filter P of X such that F ⊆ P
and P ∩ S = ∅.
Proof. Let F be a GE-filter and S be a ∩-closed subset of X such that
F ∩ S = ∅. Consider

F = {G ∈ F(X) | F ⊆ G and G ∩ S = ∅}.
Clearly F ∈ F and so F ̸= ∅. Let {Gα}α∈∆ be a chain of elements
of F . Then clearly

∪
α∈∆Gα is an upper bound of {Gα}α∈∆. Hence

by the Zorn’s Lemma, F has a maximal element, say M . Clearly M
is a GE-filter such that F ⊆ M and M ∩ S = ∅. We now prove that
M is prime. Let x, y ∈ X be such that x /∈ M and x /∈ M . Then
M ⊂ M ∨ ⟨x⟩ and M ⊂ M ∨ ⟨y⟩. By the maximality of M , we should
have {M∨⟨x⟩}∩S ̸= ∅ and {M∨⟨y⟩}∩S ̸= ∅. Choose a ∈ {M∨⟨x⟩}∩S
and b ∈ {M ∨ ⟨y⟩} ∩ S. Since a, b ∈ S, we get ⟨a⟩ ∩ ⟨b⟩ ⊆ S because of
S is ∩-closed. Now

⟨a⟩ ∩ ⟨b⟩ ⊆ {M ∨ ⟨x⟩} ∩ {M ∨ ⟨y⟩}
= M ∨ {⟨x⟩ ∩ ⟨y⟩}.

If ⟨x⟩ ∩ ⟨y⟩ ⊆ M , then ⟨a⟩ ∩ ⟨b⟩ ⊆ M . Hence ⟨a⟩ ∩ ⟨b⟩ ⊆ M ∩ S, which
is a contradiction. Thus ⟨a⟩ ∩ ⟨b⟩ ⊈ M . Therefore M is prime. □
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Definition 4.3. A nonempty subset S of a GE-algebra X is called a
finite ∩-structure, if {⟨x⟩ ∩ ⟨y⟩} ∩ S ̸= ∅ for all x, y ∈ S.

Clearly every GE-filter of a transitive GE-algebra is a finite
∩-structure. It can also be observed that every ∩-closed subset is a
finite ∩-structure but the converse is not true.
Example 4.4. Let X = {1, a, b, c, d}. Define a binary operation ∗ on
X as follows:

∗ 1 a b c d
1 1 a b c 1
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Then it can be easily verified that (X, ∗, 1) is a GE-algebra. Consider
the set S = {b, d}. Then ⟨b⟩ = {1, b} and ⟨d⟩ = {1, a, b, c, d}. Hence
{⟨b⟩ ∩ ⟨d⟩} ∩ S = {b}, which means S is a finite ∩-structure. For
b, d ∈ S, we have ⟨b⟩ ∩ ⟨d⟩ ⊈ S. Hence S is not ∩-closed.
Proposition 4.5. Let P be a proper GE-filter of a transitive GE-
algebra X. Then P is prime if and only if X −P is finite ∩-structure.
Proof. Let P be a GE-filter of X. Assume that P is prime. Let
x, y ∈ X−P . Then x /∈ P and y /∈ P . Suppose {⟨x⟩∩⟨y⟩}∩(X−P ) = ∅.
Then ⟨x⟩ ∩ ⟨y⟩ ⊆ P . Since P is prime, we get x /∈ P or y /∈ P , which
is a contradiction. Hence {⟨x⟩ ∩ ⟨y⟩} ∩ (X − P ) ̸= ∅.

