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ON TRANSINVERSE OF MATRICES
AND ITS APPLICATIONS

K. SHAHUL HAMEED∗ AND K. O. RAMAKRISHNAN

Abstract. Given a matrix A with the elements from a field
of characteristic zero, the transinverse A# of A is defined as the
transpose of the matrix obtained by replacing the non-zero
elements of A by their inverses and leaving zeros, if any, unchanged.
We discuss the properties of this matrix operation in some detail
and as an important application, we reinvent the celebrated
matrix tree theorem for gain graphs. Characterization of balance
in connected gain graphs using its Laplacian matrix becomes an
immediate consequence.

1. Introduction

In this article, we introduce a new operation on matrices and discuss
its properties. As an important application, the matrix tree theorem
for gain graphs is established and characterization of balance in
connected gain graphs becomes an immediate consequence. A gain
graph is a graph where the edges are given some prescribed orientation
and labelled with the elements (called gains) from a group, so that the
gains are inverted when we reverse the direction of the edges. Through
out this paper, F×, where F is a field of characteristic zero, denotes
the multiplicative group of the non-zero elements in F . All the graphs
G in this paper are finite and simple. The notation Φ = (G,F×, φ)
denotes a gain graph Φ with the underlying graph G, the underlying
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group F× and the gain function φ. For definitions and other details
for gain graphs, one may refer to [5]. We use the notation v ∼ u or
v ∼ e according as the vertex v is adjacent to the vertex u or incident
with the edge e. The adjacency matrix A(Φ) = (aij) of a gain graph
Φ = (G,F×, φ), is defined as

aij =

{
φ(vivj), if −−→vivj ∈

−→
E ,

0, otherwise. (1.1)

and aji = (φ(vivj))
−1 . The Laplacian matrix of a gain graph Φ is

defined as (Φ) = D(Φ) − A(Φ), where D(Φ) is the degree matrix
of Φ. Note that D(Φ) = D(G) and for a vertex v of Φ, its degree
d(v) =

∑
e∈E:v∼e 1.

A signed graph [6] can be viewed as a gain graph with the underlying
group being the multiplicative subgroup {1,−1} of F× and a graph as
the gain graph with the underlying group as {1}.

The gain φ(C), of a cycle C : v0v1 . . . vnv0, is the product of the
gains of its edges. i.e., φ(C) = φ(v0v1)φ(v1v2) . . . φ(vnv0). A gain
graph Φ = (G,F×, φ) is said to be cycle balanced or simply balanced,
if φ(C) = 1 for all cycles C in it. More details regarding the notion of
balance in signed and gain graphs and its various applications can be
obtained from [5].

The following theorem which deals with the spectral characterization
of cycle balance in gain graphs, found in [3], is a significant extension
of the well-known theorem of Acharya [1] for signed graphs to gain
graphs.

Theorem 1.1 ([3]). If Φ = (G,F×, φ) is a gain graph, then Φ is
balanced if and only if Φ and G have the same eigenvalues.

2. Main Results

2.1. The transinner product of vectors and the transinverse of
matrices. A few definitions and some new notations are essential to
build the theory for the transinverse operation on matrices. First we
define aθ for a ∈ F by

aθ =

{
a−1, if a ̸= 0,
0, otherwise. (2.1)

An important observation from the definition is aaθ = 1 if a ̸= 0 and
0 otherwise. Also aaθ = bbθ, if and only if, both a and b become
simultaneously zeros or non-zeros. For a vector

v = (v1, v2, . . . , vn) ∈ F n,
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we define vθ ∈ F n by vθ = (vθ1, v
θ
2, . . . , v

θ
n). The straight inner prod-

uct of two vectors u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ F n is the
function ⟨ , ⟩ : F n × F n → F given by ⟨u, v⟩ =

