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R-CONVEX SUBSETS OF BIMODULES OVER xRINGS
I. NIKOUFAR* AND A. EBRAHIMI MEYMAND

ABSTRACT. Let M and N be bimodules over the unital *-rings
R and B, respectively. We investigate the notion of R-convexity
and the corresponding notion of R-extreme points. We discuss
the effect of an f-homomorphism on R-convex subsets and its
R-extreme points. Namely, we declare how an f-homomorphism
from M to N carries R-convex subsets and its R-extreme points to
B-convex subsets and its B-extreme points and vice versa.
Moreover, we confirm that the R-convex hull of invariant subsets
under f-homomorphisms remains invariant.

1. INTRODUCTION

The study of noncommutative convexity or C*-convexity was
initiated by Loebl and Paulsen in [10] as a non-commutative analog
of the linear convexity. Then, the notion of C*-extreme points was
studied as a non-commutative analog of linear extreme points. It is
evident that every C*-convex set is convex in the usual sense but the
converse does not hold in general. Moreover, it was determined whether
C*-extremeness is distinct from linear extremeness by Hopenwasser,
Moore, and Paulsen [7]. Farenick [5] proved the set of C*-extreme
points of compact C*-convex subsets of the finite dimensional algebra
M,,(C) is nonempty and Morenz [11] proved the appropriate variant of
the Krein-Milman theorem for C*-convex subsets in matrix algebras,
cf. [4, 6, 13]. Some other results of the linear convexity have been
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generalized to C*-convexity, for instance, a version of the so-called
Hahn-Banach theorem and separation theorem [3, 7]. Later another
version of the non-commutative convexity was studied in the context
of the quantum information theory in [9].

It makes sense in a C*-algebra or a x-ring and, more generally, for
bimodules over C*-algebras or x-rings there is a concept of convexity
that incorporates algebra-valued or ring-valued convex coefficients in a
natural way, cf. [I1, 12,2 15].

In this paper, we consider the notion of R-convexity and the
corresponding notion of R-extreme points in the bimodules over
unital *-rings. We prove that an f-homomorphism ¢, under certain
conditions, carries R-convex subsets and R-extreme points of its
domain to the B-convex subsets and B-extreme points of its range.
We show that the R-convex hull of invariant subsets is invariant under
g. For more details on bimodules over rings, we refer the readers to [3].

2. R-CONVEX SETS OF BIMODULES OVER *-RINGS

In this section, we distinguish the properties of f-homomorphisms
on R-convex sets of bimodules over *-rings and we verify how an
f-homomorphism carries R-convex subsets of its domain to B-convex
subsets of its range and vice versa. We identify the invariance of the
R-convex hull of invariant subsets under f-homomorphisms.

Definition 2.1. Let M be a bimodule over a unital x-ring R. A set
K C M is called R-convex, if K is closed under the formation of finite
sums of the type >, tfw;t;, where t; € R, x; € K and ), tit; = 1.

This formation of finite sums is called an R-convex combination
in K and the coefficients ¢; are called R-convex coefficients. If the
coefficients t; are invertible in R, then they are called proper R-convex
coefficients and the R-convex combination is called a proper R-convex
combination.

By definition it is clear that every subbimodule of M is R-convex
and furthermore, if X C M is R-convex, R; is a *-subring of R, and
1 € Ry, then K is Ri-convex. We remark that any module over a
commutative ring is automatically a bimodule. Indeed, if M is a left
module, we can define the multiplication on the right to be the same as
the multiplication on the left. So, if the unital *x-ring R is commutative,
then we have, amb = (ab)m = m(ab) for m € M and a,b € R.
Therefore, the R-convex combinations are of the form ) . a,x;, where
a; € R and x; € K. Note that R™ denotes the cone of positive
elements in R. Such R-convex combinations are called linear R-convex
combinations.
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Definition 2.2. Let M and N be bimodules over unital *-rings R
and B, respectively and f : R — B a x-homomorphism. We say the
mapping g : M — N is an f-homomorphism whenever

i) g(mi +ma) = g(mi1) + g(my), for all my, my € M,
ii) glamb) = f(a)g(m)f(b), for all a,b € R and m € M.

It is clear that if f is the identity mapping and R = B, then g is
clearly an R-bimodule homomorphism from M into N, i.e., g is an
additive mapping such that g(amb) = ag(m)b for all a,b € R and
m € M.