Conversely, assume that X−P is finite ∩-structure. Let x, y ∈ X be
such that ⟨x⟩∩⟨y⟩ ⊆ P . Suppose x /∈ P and y /∈ P . Then x, y ∈ X−P .
Since X − P is finite ∩-structure, we get {⟨x⟩ ∩ ⟨y⟩} ∩ (X − P ) ̸= ∅.
Hence ⟨x⟩ ∩ ⟨y⟩ ⊈ P , which is a contradiction. Thus x ∈ P or y ∈ P .
Therefore P is a prime filter of X. □
Theorem 4.6. (Second prime filter theorem) Let F be a GE-
filter of a transitive GE-algebra X. If S is a finite ∩-structure such
that F ∩S = ∅, then there exists a prime filter P of X such that F ⊆ P
and P ∩ S = ∅.
Proof. Let F be a GE-filter of X and S be a finite ∩-structure such
that F ∩ S = ∅. Consider

F = {G ∈ F(X) | F ⊆ G and G ∩ S = ∅}.
Clearly F ∈ F and so F ̸= ∅. Let {Gα}α∈∆ be a chain of elements
of F . Then clearly ∪α∈∆Gα is an upper bound of {Gα}α∈∆. Hence
the hypothesis of Zorn’s Lemma is satisfied. Thus F has a maximal
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element, say M . Clearly M is a GE-filter such that F ⊆ M and
M ∩ S = ∅. We now prove that M is prime. Let H and K be two
GE-filters of X such that H ⊈ M and K ⊈ M . Then M ⊂ ⟨M ∪H⟩
and M ⊂ ⟨M ∪K⟩. By the maximality of M , we should have

⟨M ∪H⟩ ∩ S ̸= ∅
and ⟨M ∪K⟩ ∩ S ̸= ∅. Choose a ∈ ⟨M ∪H⟩ ∩ S and b ∈ ⟨M ∪K⟩ ∩ S.
Since a ∈ ⟨M ∪H⟩ and b ∈ ⟨M ∪K⟩, we get

⟨a⟩ ∩ ⟨b⟩ ⊆ ⟨M ∪H⟩ ∩ ⟨M ∪K⟩.
Since a, b ∈ S, we get {⟨a⟩ ∩ ⟨b⟩} ∩ S ̸= ∅ because of S is finite
∩-structure. Hence

{⟨M ∪H⟩ ∩ ⟨M ∪K⟩} ∩ S ̸= ∅.
Since M ∈ F , we get M∩S = ∅. Comparing this with the last relation,
we get M ̸= ⟨M ∪H⟩ ∩ ⟨M ∪K⟩. By Theorem 3.5, gives H ∩K ⊈ M .
Therefore M is a prime filter of X. □
Theorem 4.7. Let X ba a transitive GE-algebra and a ∈ X. If F is a
GE-filter of X such that a /∈ F , then there exists a prime filter P such
that a /∈ P and F ⊆ P .
Proof. Let F be a GE-filter of X such that a /∈ F . Consider the set
[a] = {x ∈ X | x ≤ a}. We first show that [a] is a finite ∩-structure.
Clearly a ∈ [a]. Let x, y ∈ [a]. Then x ≤ a and y ≤ a. Hence a ∈ ⟨x⟩
and a ∈ ⟨y⟩, which gives a ∈

{
⟨x⟩ ∩ ⟨y⟩

}
∩ [a]. Therefore [a] is a finite

∩-structure. We now claim that [a] ∩ F = ∅. Suppose x ∈ [a] ∩ F .
Then x ≤ a and x ∈ F . Since F is a filter, we get a ∈ F which is
a contradiction. Thus [a] ∩ F = ∅. Therefore, by Theorem 4.6, there
exists a prime filter P such that F ⊆ P and [a]∩P = ∅. Since a ∈ [a],
we must have a /∈ P . Therefore the theorem is proves. □
Corollary 4.8. Let F be a proper GE-filter of a transitive GE-algebra
X. Then

F =
∩
{P | P is a prime filter of X such that F ⊆ P}.

Proof. Let F be a proper GE-filter and x ∈ F . For any prime filter P
with F ⊆ P , we must have x ∈ P . Hence

x ∈
∩

{P | P is a prime filter of X such that F ⊆ P}.

Therefore F ⊆
∩
{P | P is a prime filter of X such that F ⊆ P}.

Conversely, let x /∈ F . Then by the main theorem, there exists a
prime filter Px such that x /∈ Px and F ⊆ Px. Therefore

x /∈
∩
{P | P is a prime filter of X such that F ⊆ P}.
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Therefore
∩
{P | P is a prime filter of X such that F ⊆ P} ⊆ F . □

Corollary 4.9. Let X be a transitive GE-algebra and 1 ̸= x ∈ X.
Then there exists a prime filter P such that x /∈ P .

