Implementation of Space-Borne Optical Data and Field Investigation for Geo-structural Mapping of an Interior Rift Basin: A Case Study from Kharit Area, Southeastern Desert, Egypt1037 | ||
Journal of Mining and Environment | ||
مقاله 1، دوره 14، شماره 4، دی 2023، صفحه 1037-1059 اصل مقاله (7.97 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2023.12739.2327 | ||
نویسندگان | ||
Ahmed Abdelhalim1؛ Islam Abuelella2؛ Shawky M Sakran1؛ Said Mohamed Said* 1 | ||
1Geology Department, Cairo University, Faculty of Science, Giza, Egypt. | ||
2Quality standard information technology, Egypt. | ||
چکیده | ||
Kharit basin is an interior Cretaceous rift basin hosted in a Precambrian basement complex of the Arabian-Nubian shield. Satellite images and potential geophysical data previously outlined the basin without a detailed field study. Kharit area is a remote and hyper-arid area; therefore, the application of remote sensing is essential for completing the process of its geo-structural mapping. A multi-spectral optical dataset of the Landsat-8 and high-resolution images of Google Earth was integrated with the field investigation to classify the lithological units and define structures. That integration between analyzed satellite images and field investigations led to a geological map of a minimum scale of 1:50,000 for the lithological rock units and a maximum scale of up to 1:7000 for the structural mapping. The map shows an elongated NW-oriented rift basin filled by a thick deposit of Cretaceous sequences bounded from the east, west, and south by Proterozoic igneous and metamorphic rocks. Additionally, rift-related volcanic rocks were mapped along the western border fault system of the basin. The main mapped faults were delineated in three trends, NW-SE, WNW-ENE, and N-S, while several folds of NW orientations are developed as a normal drag of the main bounding faults. The Early Cretaceous extension along inherited Precambrian lineaments propagated this fault pattern and its associated folds. These structural elements configured the studied area architecture as several grabens with thick Cretaceous sequences. | ||
کلیدواژهها | ||
Kharit basin؛ Landsat-8؛ rift structure؛ cretaceous tectonics؛ multispectral optical dataset | ||
مراجع | ||
[1]. Stern, R. J. (1985). The Najd fault system, Saudi Arabia and Egypt: A late Precambrian rift‐related transform system?. Tectonics, 4(5), 497-511.
[2]. Sultan, M., Arvidson, R. E., & Sturchio, N. C. (1986). Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology, 14(12), 995-999.
[3]. Zoheir, B., & Lehmann, B. (2011). Listvenite–lode association at the Barramiya gold mine, Eastern Desert, Egypt. Ore Geology Reviews, 39(1-2), 101-115.
[4]. Ali, K. (2013). Geophysical Studies on Wadi Hodein Basin. PhD. Faculty of Science, Al-Azhar University, Cairo, Egypt, 203 p.
[5]. Aboelkhair, H., Abdelhalim, A., Hamimi, Z., & Al-Gabali, M. (2020). Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, Southeastern Desert, Egypt. Arabian Journal of Geosciences, 13, 1-20.
[6]. Abdelhalim, A., Aboelkhair, H., Hamimi, Z., & Al-Gabali, M. (2020). Mapping lineament features using GIS approaches: case study of Neoproterozoic basement rocks in the South-Eastern Desert of Egypt. Arabian Journal of Geosciences, 13, 1-14.
[7]. Gobashy, M. M., Eldougdoug, A., Abdelazeem, M., & Abdelhalim, A. (2021). Future development of gold mineralization utilizing integrated geology and aeromagnetic techniques: A case study in the Barramiya Mining District, Central Eastern Desert of Egypt. Natural Resources Research, 30, 2007-2028.
[8]. Abdeen, M. M., Ramadan, F. S., Nabawy, B. S., & El Saadawy, O. (2021). Subsurface structural setting and hydrocarbon potentiality of the Komombo and Nuqra Basins, South Egypt: a seismic and petrophysical integrated study. Natural Resources Research, 30(5), 3575-3603.