One may consider R and B as bimodules over themselves. Let
f R — B be a x-homomorphism. Then, f is an f-homomorphism,
2f is an f-homomorphism, and —f is an f-homomorphism.

An injective f-homomorphism is called an f-monomorphism and a
surjective f-homomorphism is called an f-epimorphism.

Definition 2.3. [1] A x-ring is said to satisfy the positive square-root
axiom (briefly, the (PSR)-axiom) in case, for every x > 0, there exists
y € {z}" with y > 0 and = = 2.

Definition 2.4. Let M be a bimodule over a unital *ring R. For
x,y € M, the R-segment connecting x and y is defined by

[z, y|lr == {thxti + Zv;yvj : Zt:ti + Zv;vj =1,t;,v; € R}
i j i j

Note that in this article the formation of all sums are finite sums.

Proposition 2.5. Let M be a bimodule over a unital x-ring R. For
z,y € M, the R-segment [x,y|r is an R-convex set that contains both
of x and y.

Proof. Let x1,...,z, € [x,y|lg. We prove Y, t;zity € [x,y|r, where
> p it = 1. Since xy, € [z,y]r, there exist a;, bj;, € R such that

Ty = Z al Ty + Z birybii, Z az, Qi + Z bk = 1.
- - 7

7 J %

We have

Z t;;l’ktk = Z tz < Z a;‘kxaik + Z b;kybjk> tk
A A - -

? J

k 7 k j
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where

Z Z tZkaaiktk + Z Z t])zb;kbjk;tk = Z tz ( Z afkaik + Z b;'kbjk:>tk
ki E o j k i J
= ti(ty = 1.
k

So, the R-segment [z, y]r is closed under the formation of finite sums
of the desired type. One may write x = 1214+ 0zy0%, y = Ogz0z +1y1,
and hence z and y belong to [z, y]x. O

W remark that Proposition 2.5 is a generalization of Proposition
2.6 (i) of [2]. Let R be a unital *ring. Considering M = R in
Proposition 2.5, the unital #-ring R is a bimodule over itself and
so we get Proposition 2.6 (i) of [2]. Let B(H) denote the *-ring of
bounded linear operators on a (separable) Hilbert space H.
Considering M = B(H) and R = B(H) in Proposition 2.5, B(H)
is a bimodule over itself and so we reach Lemma 12 of [10].

Theorem 2.6. Suppose that M is a bimodule over R, K C M, and
the unital *-ring R satisfies the (PSR)-aziom. Then the set K is
R-convez if and only if the R-segment [z, y|lr is contained in K for
every x,y € K.

Proof. 1f the set K is R-convex, then clearly the R-segment [z,y|r
is contained in K for every z,y € K. Conversely, suppose the
R-segment [x,y|r is contained in K for every x,y € K. We show that
K is closed under the R-convex combination of the form » " tix;t;,

where z; € K, t; € R, and Y " tit; = 1. Let o := Y " tiw;t;. We
prove that x € K. The proof is given by induction in m. The case of
m =1 is evident (since the only 1-term R-convex combinations are of
the form is 1*z11 = z; € K). Assume that we already know that any
R-convex combination of m — 1 vectors, m > 2, from K is again a
vector from K, and let us prove that this statement remains valid
also for all R-convex combinations of m vectors from K. Let
the representation of x be such an R-convex combination. We can
assume that t;t,, < 1, since otherwise there is nothing to prove
(indeed, if ¢! t,= 1, then the remaining t;’s should be zero, since
all t7t;’s are nonnegative with the wunit sum, and we have
r =1t} rpty, € K). Assuming ¢ ¢, < 1 and noting that R satisfies the
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(PSR)-axiom, we can write

m—1
(1=t t)2 [Z (1= 5 t) 2t asti(1 — £ )™ %](1 )2
=1
+ tmxm my
whence
m-l 1 1 1 1
N (L = ) T~ Etin)F = (L= Eiytn) 2 (1= Etn) (L — tyt) 2

i=1
=1

So what is in the brackets, clearly is an R-convex combination of
m — 1 points from K and therefore, by the inductive hypothesis, this
is a point, let it be called z, from IC; we have

2= (1=t tm)22(1 = 5 60)2 + 5 Tl

m

with 2z and z,, € K, and so = € [z, x,,]r C K by the assumption. [

W may remark that Theorem 2.6 is a generalization of [1(); Theorem
15]. Let M,, denote the *-ring of complex n x n matrices. Considering
M = M, and R = M,, in Theorem 2.6, the unital x-ring M, satisfies
the (PSR)-axiom and it is a bimodule over itself and so we get |
Theorem 15].