Proof. Let 1 ̸= x ∈ X and F = {1}. Then F is a GE-filter and x /∈ F .
By the main theorem, there exists a prime filter P such that x /∈ P . □

The following corollary is a direct consequence of the above results.

Corollary 4.10. The intersection of all prime filters of a transitive
GE-algebra is equal to {1}.

Theorem 4.11. Let X1 be a subalgebra of a transitive GE-algebra X
and P1 is a prime filter of X1. Then there exists a prime filter P of X
such that P ∩X1 = P1.

Proof. Let P1 be a prime filter of X1. Then X1 − P1 is a ∩-closed
subset of X. Write F = ⟨P1⟩, the filter generated by P1. Then
P1 ⊆ F ∩X1. Suppose F ∩ (X1 − P1) ̸= ∅. Choose x ∈ F ∩ (X1 − P1).
Then x ∈ F and x ∈ (X1 − P1). Since x ∈ F = ⟨P1⟩, there exists
a1, a2, . . . , an ∈ P1, n ∈ N such that a1 ∗ (a2 ∗ (. . . (an ∗ x) . . .)) = 1.
Since a1, a2, . . . , an ∈ P1, we get x ∈ P1. Since x ∈ (X1 − P1), we
have arrived at a contradiction. Hence F ∩ (X1−P1) = ∅. Then by the
second prime filter theorem, there exists a prime filter P of X such that
F ⊆ P and P ∩ (X1 −P1) = ∅. Since F ⊆ P , we get F ∩X1 ⊆ P ∩X1.
Since P ∩ (X1 − P1) = ∅, we get P ⊆ P1. Both observations lead to

P1 ⊆ F ∩X1 ⊆ P ∩X1 ⊆ P1 ∩X1 ⊆ P1.
Therefore P1 = P ∩X1. □
Definition 4.12. A subset S of a GE-algebra X is called commutative
closed if (x ∗ y) ∗ y = (y ∗ x) ∗ x ∈ S for all x, y ∈ S

In a commutative GE-algebra, it can be observed that every GE-
filter is a commutative closed subset.

Proposition 4.13. Every commutative closed set of a transitive GE-
algebra is a finite ∩-structure.

Proof. Let S be a commutative closed subset of a transitive GE-algebra
X. Let x, y ∈ S. Since S is commutative closed, we get

(x ∗ y) ∗ y = (y ∗ x) ∗ x ∈ S.
Since ⟨x⟩ is a filter and x ∈ ⟨x⟩, we get (y ∗ x) ∗ x ∈ ⟨x⟩. Similarly, we
get (x ∗ y) ∗ y ∈ ⟨y⟩. Hence (x ∗ y) ∗ y = (y ∗ x) ∗ x ∈ ⟨x⟩ ∩ ⟨y⟩. Thus
{⟨x⟩ ∩ ⟨y⟩} ∩ S ̸= ∅. Therefore S is a finite ∩-structure in X. □
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The converse of the above proposition is not true. For, consider the
following example:
Example 4.14. In the GE-algebra considered in Example 4.4, the set
S = {a, c} is a finite ∩-structure because of {⟨a⟩ ∩ ⟨c⟩} ∩ S = {a} ̸= ∅.
However, for this choice of a, c, the set S is not commutative closed
because of (a ∗ c) ∗ c = c ∗ c ̸= a = 1 ∗ a = (c ∗ a) ∗ a.