∑n
i=1 uivi. Also the

function [ , ] : F n×F n → F is defined as their transinner product given
by [u, v] =

n∑
i=1

uiv
θ
i = ⟨u, vθ⟩. The reader may note that the straight

inner product coincides with the usual inner product in the case of Rn

but not for Cn. However, the transinner product, in the case of both Rn

and Cn, coincides with the usual inner product when the co-ordinates
of the vectors belong to {1, 0,−1}. Also, the transinner product
coincides with the Hermitian inner product in Cn when the numbers
are restricted to T ∪ {0}, where T = {z ∈ C : |z|2 = zz = 1}, a
subgroup of C×. If we adopt the usual notation ei to represent the
vector in F n with ith co-ordinate as 1 and others as zeros, then eθi = ei
and [ei, ej] = ⟨ei, ej⟩ = δij.

As usual, we denote by Mm×n(F ), the space of all matrices of
order m × n over the field F and Mn(F ) denotes the space of all
square matrices of order n. Given a matrix A = (aij) ∈ Mm×n(F ),
we denote by Aθ, the matrix of the same order defined by Aθ = (aθij)

and define its transpose as the transinverse of A, denoted by A#. i.e.,
A# = (Aθ)T = (AT )θ.

For a (0, 1) or (0, 1,−1)-matrix A, A# is AT , the transpose of A.
Also if we consider matrices with the entries from T

∪
{0}, then A# is

A∗, the conjugate transpose of A. The next proposition follows easily
from the definition of A#.

Proposition 2.1. For A = (aij) ∈ Mn(F ), A = A# if and only if
aijaji ∈ {0, 1}.

Let us call a matrix A ∈ Mn(F ) satisfying A = A# as a
transymmetric matrix. The adjacency matrix A(Φ) of a gain graph
Φ is a transymmetric matrix. Though, in general, the transinverse
operation does not satisfy many of the usual properties enjoyed by
the transpose of a matrix or conjugate transpose of a matrix for that
matter, it has useful properties like (A#)# = A and (αA)# = αθA#.
Meanwhile it is interesting to note that rank(A) need not be equal to

rank(A#) in general. In fact, for the matrix A =

1 0 1
2 3 4
3 3 5

 ∈ M3(R),

rank(A) = 2 whereas rank(A#) = 3. However, in the case of 2 × m
matrices, it is easy to see that rank(A#) = rank(A). As such it is
natural to pose the following question on this matter.
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Problem 2.2. Give necessary and sufficient condition(s) for
A ∈ Mm×n(F )

to satisfy rank(A#) = rank(A).

2.2. Properties of the transinner product and the transinverse.
The proof of the following theorem is omitted as the results follow easily
from the definitions.

Theorem 2.3. (i)
[ n∑

i=1

αiui, v
]
=

n∑
i=1

αi[ui, v].

(ii) [αu, βv] = αβθ[u, v]

(iii) [u, u] equals the number of non-zero co-ordinates in u and hence
[u, u] = 0 if and only if u = 0. Also [αu, αu] = [u, u] if α ̸= 0.
Moreover, if Y is a column matrix then Y #Y gives the number
of non-zero elements in Y and hence Y #Y = O if and only if
Y = O.

(iv) u =
n∑

i=1

[u, ei]ei and uθ =
n∑

i=1

[ei, u]ei

(v) If A ∈ Mm×n(F ) then AA# = O (and similarly A#A = O) if
and only if A = O.

Note that a significant difference of the transinner product from
the straight inner product is that the linearity is lost in the second
component as [u, αv + βw] need not be equal to αθ[u, v] + βθ[u, v] in
general and hence the reversal law fails in the case of matrix products.
i.e., (AB)# ̸= B#A# in general (See Theorem 2.6 for a special case
where it is true).

