Journal of Algebraic Systems
Vol. 12, No. 1, (2024), pp 105-121

n—ABSORBING /-PRIME HYPERIDEALS IN
MULTIPLICATIVE HYPERRINGS

A. A. MENA* AND I. AKRAY

ABSTRACT. In this paper, we define the concept I—prime hyper-
ideal in a multiplicative hyperring R. A proper hyperideal P of
R is an [—prime hyperideal if for a,b € R with ab C P — IP
implies a € P or b € P. We provide some characterizations of
I—prime hyperideals. Also we conceptualize and study the no-
tions 2—absorbing I —prime and n—absorbing I —prime hyperideals
into multiplicative hyperrings as generalizations of prime ideals. A
proper hyperideal P of a hyperring R is an n—absorbing I—prime
hyperideal if for z1,--- , 2,41 € Rsuch that 1 --- 2,41 C P—IP,
then x1 -+ @x;—1@i41 - Tpe1 C P for some i € {1,--- ,n+1}. We
study some properties of such generalizations. We prove that if P
is an [—prime hyperideal of a hyperring R, then each of ?, S—1p,
f(P), f~(P), VP and P[z] are I—prime hyperideals under suit-
able conditions and suitable hyperideal I, where J is a hyperideal
contains in P. Also, we characterize I—prime hyperideals in the
decomposite hyperrings. Moreover, we show that the hyperring
with finite number of maximal hyperideals in which every proper
hyperideal is n—absorbing [—prime is a finite product of fields.

1. INTRODUCTION

Many concepts in modern algebra was generalized by generalizing
their structures to hyperstructure. The French mathematician F. Marty
in 1934 introduced the concept hyperstructure or multioperation
by returning a set of values instead of a single value [I1]. The
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hyperstructures theory was studied from many points of view and
applied to several areas of mathematics especially in computer science
and logic. In [11] the author presented the concept hypergroup and
after that in 1937, the authors H. S. Wall [16] and M. Kranser [10] also
gave their respective definitions of hypergroup as a generalization of
groups.

The hyperrings were introduced by many authors. A type of
hyperring where the multiplication is a hyperoperation while the
addition is just an operation introduced by Rota in 1982 and called a
multiplicative hyperring [13]. A well known example on multiplicative
hyperring is that for a ring (R, +,-) and corresponding to every non-
singleton subset A € P*(R) = P(R)\{¢} where P(R) is the power
set of R, there exists a multiplicative hyperring with absorbing zero
(Ra,+,0) where R4y = R and for any z,y € Ra,

zoy={r-a-y:a€ A}

(see [12, 15]). Another type of hyperring in which addition is a
hyperoperation while the multiplication is an operation introduced by
M. Krasner in 1983 and called Krasner hyperring [10]. The hyper-
rings in which the additions and multiplications are hyperoperations
where introduced by De Salvo [¢]. Procesi and Rota in [12] have
conceptualized the mnotion of primeness of hyperideal in a
multiplicative hyperring. A proper hyperideal P is called prime
hyperideal if ab C P, then a € P or b € P. The radical of a hyperideal
P denoted by /P is the intersection of all prime hyperideals that
contains P. Some generalizations of prime hyperideals can be found in
3,7, 14].

In the recent years many generalizations of prime ideals were
introduced. Here state some of them. The authors in [1] and [7]
introduced the notions 2—absorbing and n—absorbing ideals in
commutative rings. A proper ideal P is called 2—absorbing (or
n—absorbing) ideal if whenever the product of three (or n + 1)
elements of R in P, the product of two (or n) of these elements is
in P.

In [1] and [2], the author Akray introduced the notions / —prime ideal
and n—absorbing [ —ideal in classical rings as a generalization of prime
ideals. For fixed proper ideal I of a commutative ring R with identity,
a proper ideal P of R is an [—prime if for a,b € R with a.b € P —IP,
then a € P or b € P. A proper ideal P of R is an n—absorbing
I—ideal if for x1,--- , 2,41 € R such that x;---x,.1 € P — IP, then
Ty Xy %1 Tpyq € P for some i € {1,2,--- n+1}.
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In this paper all hyperrings are commutative hyperring with
identity. Here we want to define the [ —prime hyperideal, 2—absorbing
I—hyperideal and n—absorbing [—hyperideal in multiplicative
hyperrings. For fixed proper hyperideal [ of a multiplicative
hyperring R, a proper hyperideal P of R is an [—prime if a,b € R
with a.b C P — IP, thena € P or b € P. A proper hyperideal P of R
is a 2—absorbing [ —prime hyperideal if for z, x5, x3 € R such that

T1T2T3 Q P—IP,
then z1x9 C P or x1x3 C P or zox3 C P. A proper hyperideal P of
R is an n—absorbing I—prime hyperideal if for x1,--- ,z,41 € R such
that xy- -2,y € P — 1P, then oy 2121121 C P for some
ie{l,2,--- ,n+1}.