)

Definition 2.7. Let M be a bimodule over a unital *-ring R and
S € M. The convex hull of § in M over R is the smallest R-convex
set containing §. We denote it by R—convS.

It is clear that

R—convS = {Zt;kxztz : tl € R,ZEZ’ € S’Zt:tl = 1} .

If the unital *-ring R is commutative, then R—conv{m} = {m} for

m e M.

Proposition 2.8. Suppose that M and N are bimodules over the
unital x-rings R and B, respectively and f : R — B is a unital
x-homomorphism. If g : M — N is an f-homomorphism and S C M,
then

g(R—convS) C f(R)—convg(S).

The equality holds, when f~1(1) = {1}.
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Proof. We have
f(R)—conv g(S)

= { f@) g(x) f(t:)  ti € Ry € S’Zf<ti)*f(ti) = 1}
{ Zt*x“ tEszeStht :}
{thzt i ERT €8, it =1

g(R—convsS).

N
——

OJ

If the unital *-ring B is commutative, then g(R—conv{m}) = {g(m)}
for m € M.

Corollary 2.9. Suppose that M and N are bimodules over the unital
x-rings R and B, respectively and
f:R—B

is a unital x-homomorphism. If g : M — N is an f-homomorphism,
then

9([z,ylr) € [9(x), 9(v)]w)
for every x,y € M. Moreover, the equality holds, when f~'(1) = {1}.

Proof. In view of Proposition 2.8, one can see that

9([r,ylr) = g(R—conv{z, y})
C f(R)—conv{g(x),g(y)}
= [9(2), 9(v)]s(r)-
0

Proposition 2.10. Let M and N be bimodules over the unital
x-rings R and B, respectively and f : R — B a x-homomorphism such
that f~*(1) = {1}. If g : M — N is an f-homomorphism, K C M is
R-convez, and the unital *-ring B satisfies the (PSR )-axiom, then g(K)
is f(R)-convex.

Proof. Note that f(R) is a *-subring of B and g(M) is a subbimodule
of N over the unital *-subring f(R). According to Theorem 2.6, we
show that [g(x),g(y)]rr) € g(K) for every z,y € K. Since K is
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R-convex, [z,ylg C K and so g([z,y]r) C ¢g(K). By using Corollary
2.9, we reach

[9(x), 9(W)]sr) = 9([z,y]r) C g(K).
O

Corollary 2.11. Under the hypotheses of Proposition 2.10, if f is an
epimorphism, then Img is a B-convexr subset of N.

Corollary 2.12. Let M and N be bimodules over the unital *-ring
R. If g : M — N is an R-bimodule homomorphism, K C M is
R-convex, and the unital %-ring R satisfies the (PSR)-axiom, then
g9(K) is R-convex.

Proof. Suppose that f : R — R is the identity mapping and apply
Proposition 2.10. ]

We state the converse of Proposition 2.10 as follows:

Proposition 2.13. Let M and N be bimodules over the unital x-rings
R and B, respectively and f : R — B is a unital x-homomorphism. If
g: M = N is an f-monomorphism, K C M, g(K) is f(R)-convez,
and the unital x-ring R satisfies the (PSR )-aziom, then K is R-convez.

Proof. According to Theorem 2.6, we show that [z,y]r C K for every
z,y € K. Since g(K) is f(R)-convex, [g(x), g9(y)]fr) C g(K) for every
z,y € K and so g([z,y]r) € ¢(K), by Corollary 2.9. Since ¢ is an
f-monomorphism, the desired result follows. O

Corollary 2.14. Let M and N be bimodules over the unital x-ring R.
If g : M — N is an R-bimodule monomorphism, K C M, g(K) is
R-convez, and the unital x-ring R satisfies the (PSR)-axiom, then K
is R-conver.

Proof. Suppose that f : R — R is the identity mapping and apply
Proposition 2.13. O

Corollary 2.15. Let M and N be bimodules over the unital *-rings
R and B, respectively and f : R — B is a *-epimorphism such that
Y1) ={1}. If g : M — N is an f-monomorphism and the unital
x-rings R and B satisfy the (PSR)-axiom, then I C M is R-convex if
and only if g(KK) C N is B-convex.