As a passing reference before we move on to the next section, let
us make some remarks for further research. Denoting the i-th row of
a matrix A by Ri, note that the matrix AA# = ([Ri, Rj]). This one
resembles in definition with the Grammian matrix (⟨Ri, Rj⟩) with the
straight inner product in action for the latter in place of the transinner
product for the former. Also, it would be worthwhile to explore the
properties of those matrices A satisfying AA# = A#A (we call them
transnormal matrices) and AA# = A#A = I (we call them transunitary
matrices). Also looking on the spectral properties of A# would also
give rise to many new ideas. Though we wish to explore these ideas
somewhere else in great detail, the following simple results are some
interesting observations.
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Theorem 2.4. If D = diag(α1, α2, · · · , αn) where each αi ̸= 0, then
DD# = In = D#D.

Theorem 2.5. If P is a permutation matrix, then P# = P−1 = P T .

The following result shows a particular case where the reversal law
holds good.

Theorem 2.6. If P is a permutation matrix and D is a diagonal
matrix, then (PD)# = D#P#.

Theorem 2.7. A =

[
a b
c d

]
∈ M2(F ) is transnormal if and only if one

of the following conditions is satisfied.
(i) b = c = 0
(ii) b, c ̸= 0 and either a = d or ad+ bc = 0.

Proof. A =

[
a b
c d

]
ifandonlyifA# =

[
aθ cθ

bθ dθ

]
. Then, a simple

calculation provides that AA# =

[
aaθ + bbθ acθ + bdθ

caθ + dbθ ccθ + ddθ

]
and similarly

A#A =

[
aaθ + ccθ aθb+ cθd
abθ + dθc bbθ + ddθ

]
. Equating AA# and A#A, first we

observe that bbθ = ccθ. Now this would imply that either b and c both
zeros or b and c are both non-zeros. In case b = c = 0, we may have
a and d as arbitrary. In the second case when b and c are both non-
zero, the equality AA# = A#A gives on simple computation that either
a = d or ad+ bc = 0. The converse follows easily on actual evaluations
of the products based on the two conditions along with the fact that
bbθ = ccθ. □

Now we characterize transunitary matrices in the following theorem.

Theorem 2.8. A ∈ Mn(F ) is transunitary if and only if there exists a
permutation matrix P such that A = PD where D is a diagonal matrix
with none of its diagonal elements are zeros.

Proof. If A is transunitary, then AA# = I implies that each row should
have exactly one non-zero scalar and column in which that scalar
exists should have other elements as zeros. This proves that A is a
permutation of diagonal matrix, diagonal of which contains no zeros.
That is, A = PD where D is a diagonal matrix with none of its
diagonal elements are zeros and P is a a permutation matrix.
Conversely suppose that A = PD. This gives A# = D#P#. Then
an easy computation of AA# and A#A completes the proof. □
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Corollary 2.9. A ∈ M2(F ) is transunitary if and only if either

A =

[
a 0
0 d

]
or A =

[
0 b
c 0

]
for non-zero a, b, c and d.

An important class of matrices, known as circulant matrices belong
to the set of transnormal matrices.

Theorem 2.10. The circulant matrices are transnormal.

Proof. Note the fact that C# is also a circulant matrix whenever C is.
So they commute and the proof is complete. □

Theorem 2.11. Any tridiagonal Toeplitz matrix is transnormal.

Proof. A tridiagonal Toeplitz matrix A can be expressed as

A = aI + bU + cL,

so that A# = aθI + cθU + bθL where I is the identity matrix with
the order as that of A and U and L are respectively the upper and
lower triangular matrices with entry one at proper places. An easy
verification gives AA# = A#A. □

2.3. Geometric significance of the transinner product. Inner
product is generally used for dealing with the orthogonality of
vectors and the resultant ideas like projection and other allied concepts.
Here we make an attempt to study the geometrical significance of
the transinner product. As [u, v] ̸= [v, u] in general, we define for
S ⊆ F n, two associated sets SL = {v ∈ F n : [v, u] = 0 ∀u ∈ S}
and SR = {v ∈ F n : [u, v] = 0 ∀u ∈ S}. When S = {0}, then
SL = SR = F n and when S = F n, then SL = SR = {0}.