In section two, we define [—prime hyperideal and we prove some
equivalents of I—prime hyperideal (Theorem 2.18). Moreover, we
establish [—prime hyperideals in finite product of hyperrings
(Theorem 2.20). Section three devoted for 2—absorbing I—prime and
n—absorbing I—prime hyperideals and we prove Theorem 3.9 which
state (Let R = Hfff R; and P be a proper non-zero hyperideal of R.

1

If P is an (n + 1)—absorbing I —prime hyperideal of R, then
P=P X Py x- -+ X P,y

for some proper n—absobing I[,—prime hyperideals P;,---, P, of
Ry,---,R,i1 respectively, where [ = H?jll I; and I, = R,
Vi =1,2,---,n+1). Also, we prove Theorem 3.11 that state (Let
| Maz(R) |> n+ 1 > 2. Then each proper hyperideal of R is an
n—absorbing I—prime hyperideal if and only if each quotient of R
is a product of (n + 1)—fields). Finally, let P be an n—absorbing
I—hyperideal of a hyperring R. Then there are at most n'® prime
hyperideals of R that are minimal over P (Theorem 3.13).

2. I—PRIME HYPERIDEALS

We start this section by defining the concept of I—prime hyperideal
and some example of it. A proper hyperideal P of R is an [—prime
hyperideal if for a,b € R with ab C P — I P implies a € P or b € P.

In the following examples we show that the class of I—prime
hyperideals contains properly the class of prime hyperideals.

Example 2.1. Consider the hyperring of integers (Z, +, o),
A={0,1} CZ

and nom = {nam : a € A} = {0,nm}. So 47Z is not prime hyperideal,

since 202 = {0,4} C 4Z and 2 ¢ 47. But 4Z is 2Z-prime hyperideal,

since Va,b € Z,aob={0,ab} € 4Z — (2Z 0 4Z) = AZ — 8L.
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Example 2.2. Let (Z,+,0) be the hyperring of integers and
A={4,8} CZand aob = aAb = {4ab,8ab}. Then 1ol = {4,8} C 27Z
but 1 ¢ 27 and hence 2Z is not prime hyperideal. However 2Z is not
8Z—prime hyperideal, since

27 — (87 0 27) = 27 — (64Z U 1287) = 27 — 647

which contains 1 o 1. Therefore, 27 is neither prime hyperideal nor
8Z-prime hyperideal of (Z, +, o).

The intersection of two [—prime hyperideals is not [—prime
hyperideal let us explain our claim by this example.

Example 2.3. Consider the hyperring of integers (Z,+,o), where
aob = {2ab,3ab}. Let P =27, I = 3Z and
P—1P =27 — (3Z) 0 (27Z)
= 27 — 6AZ
=27 — (12Z U 18Z).
Thus P is I—prime hyperideal. Now, for () = 3Z and [ = 3Z we have
Q—1Q =37 — (3Z) 0o (37Z)
=37 — 9AZ
=37 — (182 U 277Z).

So @ is I—prime hyperideal of Z while P N () = 6Z is not 3Z—prime
hyperideal, since

6Z — (3Z) o (6Z) = 6Z — (36Z U 54Z)20 3
= {12,18}
C 6Z — (36Z U 547),
but neither 2 € 6Z nor 3 € 6Z.

The following lemma is a generalization of Lemma 2.1 in [1].

Lemma 2.4. Let P be a proper hyperideal of a hyperring (R, +,0).
Then P is an I-prime hyperideal if and only if P/IP is weakly prime
hyperideal in R/IP.

Proof. (=) Let P be an I-prime hyperideal in (R, +,0). Let a,b C R
with

{0} # (a+ IP)(b+ IP)=aob+IP € P/IP.

Then aob C P — [P impliesa C P or b C P, hence a+ IP C P/IP
or b+ IP C P/IP. So P/IP is weakly prime hyperideal in R/IP.
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(<) Suppose that P/IP is weakly prime hyperideal in R/IP and take
r,s C R such that ros C P — IP. Then

{0} #ros+IP=(r+1P)(s+1P)C P/IP

sor+ 1P C P/IP or s+ IP C P/IP. Therefore r C P or s C P.
Thus P is an I-prime hyperideal in R. U

Let (R,+,0) be a hyperring and = be an indeterminate. Then
(R[z],+,e) is a polynomial multiplicative hyperring where
az™ @ ba™ = (aob)x™ ™™ (see [0]).