[9]. Gobashy, M. M., Abbas, E. A. S., Soliman, K. S., & Abdelhalim, A. (2022). Mapping of gold mineralization using an integrated interpretation of geological and geophysical data—A case study from West Baranes, South Eastern Desert, Egypt. Arabian Journal of Geosciences, 15(22), 1692.
[10]. Ali, M., Ali, M. Y., Abdelhady, A., & Fairhead, J. D. (2022). Tectonic evolution and subsidence history of the Cretaceous basins in southern Egypt: The Komombo Basin. Basin Research, 34(5), 1731-1762.
[11]. Mahmoud, Deemah Saad, Ahmed Ali Madani, Said Mohamed Said, Mohamed Mokhtar Yehia, and Tamer Nassar. 2023. “Change Detection of Surface Water of Atfih Spring by Integrated Effect of Rainfall Storms and Geological Structures Using Landsat Data.” Journal of Mining and Environment 14 (1): 79–96. https://doi.org/10.22044/jme.2023.12516.2272.
[12]. Eldougdoug, A., Abdelazeem, M., Gobashy, M., Abdelwahed, M., Abd El-Rahman, Y., Abdelhalim, A., & Said, S. (2023). Exploring gold mineralization in altered ultramafic rocks in south Abu Marawat, Eastern Desert, Egypt. Scientific Reports, 13(1), 7293.
[13]. El Gammal, E. S. A., Salem, S. M., & Greiling Reinhard, O. (2013). Geology, Morphotectonics And Geophysical Interpretation Of Wadi Garara Graben, East Aswan Egypt, Using Landsat Images. Australian Journal of Basic and Applied Sciences, 7(1), 263-277.
[14]. Gobashy, M. M., Eldougdoug, A., Abdelwahed, M., Abdelazeem, M., Abd El-Rahman, Y., Abdelhalim, A., & Said, S. (2023). Role of Integrated Magnetics and Geology in Tracking and Exploring Complex Structures Controlling Gold Mineralization. Example from the Fawakheir-Atalla Gold Prospects, Eastern Desert, Egypt. Pure and Applied Geophysics, 1-31.
[15]. Hammad, M. A. (1975). Geological map of Egypt. Appendix 1. Soil Survey Papers no. 11.
[16]. Egyptian Geological Survey and Mining Authority (EGSMA), (1981), Baranis Quadrangle map, scale 1:250000
[17]. Egyptian General Petroleum Corporation-Conoco Coral, 1987. Geological map of Egypt, Scale (1:500,000). Cairo, Egypt.
[18]. Egyptian Geological Survey and Mining Authority (EGSMA), 1996, Geological map of Egypt, scale (1:100,000). Cairo.
[19]. Mostafa, A., Sehim, A., & Farouk, O. (2016). Hydrocarbon assessments of interior Cretaceous rift basins, upper Egypt. In The proceeding 8th Mediterranean Offshore Conference (MOC), Alexandria, Egypt.
[20]. Abdeen, M. M., Ramadan, F. S., Nabawy, B. S., & El Saadawy, O. (2021). Subsurface structural setting and hydrocarbon potentiality of the Komombo and Nuqra Basins, South Egypt: a seismic and petrophysical integrated study. Natural Resources Research, 30(5), 3575-3603.
[21]. Stern, R. J., Gottfried, D., & Hedge, C. E. (1984). Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology, 12(3), 168-172.
[22]. Shackleton, R. M. (1986). Precambrian collision tectonics in Africa. Geological Society, London, Special Publications, 19(1), 329-349.
[23]. El-Bialy, M. Z. (2020). Precambrian basement complex of Egypt. The geology of Egypt, 37-79.
[24]. Greiling, R. O., Abdeen, M. M., Dardir, A. A., El Akhal, H., El Ramly, M. F., El Din Kamal, G. M., ... & Sadek, M. F. (1994). A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geologische Rundschau, 83, 484-501.
[25]. Dolson, J. C., Shann, M. V., Hammouda, H. A. S. S. E. I. N., Rashed, R. A. S. H. E. D., & Matbouly, S. A. Y. E. D. (1999). The petroleum potential of Egypt. AAPG Bulletin, 83(12).
