A Predictive GIS Model for Mapping Gold and Copper-bearing Alteration zones at South Gabal Um Monqul and Gabal Al Kharaza Prospects, North Eastern Desert, Egypt | ||
Journal of Mining and Environment | ||
مقاله 12، دوره 14، شماره 4، دی 2023، صفحه 1239-1260 اصل مقاله (3.68 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22044/jme.2023.13406.2473 | ||
نویسندگان | ||
Abdallah Atef* 1؛ Ahmed A. Madani1؛ Adel A. Surour1، 2؛ Mokhles K. Azer3 | ||
1Department of Geology, Faculty of Science, Cairo University, Giza, Egypt. | ||
2Department of Geological Sciences, Faculty of Science, Galala University, New Galala City, Egypt. | ||
3Department of Geological Sciences, National Research Centre, Giza, Dokki, Egypt. | ||
چکیده | ||
This study reports the application of remote sensing data and knowledge-driven GIS modeling to provide favorability maps for gold and copper mineralized areas. The South Gabal Um Monqul (SGUM) and the Gabal Al Kharaza (GKZ) prospects located in the northern Eastern Desert of Egypt are the targets for the present study. Four thematic layers (lithology maps, old trenches buffer analysis, lineament density maps, and alteration zone maps) were prepared and used as inputs for a weighted overlay GIS model. Combined results from false color composite images, particularly the RGB parameters (PC2, PC1, and PC3) and the RGB parameters (MNF1, MNF2, and MNF3) classified the host rocks in both prospects. PCA-based extraction of lineaments was considered using line algorithm of PCI Geomatica. QuickBird band math (G+B), (R+G), and (G-B) for RGB was successful in delineating ancient workings within the mineralized zones. Old trenches layers were buffered to 20 m wide bands extending in all directions. Landsat-8 band ratios imagery (6/5 * 4/5, 6/7, and 6/2) in red, green, and blue (RGB) is potent in defining alteration zones that host gold and copper mineralizations. Acceptable scores of 30%, 30%, 20%, and 20% were assigned for the alteration zone maps, ancient workings buffer analysis, lithology maps and lineament density maps, respectively. Two favorability maps for mineralizations were generated for the SGUM and GKZ prospects. Validation of these maps and their potential application to detect new mineralization sites in the northern Eastern Desert were discussed. | ||
کلیدواژهها | ||
remote sensing؛ GIS analysis؛ gold and copper mineralization؛ Favorability maps؛ knowledge-driven method | ||
مراجع | ||
[1]. Zhang, X., Pazner, M., & Duke, N. (2007). Lihologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). Journal of Photogrammetry and Remote Sensing, 62, 271-282.
[2]. Madani, A., & Harbi, H. (2012). Spectroscopy of the mineralized tonalite–diorite intrusions, Bulghah gold mine area, Saudi Arabia: effects of opaques and alteration products on FieldSpec data. Ore Geology Reviews, 44, 148–157.
[3]. Han, T., & Nelson, J. (2015). Mapping hydrothermally altered rocks with Landsat 8 imagery: a case study in the KSM and Snowfield zones, northwestern British Columbia. In: Geological Fieldwork 2014, British Columbia Ministry of Energy and Mines. British Columbia of Geological Survey Paper, 1, 103–112.
[4]. Pour, A.B., & Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9, 155-166.
[5]. Moradi, M., Basiri, S., Kananian, A., & Kabiri, K. (2015). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Informatics, 8 (1), 197-205.
[6]. Gahlan, H., & Ghrefat, H. (2018). Detection of gossan zones in arid regions using Landsat-8 OLI data: implication for mineral exploration in the Eastern Arabian Shield, Saudi Arabia. Natural Resources Research, 27 (1), 109-124.
[7]. Safari, M., Maghsoudi, A., & Pour, A.B. (2018). Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e- Babak, Kerman, south of Iran. Geocarto International, 33(11), 1186-1201.
[8]. Pour, A.B., Hashim, M., Park, Y., & Hong, J.K. (2018). Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International, 33 (12), 1281-1306.
[9]. Sultan, M., Arvidson, R.E., & Sturchio, N.C. (1986). Mapping of serpentinites in the Eastern Desert of Egypt using Landsat thematic mapper data. Geology, 14, 995-999.