Theorem 2.5. If P is an I—prime hyperideal of (R,+,0), then P[z]
is I[x]—prime hyperideal of (R[x],+,e) .

Proof. Let a(x) @ b(x) C Plx| — I[x] @ P[x] = P[z] — (IP)[z]. Without
loss of generality, let a(z) = cz™ and b(x) = dz™, for ¢,d € R. Thus
codz™™ C Plx] so cod C P and codx™™ ¢ IP[z] implies cod ¢ IP. P
I—prime hyperideal gives us ¢ € P or d € P. Hence a(x) = ca™ € Plz]
or b(x) = da™ € Plz] and so P[z] is an [[z]—prime. O

Corollary 2.6. Let P be an I—prime hyperideal of R. Then Plx] is
an I—prime hyperideal of R[z].

Theorem 2.7. Let R be a hyperring and f : R — R be a good
epiomorphism and let P be an I-prime hyperideal of R with Kerf C P.
Then f(P) is an I—prime hyperideal.

Proof. Firstly, we have to show that f(P) is hyperideal of R. Let 7 € R
and y € f(P). Then z = f~!(y) € P and there exists r € R such that
f(r)y=7. Sor.y = f(r).f(z) = f(r.x) C f(P). Now let us show that
f(P) is an I—prime hyperideal. To do this, we have for all z,y € R
there exist a,b € R such that x = f(a), y = f(b). Then

z.y = f(a).f(b) = f(a.b) C f(P),
so a.b C P+ Kerf. As P is an [—prime hyperideal, a € P or b € P,
that is « = f(a) € f(P) or y = f(b) € f(P). So f(P) is an [—prime
hyperideal of R. U

Theorem 2.8. Let (R, +,0) be a hyperring and f : R — R be a good
homomorphism and let Q be an I-prime hyperideal of R. Then f~(Q)
is an I—prime hyperideal.

Proof. Let aob C f74Q). Then f(aob) = f(a)o f(b) C Q because
f is a good homomorphism. As @ is [—prime hyperideal, f(a) € Q

or f(b) € Q. So, a € f71Q) or b € f71(Q) and hence f~1(Q) is an
I —prime hyperideal of R. O
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The following theorem generalizes Theorem 2.2 of [1].

Theorem 2.9. (1) Let I C J be two hyperideals of a multiplicative
hyperring R. If P is an I—prime hyperideal of R, then it is a J—prime
hyperideal.

(2) Let R be a commutative multiplicative hyperring and P an
I-prime hyperideal that is not prime hyperideal, then P2 C IP. Thus,
an I-prime hyperideal P with P* € IP is a prime hyperideal.

Proof. (1) The proof comes from the fact that if I C J, then
P—JPCP—-1IP.

(2) Suppose that P* ¢ I P, we show that P is prime hyperideal. Let
abC Pfor a,be R. If ab € IP, then P I-prime gives a € P or b € P.
So assume that ab C IP. First, suppose that aP ¢ IP; say ax ¢ IP
for some z € P. Then a(z +b) CP—IP. Soa€ Porxz+be€ P and
hence a € P or b € P. Hence we can assume that ¢ C [P and in a
similar way we can assume that bP C IP. Since P? ¢ IP, there exist
y,z € P with yz ¢ IP. Then (a+y)(b+z) C P —IP. So P I-prime
givesa+y € Por b+ 2z € P and hence a € P or b € P. Therefore P
is a prime hyperideal of R see also [1] . O

Corollary 2.10. Let P be an I-prime hyperideal of a hyperring R with
IP C P3. Then P is N2, P'-prime hyperideal.

Proof. If P is prime hyperideal, then P is N, Pi-prime hyperideal.
Assume that P is not prime hyperideal. By Theorem 2.5,

P2CIPC P3

Thus IP = P" for each n > 2. So N, P* = PN P? = P? and
(N2, P") P = P*P = P3 = [P. Being P is I-prime hyperideal implies
P is N2, P'-prime hyperideal. 0

Remark 2.11. Let P be an I-prime hyperideal. Then P C /IP or
VIPCP. IfP & VP, then P is not prime hyperideal since otherwise
IP C P implies VIP C /P = P. While if v/IP C P, then P is a
prime hyperideal. Now we give a way to construct [-prime ideals P
when N2, P* C TP C P3.

Corollary 2.12. Let P be an [—prime hyperideal of a hyperring R
which is not prime hyperideal. Then /P = \/IP.