[26]. Said, S. M., & Sakran, S. (2020). Structural analysis and tectonic evolution of the Komombo basin, south Egypt; an example of interior Cretaceous rift. Journal of African Earth Sciences, 162, 103719.
[27]. Said, S. (2013, June). The Influence of the Late Cretaceous–Early Tertiary Fold Structures on the Geometry and Evolution of Extensional Fault. In 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013 (pp. cp-348). European Association of Geoscientists & Engineers.
[28]. Ibrahim, S., Massironi, M., Zampieri, D., Sakran, S., & Ninfo, A. (2016, May). Strike-slip Structure and Kinematics of the Nubian Faults, South Egypt. In 78th EAGE Conference and Exhibition 2016 (Vol. 2016, No. 1, pp. 1-3). European Association of Geoscientists & Engineers.
[29]. Sakran, S., & Said, S. M. (2018). Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults. Journal of Structural Geology, 107, 93-108.
[30]. Said, S. M., & Sakran, S. (2022). Geometry and kinematics of right‐lateral transpressional faults and growth folds, the western side of the Gulf of Suez, Egypt. Geological Journal, 57(1), 276-291.
[31]. Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
[32]. Matthew, M. W., Adler-Golden, S. M., Berk, A., Richtsmeier, S. C., Levine, R. Y., Bernstein, L. S., ... & Miller, D. P. (2000, August). Status of atmospheric correction using a MODTRAN4-based algorithm. In Algorithms for multispectral, hyperspectral, and ultraspectral imagery VI (Vol. 4049, pp. 199-207). SPIE.
[33]. El-Meselhy, A., Abdelhalim, A., & Nabawy, B. S. (2020). Geospatial analysis in groundwater resources management as a tool for reclamation areas of New Valley (El-Oweinat), Egypt. Journal of African Earth Sciences, 162, 103720.
[34]. Roy, S. S., & Singh, C. K. (2018). Evaluation of spectral mapping methods of mineral aggregates and rocks along the thrust zones of Uttarakhand using hyperion data. In Geospatial Applications for Natural Resources Management (pp. 251-274). CRC Press.
[35]. Laben, C. A., & Brower, B. V. (2000). U.S. Patent No. 6,011,875. Washington, DC: U.S. Patent and Trademark Office.
[36]. Salem, S. M., & El Gammal, E. A. (2015). Iron ore prospection East Aswan, Egypt, using remote sensing techniques. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 195-206.
[37]. Amusuk, D. J., Hashim, M., Pour, A. B., & Musa, S. I. (2016). Utilization of landsat-8 data for lithological mapping of basement rocks of plateau state north central nigeria. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 335-337.
[38]. Harrisgeospatial (2018). The Many Band Combinations of Landsat 8. [online] Available at: http://www.harrisgeospatial.com/Support/SelfHelpTools/HelpArticles/HelpArticles-Detail/TabId/2718/ArtMID/10220/ArticleID/15691/The-Many-Band-Combinations-of-Landsat-8.aspx. https://doi.org/10.1007/s11053-021-09824-6.
[39]. Sayed, F., Hammed, M. S. H., Shided, A. G., & Hussein, A. W. (2023). Implementation of Remote Sensing Techniques in Structural and Lithological Mapping of Northwestern Margin of Red Sea, Egypt. Journal of Mining and Environment, 14(2), 389-411.
[40]. Liu, J.G., and Mason, P.J., (2013). Essential image processing and GIS for remote sensing. John Wiley & Sons.
[41]. CCMEO "Canada Centre for Mapping and Earth Observation", 2013. Image Classification and Analysis. [online] Available at: https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/image-interpretation-analysis/image-classification-and-analysis/9361.
[42]. Rajendran, S. (Ed.). (2009). Hyperspectral remote sensing and spectral signature applications. New India Publishing.
[43]. CCMEO "Canada Centre for Mapping and Earth Observation", 2015. Elements of Visual Interpretation. [online] Available at: https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/image-interpretation-analysis/elements-visual-interpretation/9291. | ||
آمار تعداد مشاهده مقاله: 315 تعداد دریافت فایل اصل مقاله: 501 |