Proposition 2.12. SL is a subspace of F n.

Proof. As [αv1+βv2, u] = α[v1, u]+β[v2, u], SL is a subspace of F n. □

Though SR in general need not be a subspace, we have the following.

Proposition 2.13. (SR)θ is a subspace of F n.

Proof. Take vθ, wθ ∈ (SR)θ. This implies that v, w ∈ SR or [u, v] = 0
and [u,w] = 0 for all u ∈ S. Now

[u, (αvθ + βwθ)θ] = ⟨u, αvθ + βwθ⟩ = α[u, v] + β[u,w] = 0.

Thus (αvθ + βwθ)θ ∈ SR or αvθ + βwθ ∈ (SR)θ which completes the
proof. □
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3. Applications: Matrix tree theorem for gain graphs
and its consequences

In [2], Seth Chaiken deals with the matrix tree theorem for signed and
gain graphs in a much more general setting. The matrix tree theorem
for signed graphs is discussed in detail by Zaslavsky [6] also. Recently,
Yi Wang et.al., [4] discussed the determinant of the Laplacian matrix
of a complex unit gain graph. In this section, we discuss another way
of dealing with the matrix tree theorem for gain graphs (of course with
gains from the multiplicative group of a field of characteristic zero)
using the transiverse operation applied to the incidence matrices.

For an oriented edge e⃗ = −−→vivk, we take vi as the tail of edge e⃗, denoted
by t(e⃗) and vk as the head of edge e⃗, denoted by h(e⃗).

The (oriented) incidence matrix of a gain graph Φ = (V, E⃗, φ) defined
as the |V | × |E| matrix H = H(Φ) = (ηve⃗) given by

ηve =


1 if t(e⃗) = v,

−(φ(e⃗))−1 if h(e⃗) = v,

0 otherwise.

Note that ηvie⃗η
θ
vk e⃗

= −φ(e⃗) whenever there is an edge e⃗ = −−→vivk ∈ E⃗

and ηvie⃗η
θ
vk e⃗

= 0 if vi or vk is not incident with the edge e⃗.

Theorem 3.1. If Φ = (G,F×, φ) is a gain graph where G = (V, E⃗),
then L(Φ) = H(Φ)H#(Φ).

Proof. Let V = {v1, v2, . . . vn} be the vertex set and E⃗ = {e⃗1, e⃗2, . . . , e⃗m}
be the edge set. Let H(Φ) = (ηvie⃗j) and H#(Φ) = (ηθvie⃗j)

T . Let us
represent each row of H(Φ) by a vector Rvi ∈ Fm. Now the (i, j)th-entry
of H(Φ)H#(Φ) = [Rvi , Rvj ] =

∑
e⃗∈E ηvie⃗η

θ
vj e⃗

.
If i = j, then this sum becomes [Rvi , Rvi ] which is the number of non-

zero elements on this row Rvi which is of course
∑

e⃗∈E⃗:vi∼e⃗ 1 = deg(vi).
If i ̸= j, since we deal with simple graphs, the sum then becomes
ηvie⃗kη

θ
vj e⃗k

. This value is −φ(e⃗k) or 0, according as e⃗k is the edge joining
vi and vj or 0, otherwise.