Proof. By Theorem 2.5, P2 C IP and hence VP = /P2 C \/IP. The

other containment always holds. 0
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Remark 2.13. Assume that P is an [—prime hyperideal, but not prime.
Then by Theorem 2.5, if IP C P?, then P? = IP. In particular, if P
is weakly prime hyperideal (0-prime) but not prime hyperideal, then
P? = {0}. Suppose that IP C P3. Then P> C IP C P3; So P? = P
and thus P? is an idempotent.

Lemma 2.14. If P is an I—primary hyperideal of a hyperring R, then
VP is a I—prime hyperideal of R.

Proof. Let ab C VP — IVP = /P — \IP for a,b € R. Then
(ab)™ = a"b™ C P for some n € N and (ab)™ ¢ IP for all m € N. So
a"b" C P — IP and as P is an [—primary hyperideal of R, a™ C P
or b C \/ﬁ, that is @ € VP or b € v/P which means that VP is a
V/I—prime hyperideal of R. 0

The following theorem generalizes the result [, Theorem 2.8].

Theorem 2.15. (1) Let R and S be two commutative multiplicative
hyperrings and P be {0}—prime hyperideal of R. Then P xS is I-prime
hyperideal of R x S for each hyperideal I of R x S with

NP (PxS)YCIPxS)CPxS.

(2) Let P be a finitely generated proper hyperideal of a commutative
hyperring R. Assume P is an I-prime hyperideal with IP C P3. Then
either P is {0}—prime or P? # {0} is idempotent and R decomposes
as T'x S where S = P? and P = J x S where J is a {0}—prime. Thus
P is I-prime hyperideal for N3, P* C IP C P.

Proof. (1) Let R and S be two commutative hyperrings and P be a
{0}—prime hyperideal of R. Then P x S need not be a {0}—prime
hyperideal of R x S; In fact, P x S is {0}—prime if and only if P x S
(or equivalently P) is prime hyperideal. However, P x S is an [-prime
hyperideal for each I with N, (P x S)* C I(P x S). If P is prime
hyperideal, then P x S is a prime hyperideal and thus is I-prime for
all I. Assume that P is not a prime hyperideal. Then P? = {0} and
(P x S)? = {0} x S. Hence N, (P x S) =NxX,P' xS ={0} x5.
Thus

PxS—N2(PxS)=PxS—{0} xS=(P-{0})xS.

Since P is {0}—prime hyperideal, P x S is N2, (P x S)*-prime
hyperideal and as N2, (P x S)' C I(P x S), P x S is I-prime
hyperideal.

(2) If P is a prime hyperideal, then P is {0}—prime. So we can
assume that P is not prime hyperideal. Then P? C IP and hence
P2 C JP C P3. So P? = P3 Hence P? is idempotent. Since P?
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is finitely generated, P? =< e > for some idempotent e € R. Sup-
pose P? = {0}. Then IP C P? = {0}. So IP = {0} and hence
P is {0}—prime. So assume P? # {0}. Put S = P? = <e> and
T =< 1—e >, so R decomposes as T x S where S = P2%  Let
J=P(l—e),so P=J xS where

J2=(P1—-e) =P (l—e)=<e><1-—e>={0}.
We show that J is {0} —prime hyperideal. Let aob C J — {0}, so
(a,1)(b,1) = (aob,1)
CJxS—(JxS)?
=JxS—-{0} xS
CP-1IP

Since IP C P? implies IP C P? = (J x S)® = {0} x S. Hence
(a,1) € Por (b,1) € Psoa € Jorbe J. Therefore J is a {0}—prime
hyperideal. 0

Corollary 2.16. Let (R,+,0) be an indecomposable commutative
hyperring and P a finitely generated I-prime hyperideal of (R,+,0),
where IP C P3. Then P is a {0}—prime hyperideal.

Corollary 2.17. Let (R,+,0) be a Noetherian integral hyperdomain.
A proper hyperideal P of R is prime hyperideal if and only if P is
P2-prime hyperideal.

The next theorem is a generalization of [I, Theorem 2.12].

Theorem 2.18. Let P be a proper hyperideal of a hyperring R. Then
the following assertions are equivalent:
(1) P is I-prime hyperideal.
(2) Forre R—P,(P:r)=PU(IP:r).
(3) Forre R—P, (P:r)=Por(P:r)={IP:r).
(4) For hyperideals J and K of R, JK C P and JK ¢ IP imply
JCPorKCP.

Proof. (1) = (2) Suppose r € R— P. Let s € (P :r),sors C P,
If rs C P—1IP,then s € P. If rs C IP, then s € (IP :r). So
(P:r) C PU(IP :r). The other containment always holds.