Proposition 2.16. Let M and N are bimodules over the unital x-rings
R and B, respectively and f : R — B is a unital x-homomorphism.
If g : M — N is an f-homomorphism, S C N is B-convez, and the
unital *-ring R satisfies the (PSR)-aziom, then g~'(S) is an R-convex
subset of M.
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Proof. By applying Theorem 2.6, we prove that [z,y|lg C g~ *(S) for

every x,y € g~ (S5). Since S is B-convex and ¢(z), g(y) € S,
l9(x),9(y)ls € 5.

So, it follows from Corollary 2.9 that

9(lz,yl=) S l9(=), 9W)lsm) < [9(2), 9(y)]s © 5.
Hence, [z,ylr C g~ (S). O

Corollary 2.17. Under the hypothesis of Proposition 2.16, Kerg is an
R-convex subset of M.

Proof. Tt follows from the fact that, Kerg = ¢~'({0}) and {0} is a
B-convex subset of NV. O

Corollary 2.18. Let M and N be bimodules over the unital *-ring
R. If g : M — N is an R-bimodule homomorphism, S C N is
R-convex, and the unital *-ring R satisfies the (PSR)-axiom, then
g (S) is R-convez.

Proof. Suppose that f : R — R is the identity mapping and apply
Proposition 2.16. 0

Definition 2.19. Let M be a bimodule over a unital *ring R and
S C M. The subset § is invariant under an f-homomorphism
g : M — M whenever ¢g(S) C S.

Proposition 2.20. Suppose that M is a bimodule over the unital
x-ring R and f : R — R is a unital x-homomorphism. If g : M — M
is an f-homomorphism and S C M is invariant under g, then R-convex
hull of § is invariant under g.

Proof. Taking into account that ¢(S) C S we have
R—convg(S) € R—convsS.
Consequently, by Corollary 2.9, we deduce
g(R—convS) C f(R)—convg(S)
C R—convy(S)
C R—convs.
O

Corollary 2.21. Suppose that M is a bimodule over the unital x-ring
R. If g : M — M is an R-bimodule homomorphism and S C M 1is

invariant under g, then R-convex hull of S is invariant under g.
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Proof. According to Corollary 2.9 and Proposition 2.20 and for the
identity mapping f : R — R, one has

g(R—convS) C R—convg(S) C R—convsS.

3. R-EXTREME POINTS OF R-CONVEX SETS

In this section, we discuss the effect of an f-homomorphism on
R-extreme points of R-convex subsets of bimodules over unital *-rings.

Definition 3.1. Let M be a bimodule over a unital *ring R and
K C M an R-convex subset of M. The point x € K is called
R-extreme point in K, if = > . tix;t; is a proper R-convex
combination of elements x; € K, then each x; comes from the
unitary orbit of x, i.e., there exist unitary elements u; € R such that
for all i, z = ujz;u;.

If x € K is an R-extreme point of K and x = ) . a;x; is a proper
linear convex combination, then we have x = x; for each i.

Proposition 3.2. Suppose that M and N are bimodules over unital
x-rings R and B, respectively. Let f : R — B be a unital x-epimorphism,
g: M — N an f-homomorphism and K C M an R-convex set. Ify is
a B-extreme point of g(K) and x is an R-extreme point of g~ (y) N K,
then x is an R-extreme point of K.

Proof. Let © =) . tfx;t; be a proper R-convex combination of a finite
number of elements x; € K. Then,

y=g@) =g Zt wit;) Zg(ﬁ%tz’) = Z f@t) g(a:) f(t:)
Zf(ti) tht Ztt =1

Since the coefficients f(¢ Z) are invertible in B and y is a B-extreme
point of g(K), there exist unitary elements v; € R such that

y = f(vi)*g(zi) f(vi).

It follows that y = g(viz;v;) and so vix;v; € g~ (y). We can rewrite
T = Zt Tt = Zt vl )x; (v )t = Z(U ti)" (vizv;) (vit;).

This means that x is a proper R-convex combination of elements in
g '(y) N K. Since x is an R-extreme point of g~'(y) N K, there exist
unitary elements w; € R such that z = w}(vxv;)w;. Let u; = v;w;.

and
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Then, u; is unitary and x = u}z;u;, i.e., each x; comes from the unitary
orbit of z. ]

Theorem 3.3. Let M and N be bimodules over unital x-rings R and
B, respectively and let g : M — N be an f-monomorphism and K C M
an R-convexr subset.
(a) If f : R — B is a x-epimorphism such that f~1(1) = {1} and
is an R-extreme point of IC, then g(x) is a B-extreme point of
9(K).
(b) If f : R — B is a unital *-epimorphism and g(x) is a B-extreme
point of g(KC), then = is an R-extreme point of K.