In the following couple of examples, we can see the independency
between ∩-closed subsets and commutative closed subsets.
Example 4.15. (a) In the GE-algebra considered in Example 4.4, the
set S = {a, c} is a finite ∩-structure because of

{⟨a⟩ ∩ ⟨c⟩} ∩ S = {a} ̸= ∅.
However, for this choice of a and c, the set S is not commutative closed
because of (a ∗ c) ∗ c = c ∗ c ̸= a = 1 ∗ a = (c ∗ a) ∗ a.
(b) Let X = {1, a, b, c}. Define a binary operation ∗ on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Then, it can be easily verified that (X, ∗, 1) is a GE-algebra. Consider
the set S = {a, b}. Clearly (a ∗ b) ∗ b = (b ∗ a) ∗ a = a ∈ S. Hence S is
commutative closed. But S is not ∩-closed because of

⟨a⟩ ∩ ⟨b⟩ = {1, a} ∩ {1, a, b} = {1, a} ⊈ S.
Theorem 4.16. (Third prime filter theorem) Let X be a transitive
GE-algebra and S is a commutative subset of X. If F is a GE-filter
of X such that F ∩ S = ∅, then there exists a prime filter P of X such
that F ⊆ P and P ∩ S = ∅.
Proof. Let F be a GE-filter of X such that F ∩ S = ∅. Consider

ℑ = {G ∈ F(L) | F ⊆ G and G ∩ S = ∅}.
Let M be a maximal element of ℑ. Suppose H and K are two GE-
filters of X such that H ∩K ⊆ M . Suppose H ⊈ M and K ⊈ M . By
the maximality of M , we get that ⟨M∪H⟩∩S ̸= ∅ and ⟨M∪K⟩∩S ̸= ∅.
Choose a ∈ ⟨M ∪H⟩ ∩ S and b ∈ ⟨M ∪K⟩ ∩ S. Since a, b ∈ S, we get
(a ∗ b) ∗ b = (b ∗ a) ∗ a ∈ S. For this a, b ∈ S, we get

1 = (a ∗ b) ∗ (a ∗ b) ≤ a ∗ ((a ∗ b) ∗ b)
Hence a ∗ ((a ∗ b) ∗ b) = 1 ∈ ⟨M ∪ H⟩. Since a ∈ ⟨M ∪ H⟩, we get
(a ∗ b) ∗ b ∈ ⟨M ∪H⟩. Similarly, we get (b ∗ a) ∗ a ∈ ⟨M ∪K⟩. Hence
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(a ∗ b) ∗ b = (b ∗ a) ∗ a ∈
{
⟨M ∪H⟩ ∩ ⟨M ∪K⟩

}
∩ S.

Suppose ⟨M ∪H⟩∩ ⟨M ∪K⟩ = M . Then (a∗ b)∗ b ∈ M ∩S, which is a
contradiction. (⟨M ∪H⟩ ∩ ⟨M ∪K⟩) ̸= M . Thus by Theorem 3.5, we
get H ∩K ⊈ M , which is a contradiction. Hence H ⊆ M or K ⊆ M .
Therefore P is prime. □

We now discuss the prime filters of commutative GE-algebras. For
any x, y ∈ X, define x∨ y = (x∗ y)∗ y. If X commutative, then clearly
x∨ y = (y ∗ x) ∗ x = (x ∗ y) ∗ y = y ∨ x. Also x∨ y is the supremum of
x and y. Hence (X,∨) is a semilattice. We now discuss the properties
of prime filters in commutative GE-algebras.

Lemma 4.17. Let X be a commutative GE-algebra. For any a, b ∈ X,
⟨a ∨ b⟩ = ⟨a⟩ ∩ ⟨b⟩.
Proof. Since a, b ≤ a ∨ b, we get ⟨a ∨ b⟩ ⊆ ⟨a⟩, ⟨b⟩. Hence

⟨a ∨ b⟩ ⊆ ⟨a⟩ ∩ ⟨b⟩.
Conversely, let x ∈ ⟨a⟩ ∩ ⟨b⟩. Then a ∗ x = 1 and b ∗ x = 1. Hence
a ≤ x and b ≤ x, which gives a ∨ b ≤ x. Hence (a ∨ b) ∗ x = 1, which
means x ∈ ⟨a ∨ b⟩. □
Theorem 4.18. Let X be a commutative GE-algebra and P a proper
GE-filter of X. Then P is prime if and only if for any x, y ∈ X,
x ∨ y ∈ P implies x ∈ P or y ∈ P .
Proof. Assume that P is a prime filter of X. Let x, y ∈ X be such that
x ∨ y ∈ P . Hence ⟨x⟩ ∩ ⟨y⟩ = ⟨x ∨ y⟩ ⊆ P . Since P is prime, we get
x ∈ P or y ∈ P .