(2) = (3) Note that if a hyperideal is a union of two hyperideals,
then it is equal to one of them.

(3) = (4) Let J and K be two hyperideals of R with JK C P.
Assume that J ¢ P and K ¢ P. We claim that JK C IP. Suppose
r € J. First, let r ¢ P. Then rK C P gives K C (P :r). Now K ¢ P,
so (P:r)=({P:r). Thus rK C IP. Next, let r € JN P. Choose
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s€J—P. Then r+s € J— P. By the first case sK C IP and so
(r+s)K CIP.Pickt € K. Thenrt = (r+s)t—st C IPand rK C IP.
Hence JK C IP.

(4) = (1) Let rs € P — IP. Then (r)(s) € P. But (r)(s) € IP. So
(r) C Por (s) C P which means r € P or s € P. O

Proposition 2.19. Let P be an I-prime hyperideal of a hyperring R
and J C P be a hyperideal of R. Then P/J is I—prime hyperideal of
R/J.

Proof. Let z,y € Rwithzoy C P/J—I(P/J)=P/J—(IP+J)/J
where z, y are the images of z,y in R/J. Thus xoy C P —IP. So
x € Porye P. Therefore z € P/J or y € P/J. So P/J is I-prime
hyperideal. 0

Let R; and Ry be two hyperrings. It is known that the prime
hyperideals of R; x Ry have the form P x Ry or Ry X ), where P
is a prime hyperideal of R; and @) is a prime hyperideal of Ry. We next
generalize this result to I-prime hyperideals.

Theorem 2.20. Let R; be a hyperring and I; a hyperideal of R; for
1 =1,2. Let I = I, x Iy. Then the I-prime hyperideals of Ry X Ry have
exactly one of the following three types:
(1) P, x Py, where P; is a proper hyperideal of R; with I, P, = P;.
(2) Py x Ry where Py is an I -prime hyperideal of Ry and IyRy = Ry.
(8) Ry x Py, where Py is an Iy-prime hyperideal of Ry and Iy Ry = Ry .
Proof. We first prove that a hyperideal of R; x Ry having one of these
three types is I-prime hyperideal. The first type is clear since

P1XPQ—[(PleQ):P1><P2—([1P1X[2P2)2¢.
Suppose that P, is I1-prime hyperideal and Is Ry = R,. Let
(a,b)(x,y) Q P1 X RQ — (]1P1 X IQRQ)
:P1XR2—(]1P1XR2)
= (Pl_Ilpl) XRQ.
Then ax C P, — I P, implies that a € Py or x € Py, so (a,b) € Py X Ry
or (z,y) € Py X Ry. Hence P; X Ry is I-prime hyperideal. Similarly we
can prove the last case. Next, let P, X P, be I[-prime and ab C P,—11 P;.
Then
(a,0)(b,0) = (ab,0) € Py x P, — I (P, X P),

so (a,0) € Py x Pyor (b,0) € P, X Py, that is, a € P, or b € P;. Hence
Py is I1-prime. Likewise, P, is I>-prime.
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Assume that P1><P2 7é11P1XIQP2, sayP1 7é[1P1. Let x € P1—11P1
and y € P,. Then (z,1)(1,y) = (z,y) € P X Py. So (x,1) € P, X P,
or (1,y) € P, x Py. Thus P, = Ry or P, = Ry. Assume that P, = Ry.
Then P; X Ry is I-prime, where P; is [1-prime.

(]

3. n—ABSORBING [/—PRIME HYPERIDEALS

We start this section by the definition of n—absorbing /—prime
hyperideals.

Definition 3.1. A proper hyperideal P of a hyperring R is a
2—absorbing [—prime hyperideal if for xq,x5,23 € R such that
r1x903 € P — IP, then 129 € P or 21203 € P or wex3 C P. A
proper hyperideal P of R is an n—absorbing [ —prime hyperideal if for
1, ,Tny1 € R such that xy-- 2,01 C P — I[P, then
Tyt Xy 1Tip1 Ty © P

for some i € {1,2,--- ,n+ 1}.

It is clear that the class of n—absorbing [—prime hyperideals

contains properly the class of n—absorbing hyperideals. As we can
see this in the following example.

Example 3.2. Let K be a hyperfield and R = K[zy,--- , 2,42 be a
polynomial multiplicative hyperring. Consider the hyperideals
P=<ux-- -xn“,x% . ~~xmx%xn+2 >
and [ =< x1---x, >. So
P—IP =<4 ---xn+1,xf---xn,xfarn+2 >
STy T, L Ty T Ty >

Hence P is an n—absorbing [—prime hyperideal but not n—absorbing
hyperideal.