Proof. (a) Let g(x) = > . biy;b; be a proper B-convex combination of
a finite number of elements y; € g(KC). There exist t; € R and z; € K
such that f(t;) = b; and g(z;) = y;. We observe that

g(z) = Zb:yibi = Z @) g(x:) f(t:) = Q(Z tiwiti),
1= Zb%kbi = Zf(ti)*f(ti) = f(ztfti)

and so that x = ), t¥x;t; with ), ¢/t; = 1. This R-convex combination
is proper. Since x is an R-extreme point of K, there exist unitary
elements u; € R such that = u}z;u;. Thus,

9(x) = g(ujzu;)

= f(w;)g(x:) f (u;)

= f(ui)*g(x:) f ()

= f(uwi)"yi f ().
This indicates that each y; comes from the unitary orbit of g(z), i.e.,
g(x) is a B-extreme point of g(K).

(b) Since g is f-monomorphism, ¢g~!(y) = {z}, where y = g(z).

Hence, g~'(y) N K is a singleton subset containing z and so z is

R-extreme. The result now follows from Proposition 3.2 and the fact
that y is a B-extreme point of g(K), O

The following corollary provides the necessary and sufficient
condition.

Corollary 3.4. Let M and N be bimodules over unital x-rings R and
B, respectively and f : R — B a *-epimorphism such that f~*(1) = {1}.
If g : M — N is an f-monomorphism and K C M is R-convex, then
x is an R-extreme point of K if and only if g(x) is a B-extreme point

of g(K).
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4. EXAMPLES

Let H be a Hilbert space and denote by B(H) the collection of
bounded linear operators on H and by By(#H) the compact operators.
The unit ball of B(#); that is,

B=A{T eBH):|IT|]| <1}
is B(H)-convex [10].

Example 4.1. Consider a triangle with the wedges (0,0), (1,0), and
(1,1) in the plane R?. This triangle is R-convex in R? and its R-extreme
points are its wedges.

Example 4.2. Consider the unit disk in the complex plane. This unit
disk is C-convex in C and its C-extreme points are the set

{zeC:|z] =1}.

Example 4.3. [7, Corollary 1.2] The B(H)-extreme points of the unit
ball B are precisely the isometries and co-isometries.

The numerical range of an operator T' € B(H), denoted by W(T),
is the collection of complex numbers (T'h, h), where h runs through all
vectors in ‘H of norm 1. The numerical radius of T', w(T), is defined by

w(T) = sup{|\| : A € W(T)}.
Let M, (C) be the set of n x n matrices with entries in C. We denote by
W, the set of all matrices T € M,, such that w(T") < 1. It is a standard
fact that W is linearly convex (R-convex) and in [10] it is shown that
Wy is M,,-convex. We denote by T/Vl1 the collection of matrices T € M,,
for which w(T) =1 and 1 € W(T).

Example 4.4. [7, Theorem 2.9] T" € M, is C-extreme point of W
if and only if W(T) is the entire unit disk. Recall that W(T) is an
elliptical disk.

Example 4.5. [7, Theorem 2.10] The identity matrix and all nilpotent
matrices in W} are M,-extreme point in W}.

Example 4.6. [7, Theorem 3.1] Assume that H is infinite dimensional
and let S = {T € B(H) : 0 < T < I} be the unit operator interval and
P € B(H) a projection (unequal to 0 or I).
1. If P has infinite rank and co-rank, then P is B(H)-extreme of
S.
2. If P has finite rank, then P is B(H)-extreme of S N By(H).
3. If P has finite co-rank, then P is B(#)-extreme of the set

{TGS]—TEB()(H)}
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Our goal was to extend the notion of convexity to bimodules over
x-rings which is available for *-rings or x-algebras. All of the examples
that exist are for *-rings or x-algebras. So, to clarify the distinction
between our new concept of convex sets of bimodules over *-rings and
the notion of C*-convexity for *-rings or x-algebras, we include an
example which is not a bimodule over itself. In other words, the module
is distinct from its ring.