As such, according to the definition of the adjacency matrix, it is the
additive inverse of the (i, j)-th entry of A(Φ). Thus

H(Φ)H#(Φ) = D(Φ)− A(Φ) = L(Φ).
□

Theorem 3.2. For a gain cycle ΦC of length n,
det(H(ΦC)) = (−1)n[(φ(C))−1 − 1]
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and
det(L(ΦC)) = 2− [φ(C) + φ(C)−1]

Proof. Let C : v1e⃗2v2e⃗3v3 · · · vn−1e⃗nvne⃗1v1 be the given cycle. Note that
H(ΦC) is a square matrix of order n given by

H(ΦC) =


−(φ(e⃗1))

−1 1 0 · · · 0
0 −(φ(e⃗2))

−1 1 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · −(φ(e⃗n))

−1


Define D = diag(−φ(e⃗1),−φ(e⃗2), · · · ,−φ(e⃗n)), then

H(ΦC)D =


1 −φ(e⃗2) 0 · · · 0
0 1 −φ(e⃗3) · · · 0
· · · · · · · · · −φ(e⃗4) · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · −φ(e⃗n)

−φ(e⃗1) 0 0 · · · 1


Expanding along the first column

det(H(ΦC)D) = 1 + (−1)n−1(−1)nφ(e1)φ(e2) · · ·φ(en)
= 1− φ(C)

Therefore,
det(H(ΦC)) = (1− φ(C))(det(D))−1

= (1− φ(C))(−1)n(φ(C))−1

= (−1)n[(φ(C))−1 − 1]

Similarly D#H#(ΦC) can be computed by expanding along the first
row to get

det(D#H#(ΦC)) = 1− (φ(C))−1

which leads to the result det(H#(ΦC)) = (−1)n[φ(C)− 1].
Thus, det(L(ΦC)) = det(H(ΦC)H

#(ΦC)) = det(H(ΦC)) det(H
#(ΦC))

makes det(L(ΦC)) = 2− [φ(C) + φ(C)−1]. □
Now we define a 1-tree as a connected unicyclic graph and a

1-forest as a disjoint union of 1-trees. To see how the oriented
incidence matrix comes into real action, we define an essential
spanning subgraph Ψ of a gain graph Φ as the spanning subgraph whose
union of components form a 1-forest. i.e., a spanning 1-forest is termed



ON TRANSINVERSE OF MATRICES 143

as an essential spanning subgraph. We denote by Œ(Φ), the class
of essential spanning subgraphs of Φ. If Œ(Φ) = ∅, then we define
the sum

∑
Ψ∈Œ(Φ) to be zero. Note that if Ψ is an essential spanning

subgraph, then the incidence matrix of Ψ will be a square matrix since
|E(Ψ)| = |V (Φ)|.

The direct sum of matrices Am×n and Bp×q, denoted by A ⊕ B, is
a matrix of order (m + p) × (n + q) which is defined as the block

diagonal matrix diag(A,B). i.e., A ⊕ B = diag(A,B) =

[
A O
O B

]
. If

there are more than two matrices, say A1, A2, · · ·An, then their direct
sum is denoted by

n⊕
i=1

Ai. Note that if each constituent matrix is a

square matrix, then det(
n⊕

i=1

Ai) =
n∏

i=1

det(Ai). In the same way, we use
the notation A ⊙ B for what we call as the semidirect sum of square
matrices A and B which is an upper triangular block matrix where the
block matrices on the diagonal are still A and B and the other non-
zero block matrices in the upper triangular positions may be arbitrary.
Here also it can be seen that det(

n⊙
i=1

Ai) =
n∏

i=1

det(Ai) where each Ai is
a square matrix.

Lemma 3.3. If Φ = (G,F×, φ) is a gain graph where G = (V,E) is a
1-tree with the unique cycle C, then det(L(Φ)) = 2− [φ(C) +φ(C)−1].