Lemma 3.3. Let P be an I—prime hyperideal of R and K be a subset
of R. For any a € R,aK C P,aK ¢ IP and a ¢ P implies that
K CP. (oraK CP and K € P imply that a € P).

Proof. Let aK C P and a ¢ P for any a € R. Then we have
aK = Uak; C P for all k; € K. Hence ak; C P and ak; € IP for all
k; € K. Since P is an I —prime hyperideal and a ¢ P, k; € P, Vk; € K.
Thus K C P. O

Lemma 3.4. Let P be an I—prime hyperideal of R and A, B be subsets
of R. f ABC P cmdABg]P, then A C P or B C P.
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Proof. Assume that AB C P,AB ¢ IP and A ¢ P, B ¢ P. Since
AB =a;b; C P, a;b; C P, for a; € A;b; € B. And as A ¢ P and
B ¢ P, we have x ¢ P and y ¢ P for some z € A,y € B. Then
vy € AB C P and xy ¢ IP. From being P an I—prime hyperideal,
we have x € P or y € P which is a contradiction. Thus A C P or
BCP. 0

Every [—prime hyperideal is a 2—absorbing [—prime hyperideal.
Since for (ab)e C P — IP, we have ab C P or bc C P. If ab € P then
by I—prime hyperideal of P, we have ¢ € P and so ac € P or bc € P.
Hence P is a 2—absorbing [ —prime hyperideal of R.

Lemma 3.5. Let P be a hyperideal of R and Py, P, ..., P, be
2—absorbing primary hyperideals of R such that /P, = P for all
i=1,....,n. Then (_, P; is a 2-absorbing I—prime hyperideal and
ﬂ?:l P =P.

Proof. Assume P = ()i_, P, and so VP = /N, P, = N,\/P = P.
Let zyz C P — IP with zy ¢ P, for z,y,z € R. Thus zy ¢ P, for
some ¢ = 1,2,--- ,n. From being P, a 2-absorbing primary hyperideal
and zyz C P—IP C P;, hence 2z C /P, = P or yz C /P, = P which
means that P is a 2-absorbing [—prime hyperideal of R. 0

Theorem 3.6. Let h : R — L be a bijective good homomorphism of
hyperrings and P be a 2-absorbing I—prime hyperideal of L. Then
h=Y(P) is a 2-absorbing h™'(I)—prime hyperideal of R.

Proof. Suppose that abc C h™'(P),h"Y(I)h~'(P) = h=(P)—h~'(IP),
for a,b,c € R. So h(abc) = h(a)h(b)h(a) C P and h(abc) € IP. From
being P a 2-absorbing I—prime hyperideal, we have h(a)h(b) C P or
h(a)h(c) € P or h(b)h(c) C P, that is h(ab) C P or h(ac) C P or
h(bc) C P which implies ab C h=Y(P) or ac C h=}(P) or be C h™}(P).
So h™!(P) is a 2-absorbing h~!(I)—prime hyperideal of R. O

Theorem 3.7. Suppose that P is an n—absorbing I —prime hyperideal
of R. Then VP is an n—absorbing v/I—prime hyperideal of R and
a”QPforallaE\/?.

Proof. Let a € v/P. Then a™ C P for some m € N. If m < n, we
are done. If m > n, by using the n-absorbing I—prime property on
products a™, we conclude that a™ C P. Now, consider

a1+ py1 € VP —IVP=+P—+\IP
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for ay,- - ,an41 € R. Thus (ar...ap41)" = af---aly, € P If
at---ay, ., © IP, then ay---a,41 C V/IP which is a contradiction.
Hence a---a;, , € P — IP and P n-absorbing [—prime hyperideal
gives us the desired. OJ

Lemma 3.8. Let P, be an n;—absorbing I—prime hyperideal of a
hyperring R for 1 = 1,2,--- ,m and IP;, = IP;, for © # j, Then
N, P; is an n—absorbing I—prime hyperideal where n =Y " n;.

Proof. Let k > nand xy - - -z C N, P,— N, F;. Then by hypothesis
for each 7 = 1---m, there exists a product of n; of these k—elements in
P;. Let A; be the collection of these elements and let A = U_| A;. Thus
A has at most n—elements. Now, as P; is an n—absorbing I—prime
hyperideal, the product of all elements of A must be in each P; so
NP; contains a product of at most n—elements and therefore it is an
n—absorbing [—prime hyperideal of R. 0

Theorem 3.9. Let R = H?jll R; and P be a proper non-zero hyperideal

of R. If P is an (n + 1)—absorbing I —prime hyperideal of R, then
P=P X Py XX P,y

for some proper n—absobing I;,—prime hyperideals Py,---, P11

of Ry, -, R,y1 respectively, where I = H?Ill I; and I; = R,

Vi=1,2--,n+1.