Conversely, assume that P satisfies the condition. Let x, y ∈ X be
such that ⟨x⟩ ∩ ⟨y⟩ ⊆ P . Since ⟨x∨ y⟩ = ⟨x⟩ ∩ ⟨y⟩, we get ⟨x∨ y⟩ ⊆ P .
Hence x ∨ y ∈ P . By the assumed condition, we get x ∈ P or y ∈ P .
Therefore P is a prime filter. □
Definition 4.19. A subset S of a commutative GE-algebra is called
∨-closed if x ∨ y ∈ S whenever x, y ∈ S.

Proposition 4.20. Let X be a commutative BE-algebra and a ∈ X.
Then the set [a] = {x ∈ X | x ≤ a} is a ∨-closed set.
Proof. Let x, y ∈ [a]. Then x ≤ a and y ≤ a. Since X is commutative,
it is partially ordered. Hence x ∨ y ≤ a, which gives that x ∨ y ∈ [a].
Therefore [a] is a ∨-closed subset of X. □

Every ∩-closed subset of a commutative GE-algebra is ∨-closed. For,
consider a ∩-closed subset S and x, y ∈ S. Since S is ∩-closed, we get
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⟨x⟩ ∩ ⟨y⟩ ⊆ S. Then x ∨ y ∈ ⟨x ∨ y⟩ = ⟨x⟩ ∩ ⟨y⟩ ⊆ S. Therefore S is
∨-closed. However, every ∨-closed subset need not be ∩-closed which
can be seen in the following example:

Example 4.21. Let X = {1, a, b, c} be a set. Define a binary operation
∗ X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 a c
b 1 1 1 c
c 1 a b 1

∨ 1 a b c
1 1 1 1 1
a 1 a a 1
b 1 a b 1
c 1 1 1 c

It can be routinely verified that (X, ∗,∨, 1) is a commutative GE-
algebra. Consider S = {a, b}. Clearly S is a ∨-closed subset of X.
It can be easily observed that ⟨a⟩ = {1, a} and ⟨b⟩ = {1, a, b}. Hence
⟨a⟩ ∩ ⟨b⟩ = {1, a} ⊈ S. Therefore S is not ∩-closed.

Every ∨-closed subset of a commutative GE-algebra is finite
∩-structure. For, consider a ∨-closed subset S and x, y ∈ S. Then
x ∨ y ∈ S. Since x, y ≤ x ∨ y, we get x ∨ y ∈ ⟨x⟩ ∩ ⟨y⟩. Thus

x ∨ y ∈ {⟨x⟩ ∩ ⟨y⟩} ∩ S.
Therefore S is finite ∩-structure. Regarding the converse, we see that
every finite ∩-structure need not be ∨-closed. However, in the follow-
ing proposition, a necessary and sufficient condition for a subset of a
GE-algebra to become a ∨-closed:

Proposition 4.22. Let P be a proper GE-filter of a commutative
GE-algebra X. Then P is prime if and only if X − P is ∨-closed.

Proof. Let P be a GE-filter of X. Assume that P is prime. Let
x, y ∈ X − P . Then x /∈ P and y /∈ P . Since P is prime, we get
x ∨ y /∈ P . Therefore x ∨ y ∈ X − P .

Conversely, assume that X−P is ∨-closed. Let x, y ∈ X be such that
⟨x⟩ ∩ ⟨y⟩ ⊆ P . Suppose x /∈ P and y /∈ P . Then x, y ∈ X − P . Since
X − P is ∨-closed, we get x ∨ y ∈ P . Hence ⟨x⟩ ∩ ⟨y⟩ = ⟨x ∨ y⟩ ⊆ P ,
which is a contradiction. Therefore x ∈ P or y ∈ P . □
Theorem 4.23. (Fourth prime filter theorem) Let X be a
commutative GE-algebra and S is a ∨-closed subset of X. If F is
a GE-filter of X such that F ∩ S = ∅, then there exists a prime filter
P of X such that F ⊆ P and P ∩ S = ∅.