Example 4.7. Let G be a commutative group and consider
End(G) :={f:G— G : fis a homomorphism}.
Then End(G) is a unital non-commutative *-ring with
(f +9)(a) = f(a) + g(a),
(f9)(a) = f(g(a)),
f(a) = f(a)

for every a € G and f,g € End(G). In this situation, the group G is
an End(G)-bimodule by

af = f.a= f(a)
for every a € G and f € End(G). A set K C G is End(G)-convex, if K
is closed under the formation of finite sums of the type >, f.2;.f;,
where f; € End(G), »; € K and ), fifi = I, I is the identity
homomorphism on G. We note that

Y frwifi=) fiwifi=) fifilz) = f(w).

So, K is End(G)-convex, when Y. f2(z;) € K. We now provide an
End(G)-convex set in G. Let g € End(G) be a fixed homomorphism
such that gf = fg for every f € End(G) and consider

Sy ={r € G:g(x)=0}
Then S, is End(G)-convex in G.

REFERENCES

—_

. S. K. Berberian, Baer x-rings, Springer Verlag, Berlin, 1972.

. A. Ebrahimi and G. H. Esslamzadeh, C*-convexity and C*-faces in *-rings,
Turk. J. Math., 36 (2012), 131-145.

3. E. G. Effros and S. Winkler, Matrix Convexity: Operator Analogues of the
Bipolar and Hahn-Banach Theorems, J. Funct. Anal., 144(1) (1997), 117-152.

4. D. R. Farenick, C*-convexity and matricial ranges, Canad. J. Math., 44 (1992),
280-297.

5. D. R. Farenick, Krein-Milman type problems for compact matricially convex

sets, Linear Algebra Appl., 162—164 (1992), 325-334.

[\]



10.

11.

12.

13.

14.

15.

R-CONVEX SUBSETS OF BIMODULES OVER *-RINGS 103

. D. R. Farenick and P. B. Morenz, C*-extreme points of some compact C*-
convex sets, Proc. Amer. Math. Soc., 118 (1993), 765-775.

A. Hopenwasser, R. L. Moore and V. I. Pualsen, C*-extreme points, Trans.
Amer. Math. Soc. 266(1) (1981), 291-307.

T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc. 1974.

A. Jencova, On the convex structure of process POVMs, J. Math. Phys., 57(1)
(2016), Article ID: 015207.

R. Loebl, V. I. Paulsen, Some remarks on C*-convexity, Linear Alg. Appl., 35
(1981), 63-78.

B. Magajna, C*-convex sets and completely bounded bimodule homomor-
phisms, Proc. Roy. Soc. Edinburgh Section A., 130(2) (2000), 375-387.

B. Magajna, C*-convexity and the Numerical Range, Canad. Math. Bull., 43(2)
(2000), 193—-207.

B. Magajna, On C*-extreme points, Proc. Amer. Math. Soc., 129(3) (2000),
771-780.

P. B. Morenz, The structure of C*-convex sets, Canad. J. Math., 46 (1994),
1007-1026.

I. Nikoufar, A note on non-unital homomorphisms on C*-convex sets in *-rings,
Acta Unigv. M. Belii Ser. Math., 24, (2016), 21-24.

Ismail Nikoufar

Department of Mathematics, Payame Noor University, Tehran, Iran.
Email: nikoufar@pnu.ac.ir

Ali Ebrahimi Meymand

Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr
University of Rafsanjan, Rafsanjan, Iran.
Email: a.ebrahimi@vru.ac.ir



Journal of Algebraic Systems

R-CONVEX SUBSETS OF BIMODULES OVER *x-RINGS
I. NIKOUFAR AND A. EBRAHIMI MEYMAND
Lail>—x 595 bidgtags Caon—R (slaae gazen 5
e ol ol 5 13550 el
ol ol o5 el Sssls (ool 08"

Oll olinsdy laind; jae Jy s Basls (5L, 55 5T

5 @0i=R pgie wil By R gladilo—k 5, coif 4 olodsioss Ny M oS (53
Sl oz 50y GEuree=f So M aise 00 S0 sun b SWEIER B bl o seie
e[ G g ol (Sos Dl 4 S v ol 2sl-R bl 5 ame-R
s a8 sbacsema s 4 L) SWSIFR b 5 wame=R sbas saza s 485 N 4 M
Ll sloas sazme ) ama=R gy o0 0L oMoy (oS 5 xS e Jite g8 bl

loso (Bl L o ii pea=f oo

sz ob= [ SESI-R bli ccuma=R laas same 1 gudS SIS



	1. Introduction
	2. R-convex sets of bimodules over *-rings
	3. R-extreme points of R-convex sets
	4. examples
	References