Proof. Let x1, -+ ,x,11 € R with
Ti T © P — 0L

and suppose by contrary that P; is not an n—absorbing [ —prime
hyperideal of Ry. Set a; = (z;,1,1,---,1) fori =1,2,--- ;,n+ 1 and
anio = (1,0,--+,0). Then we have

a1ag -+ - Qpio = ($1x2~--xn+1,0,0,--- ,0) Q P—-IP
and
Q1 Gi—1Q41 G2 = ($1$2"'Ii—1$i+1 “ T, 0y 70) QZ P

fori =1,--- ,n+1, which contradicts with being P an (n+1)—absorbing
I—prime hyperideal. Hence P, must be an n—absorbing I —prime
hyperideal of R;. By similar arguments, we can show that P; is an
n—absorbing [;—prime hyperideal of R; for i =1,--- ,n 4+ 1. 0

Theorem 3.10. Let R = H?:’Lll R;, where R; is a hyperring for
i€ {l,---,n+1}. If P is an n—absorbing I—prime hyperideal of
R, then either P = 1P or
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P=P XPoXx- -+ XP_ 1 XR;XPy1--xXPFP,1
for some i € {1,--- ,n+ 1} and if P; # R; for j # i, then P; is an
n—absorbing hyperideal in R;.

Proof. Let P = H?:ll P; be an n—absorbing [ —prime hyperideal of R.
Then there exists (z1, -+ ,2,41) € P — I P, and so
(xh]'?'” 71)(17‘%‘271"' 71)(1717 ,].,]3n+1) - (131,I27'~- 7$n+1>
CP-1IP
As P is an n—absorbing [—prime hyperideal, we have
(xla Xyt Li—1, ]-7 Lit1,° 7xn+1) g P

for some ¢ € {1,2,--- ,n+ 1}. Thus (0,0,---,0,1,0,---,0) € P and
hencePzPl XPQ X XPi,1 XRZ' XPZ‘+1"' XPnJr]_. If]jj#RZ for
J # 1, then we have to prove P; is an n—absorbing hyperideal of R;.
Let 7 < j and take x125 - - xy41 € Pj. Then

(0,0,---,0,1,0,--- ,0, 2129 - Zpy1,0- -, 0)

=(0,0,---,1,0,---,0,21,0--- ,0)(0,0,---,1,0,--- ,0,25,0---,0)
. (0,0,---,1,0,--- ,0,2p41,0---,0)

CP-1IP

Since P is an n—absorbing [—prime hyperideal,

(0707"' 707170"" 707x1x2"'$k—1xk+1"'-Tn-ﬁ—laoa"' 70) S

for some k € {1,2,--- ,n+1}. Thus x1z2- - Tp_1Tpt1- - Tpp1 € P;
and hence P; is an n—absorbing hyperideal of R;. We can do similar
arguments for the case ¢ > j. 0J

In the following result, we characterize hyperrings in which every
proper hyperideal of R is an n—absorbing [ —prime hyperideal.

Theorem 3.11. Let | Maz(R) |> n+ 1 > 2. Then each proper
hyperideal of R is an n—absorbing I—prime hyperideal if and only
if each quotient of R is a product of (n + 1)—fields.

Proof. (=) Let P be a proper hyperideal of R. Then
BB x By

and % = Pyx---xP,y1, where P, is a hyperideal of F}, i =1,--- ,n+ 1.
If P = IP then there is nothing to prove, otherwise we have
P; = 0, for at least one j € {1,---,n+ 1} since 4 is proper. So,
% is an n—absorbing 0—prime hyperideal of % which means P is an

n—absorbing I—prime hyperideal of R.
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(<) Let mi, -+, My be distinct maximal hyperideals of R. Then
m = HZ | m; is an n—absorbing I —hyperideal of R. we claim that m
is not an n—absorbing hyperideal. First, if m; C U;»xjm;, then there
exist m; with m; € m; by Prime Avoidance Lemma and this con-
tradicts the maximality of m;. Hence m; Q Uizjm; and so, there
exists x; € m; — U:‘;Zjlmj so that z1-- 2,01 € m. If there exists

jge{l,--,n+ 1} with
a=T1%y Lj1Tj41 " Tpgp1 & M S My,

then x; € m; for some ¢ # j which is a contradiction. Hence m is
not an n—absorbing hyperideal and so m"*' = I'm. Then by Chinese
R R R

Remainder Theorem we have T T X T X ... X §+1 Put
n+1

F, = n+1 If F} is not a field, then it has a nonzero proper hyperideal
H and so 0x0x---x0xHx0x---x0is an n—absorbing 0—hyperideal
of %. Thus, by Lemma 3.10 we have H = F; or H = 0 which is
impossible. Hence Fj is a field. O

Corollary 3.12. Suppose | Max(R) |> n+ 1 > 2. Then each
proper hyperideal of R is an n—absorbing 0—hyperideal if and only if
R=F, x--- X F,.1, where Fy,--- , F, .1 are fields.