Proof. Define the orientation of edges not on the cycle C as, for i < j,
the edge −→ei,j has tail t(−→ei,j) = vi and head h(−→ei,j) = vj. Then,

H(Φ) =
k⊙

i=1

Ai, k = n− l + 1

where A1 is the incidence matrix corresponding to the cycle C of length
l and the remaining Ai’s are square matrices of the form [(−φ(e))−1]
of order 1 for the edges e not on the cycle C. Thus,

det(H(Φ)) =
k∏

i=1

det(Ai) = (−1)l(C)[((φ(C))−1 − 1]
∏
e ̸∈C

(−φ(e))−1

Similarly

det(H#(Φ)) = (−1)l(C)[φ(C)− 1]
∏
e ̸∈C

(−φ(e))

Thus we get, det(L(Φ)) = 2− [φ(C) + φ(C)−1]. □
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Lemma 3.4. If Φ = (G,F×, φ) is a gain graph where G = (V,E) is
a 1-forest, then det(L(Φ)) =

∏
C∈Ψ(2 − [φ(C) + φ(C)−1]), where the

product is taken over all the component 1-trees Ψ of Φ.
Proof. By suitably relabelling the vertices and edges, if necessary, the

incidence matrix H(Φ) can be brought into the form
k⊕

i=1

Hi where each
Hi is the incidence matrix of the corresponding 1-tree component of
the 1-forest and k is the number of components of the forest. Then

det(H(Φ)) =
k∏

i=1

det(Hi). To complete the proof it is enough to apply
Lemma 3.3 above. □
Lemma 3.5. Let Φ = (G,F×, φ) be a gain graph on n vertices and Ψ be
a spanning subgraph of Φ having exactly n edges. Then det(L(Ψ)) ̸= 0
implies Ψ is an essential spanning subgraph of Φ.
Proof. Let Ψ be a spanning subgraph of Φ having exactly n = V (Φ)
edges and let det(L(Ψ)) ̸= 0. To prove that Ψ is an essential spanning
subgraph of Φ, we have to prove that the components of Ψ are 1-trees.
By a suitable reordering of the vertices and edges, the matrix L(Ψ) can

be brought to the form
k⊕

i=1

Li where Li corresponds to the components

of Ψ. Thus, det(L(Ψ)) =
k∏

i=1

det(Li)).

If Ψ contains an isolated vertex, then the matrix L(Ψ) has a zero row
which implies det(L(Ψ)) = 0, and if some component is a tree for some
i, then also det(Li)) = 0 which implies det(L(Ψ)) = 0. Hence, both
these cases lead to a contradiction.
Thus we have to prove that if Ak is a component of Ψ, then Ak have
same number of edges and vertices.
Suppose Ak, for some k, has p vertices and p + t edges where t ≥ 1.
Then the n − p vertices and n − p − t edges not in Ak form either a
tree or a disconnected graph having trees as components. Both these
cases lead to det(L(Ψ)) = 0, a contradiction. Hence the fact that all
the components of Ψ have same number of edges and vertices gives
the conclusion that the components of Ψ are 1-trees. That is, Ψ is an
essential spanning subgraph of Φ. □

Now the stage is set to have yet another version of the matrix tree
theorem for gain graphs.
Theorem 3.6. If Φ = (G,F×, φ) is a connected gain graph, then

det(L(Φ)) =
∑

Ψ∈Œ(Φ)

∏
C∈Ψ(2− [φ(C) + φ(C)−1]).
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Proof. By Theorem 3.1, det(L(Φ)) = det(H(Φ)H#(Φ)) which on
applying Binet-Cauchy theorem and Lemma 3.5 becomes,

det(L(Φ)) =
∑

Ψ∈Œ(Φ)

det(H(Ψ)) det(H#(Ψ))

=
∑

Ψ∈Œ(Φ)

det(L(Ψ))

=
∑

Ψ∈Œ(Φ)

∏
C∈Ψ

(2− [φ(C) + φ(C)−1]).

by using Lemma 3.3 and Lemma 3.4. □

3.1. Characterization of balance in connected gain graphs. Be-
fore we attempt at general results, the following two lemmas are easy
to prove for the trees and the 1-trees. Note that the defintion of the
rank of a matrix A, denoted by rank(A), is the order of largest non-zero
minor of A. i.e., the order of the largest square submatrix of A having
non-zero determinant.

Theorem 3.7. Let Φ = (G,F×, φ) be a connected unbalanced gain
graph of order n. Then rank(H(Φ)) = n and rank(H#(Φ)) = n.