Proof. Let F be a GE-filter of X such that F ∩ S = ∅. Consider

ℑ = {G ∈ F(L) | F ⊆ G and G ∩ S = ∅}.
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Let M be the maximal element of ℑ. Let a, b ∈ X be such that
a /∈ M and b /∈ M . Then M ⊆ ⟨M ∪{a}⟩ and M ⊆ ⟨M ∪{b}⟩. By the
maximality of M , we get that ⟨M∪{a}⟩∩S ̸= ∅ and ⟨M∪{b}⟩∩S ̸= ∅.
Choose x ∈ ⟨M ∪ {a}⟩ ∩ S and y ∈ ⟨M ∪ {b}⟩ ∩ S. Clearly x ∨ y ∈ S.
Now

x ∨ y ∈ ⟨M ∪ {a}⟩ ∩ ⟨M ∪ {b}⟩
= {M ∨ ⟨a⟩} ∩ {M ∨ ⟨b⟩}
= M ∨ {⟨a⟩ ∩ ⟨b⟩}
= M ∨ ⟨a ∨ b⟩

If a ∨ b ∈ M , then x ∨ y ∈ M . Hence x ∨ y ∈ M ∩ S, which is a
contradiction. Thus a ∨ b /∈ M . Therefore M is a prime filter. □

Corollary 4.24. Let a, b be two distinct elements of a commutative
GE-algebra X such that a ∗ b ̸= 1 or b ∗ a ̸= 1. Then there exists a
prime filter which contains exactly one of a and b.

Proof. Assume that a ∗ b ̸= 1. Clearly [b] = {x ∈ X | x ≤ b} is a
∨-closed set. Suppose [b] ∩ ⟨a⟩ ̸= ∅. Choose x ∈ [b] ∩ ⟨a⟩. Then x ≤ b
and a ∗ x = 1. Then 1 = a ∗ x ≤ a ∗ b. Hence a ∗ b = 1, which is a
contradiction. Hence [b] ∩ ⟨a⟩ = ∅. By the main theorem, there exists
a prime filter P such that ⟨a⟩ ⊆ P and [b] ∩ P = ∅. Therefore a ∈ P
and b /∈ P . □

5. Conclusion

In this article, an investigation is made to introduce various types of
meet structures in the form of typical subsets of GE-algebras. Certain
properties of prime filters and maximal filters of transitive GE-algebras
are investigated. Based on the characterization of meet structures,
different versions of prime filter theorem are generalized in the case of
transitive GE-algebras. In the future work, further properties of prime
filter of GE-algebras are investigated which help in the characterization
of several structures of GE-algebras.
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DERIVATIONS OF PRIME FILTER THEOREMS
GENERATED BY VARIOUS ∩-STRUCTURES IN

TRANSITIVE GE-ALGEBRAS

M. SAMBASIVA RAO

متعدی GE-جبرهای در مختلف ∩-ساختارهای توسط تولیدشده اول فیلتر قضیه های از مشتقاتی

سامباسیوارائو موکامالا

هند آندراپرادش، ویزیاناگارام، ،MVGR کالجمهندسی ریاضی، گروه

بر مشخصه سازی شده اند. بررسی متعدی GE-جبرهای ماکسیمال فیلترهای و اول فیلترهای خواص
شده داده نشان می باشد. شده داده مجموعه ی شامل که است GE-فیلتر کوچکترین حلقه، عنصر اساس
است. توزیع پذیر کامل مشبکه ی یک متعدی، GE-جبر یک GE-فیلترهای همه ی مجموعه ی که است
و لازم شرط یک شده اند. داده تعمیم متعدی GE-جبرهای در اول فیلتر قضیه ی متفاوت ورژن چهار

می باشد. اول فیلتر جابه جایی، GE-جبر از محض فیلتر یک آن، تحت که گردیده ارائه کافی

∩-ساختار ∩-بسته، مجموعه ی ماکسیمال، فیلتر اول، فیلتر GE-فیلتر، GE-جبر، کلیدی: کلمات
∨-بسته. مجموعه ی جابه جایی، بسته ی مجموعه ی متناهی،
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