Theorem 3.13. Let P be an n—absorbing I—prime hyperideal of a
hyperring R. Then there are at most n'" prime hyperideals of R that
are minimal over P.

Proof. Let C' = {q; : ¢; is a prime hyperideal minimal over P} and let
C has at least n elements. Assume ¢, ,q, € C are distinct elements
and z; € ¢; — Ujpq; for i = 1,---  n. By [9, Theorem 2.1], there is
a y; ¢ ¢; such that yiri C P for i = 1,--- ,n and for some positive
integers ty,- - ,t,. Since x; ¢ N}_1¢; and P an n—absorbing [—prime
hyperideal, we have y;z?~ ! € P. As x; ¢ N}j_1q; and

gl Tt C P Cntyg;,

we get y; € ¢; — Ujxqj, and so y; ¢ Nj_yq; for i = 1,--- ,n. Since

yrt C P, POFEETH | iy ' C P and clearly Y1y & g, for
t = 1,---,n, and being P an n—absorbing [—prime hyperideal, we

have y;z;~ 1 € P. As x; ¢ Nj_1q; and yx}~ V'C P CN, g, we get
Yi € ¢; —Ujzq; and so y; ¢ NP_yq; for ¢ = 1,---n. Since y;2; 2t C P,
2y [T, 2™ € P and cearly X7y, §é ¢, for i = 1,---n and
bemg P an n—absorbing [—prime hyperldeal we have

H?:I m?_l C P
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Now, suppose ¢,+1 € C such that ¢,.1 # ¢;, for ¢ = 1,--- ., n and
consequently z; € ¢, for ¢ = 1,--- . n which is a contradiction.
Therefore C' has at least n elements. O

In a multiplicative hyperring (R, +,0) a non empty subset L of R is
called a multiplicative set whenever a,b € A = aobN A # ¢.

We can contract the localization of a multiplicative hyperring R as
follows: Let S be a multiplicative closed subset of R, that is, .S is closed
under the hypermultiplication and contains the identity. Let S™'R be
the set (R x S/ ~) of equivalence classes where

(r1,81) ~ (r2,82) <= Js € S such that ssyry = sso77.

Let r/s be the equivalence class of (r,s) € R x S under the equivalence
relation ~. The operation addition and the hyperoperation multiplica-
tion are defined by

1 T9 S$17T2 + Sar a+0b

—4+ == ={ 14 € $17r9,b € SoT1,C € 5152}
S1 S92 S1592 C
r T2 172 a
_._:—:{—7a€7“17"2,b€8182}.
S1  So 5152 b

Note that the localization map f : R — S™'R, f(r) = % is a

homomorphism of hyperrings. It is easy to see that the localization
of a hyperideal is a hyperideal.

Proposition 3.14. Let P be an I—prime hyperideal of R with
SNP=0. Then S7*P is an S~'I—prime hyperideal of S~'R.

Proof. ™, 2 ¢ S7'R with

s17 S92

N nn Cgolp o G STIP = 571p - s—l(fp).

S1 S2 $182 —

For each n € riry, s € 5159, we have 2 € ;”’2 and 2 = ¢, where a € P,
t € S. So there exists ¢ € S such that qtn = qsa. Hence qtn CP—-1IP
and so griro € P — IP. As P is an [—prime hyperideal, we have
qri € P orry € P. Thus Z—i = Z% € P or Z—z € S~'P. Therefore S~'P
is an S~'I—prime hyperideal of S~!R. 0

4. CONCLUSION

In this article we transfer the notions I—prime ideals and
n—absorbing [—ideals in multiplicative hyperrings and named them
as [—prime hyperideal and n—absorbing I—prime hyperideal. We
study some properties of such two concepts and we see that they have
analogous properties of prime ideals. During the study, we found
out similar concepts that one can think about like 2 — [—primal
hyperideals, 2 — I—primal hypersubmodules and 2 — [—prime
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hypersubmodules.

Questions Readers can think about the following subjects:
(1) 2 — I—primal hyperideals
(2) 2 — I—primal hypersubmodules
(3) 2 — I—prime hypersubmodules
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