Proof. Let C = v1e⃗1v2e⃗2 . . . e⃗lv1 be the unbalanced cycle in Φ of length
l, (3 ≤ l ≤ n) in Φ. Since C is unbalanced, φ(C) ̸= 1. Now choose
a spanning 1-tree subgraph, say Ψ, of Φ with C as the unique cycle.
Such a selection is possible since Φ is connected. By suitable labeling
of vertices and edges, let ⃗el+1, . . . , e⃗n be the remaining edges in Ψ such
that for i < j, the edge e = −−→vivj has tail t(e⃗) = vi and head h(e⃗) = vj.

Now consider the n×n submartix of H(Ψ) obtained by the columns
corresponding to the edges in Ψ. Then a simple computation of the
determinant gives

det(L(Ψ)) = (−1)l(C)[((φ(C))−1 − 1]
∏
e̸∈C

(−φ(e))−1

which is not equal to 0, where l(C) denotes the length of the cycle C.
This implies, rank(H(Ψ)) = n and hence rank(H(Φ)) = n. In a similar
way,

det(H#(Φ)) = (−1)l(C)[φ(C)− 1]
∏
e̸∈C

(−φ(e)) ̸= 0

which implies, rank(H#(Φ)) = n. □
Theorem 3.8. Let Φ = (G,F×, φ) be a connected balanced gain graph
of order n. Then rank(H(Φ)) = n− 1 and rank(H#(Φ)) = n− 1.
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Proof. Since Φ is connected, we can consider a spanning tree of order
n− 1 of Φ and prove in a similar way as that of the above. □

The above results actually prove the following result found in [5] in a
different way where b(Φ) denotes the number of balancing components
in the gain graph Φ. In our discussion we deal with connected gain
graphs and as such b(Φ) is either zero or 1 according as Φ is unbalanced
or balanced.

Lemma 3.9 ([5],Theorem 2.1). rank(H(Φ)) = n− b(Φ).

Theorem 3.10. If Φ = (G,F×, φ) is a connected gain graph, then it
is balanced if and only if det(L(Φ)) = 0.

Proof. If Φ is balanced, then every cycle C in Φ satisfies the condition
that 2 − [φ(C) + (φ(C))−1] = 0, hence the matrix tree theorem gives
det(L(Φ)) = 0. Conversely, assuming that det(L(Φ)) ̸= 0 implies that
rank(L(Φ)) = n and hence rank(H(Φ)) = n implying that b(Φ) = 0
using the formula in Lemma 3.9 and it in turn gives Φ is unbalanced
in this case. □
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ON TRANSINVERSE OF MATRICES AND
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آن کاربردهای و ماتریسها تراوارون باب در

راماکریشنان٢ اوتایوت ک. و حمید١ شاهول ک.

هند کرالا، کانور، ،K M M دولتی زنان کالج ریاضیات، ١,٢گروه

نشان داده ،A تراوارون صفر، مشخصه ی با میدان یک از درایه ها با A شده داده ماتریس یک ازای به
وارون شان با ناصفر درایه های جایگزینی با A از حاصل ماتریس ترانهاده ی عنوان به ،A# توسط شده
با را ماتریسی عملگر این ویژگی های می شود. تعریف وجود، صورت در صفر، درایه های تغییر عدم و
گراف های برای ماتریسی درخت نام آشنای قضیه ی مهم کاربردی عنوان به و و کرده بررسی و بحث جزئیاتی
تعادل از مشخص سازی ای بازدید این از آنی نتیجه ای کرد. خواهیم بازدید را سوددار یالی) (برچسب دار

است. گراف ها لاپلاسی ماتریس از استفاده با همبند سوددار گراف های

لاپلاسی. گراف گراف، ویژه مقادیر علامت دار، گراف سوددار، گراف کلیدی: کلمات
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