[10]. Madani, A. (2001). Geological studies and remote sensing applications on Wadi Natash volcanic, Eastern Desert, Egypt. Ph.D. thesis, Faculty of Science, Cairo University.
[11]. Madani, A. (2003). Evaluation of the Fusion of Landsat Thematic Mapper Imagery and Scanned Aerial Photograph for Mapping the Trachytic ring dykes, Wadi Natash area, South Eastern Desert, Egypt. 5th International Conference on Geology of the Middle East, 509-517.
[12]. Ramadan, T.M. & Kontny, A. (2004). Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert of Egypt. Journal of African Earth Sciences, 40, 89-99.
[13]. Gad, S., & Kusky, T. (2007). ASTER spectral rationing for lithological mapping in the Arabian– Nubian Shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11 (3), 326-335.
[14]. Gabr, S.S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38 (1-2), 59-69.
[15]. Madani, A., & Emam, A.A. (2011). SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, southeastern desert, Egypt. Arabian Journal of Geosciences, 4(1), 45-52.
[16]. Amer, R., Kusky, T., & El Mezayen, A. (2012). Remote sensing detection of gold-related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1), 121-134.
[17]. Abou El-Magd, I., Mohy, H., & Basta, F. (2015). Application of remote sensing for gold exploration in the Fawakhir area, Central Eastern Desert of Egypt. Arabian Journal of Geosciences, 8(6), 3523–3536.
[18]. Salem, S.M., El Sharkawi, M.A., El-Alfy, M.Z., & Ahmed, S.E. (2018). The use of ASTER data and geochemical analyses for the exploration of gold in the Samut area, South Eastern Desert of Egypt. Arabian Journal of Geosciences, 11, 541.
[19]. Abu El-Leil, I., Soliman, N.M.A., Bekiet, M. H., & Elhebiry, M.S. (2019). Enhancing multispectral remote sensing data interpretation for historical gold mines in Egypt: a case study from Madari gold mine. Arabian Journal of Geoscience,12(1),1-10.
[20]. Nykanen, V., Groves, D.I., Ojala, V.J., Eilu, P., & Gardoll, S.J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper-Gold deposits in the northern Fennoscandian shield, Finland. Australian Journal of Earth Sciences, 55(1), 25-38.
[21]. Madani, A. (2011). Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. Egypt. Journal of Remote Sensing and Space Sciences, 14(2), 91-97.
[22]. Magalhães, L.A. & Souza Filho, C.R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys in Geophysics, 33(2), 211-241.
[23]. Lusty, P.A.J., Scheib, C., Gunn, A.G., & Walker, A.S.D. (2012). Reconnaissance-scale prospective analysis for gold mineralization in the Southern Uplands-Down-Longford Terrane, Northern Ireland. Natural Resources Research, 21(3), 359-382.
[24]. Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada's north. Ore Geology Reviews, 71, 788-803.
[25]. Yousefi, M., Carranza, E. J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J. M., & Mihalasky, M.J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[26]. Botros, N.S. (2015). Gold in Egypt does the future get worse or better? Ore Geology Review, 67, 189-207.
[27]. Tawab, M.A., Castel, G., Pouit, G., & Ballet, P. (1990). Archéo-géologie des ancienne mines de cuivre et d'or des régions El-Urf/Mongul-Sud et Dara Ouest. Bulletin De L'institut Français D'Archéologie Orientale, 90, 359-364.
[28]. Klemm, D., Klemm, R., & Murr, A. (2001). Gold of the Pharaohs–6000 years of gold mining in Egypt and Nubia. Journal of African Earth Sciences, 33, 643-659.
[29]. Osman, A. (1994). Native Gold Mineralization Associated with Iron Oxides, Mongul Area, northern Eastern Desert, Egypt. Middle East Research Center. Ain Shams University, Earth Science Series,74-87.
[30]. Botros, N., & Wetait, M. (1997). Possible porphyry copper mineralization in south Um Monqul, Eastern Desert, Egypt. Egyptian Journal of Geology, 41(1),175-196.
[31]. Fletcher, R.J. (2009). SMW Gold Limited NI 43-101 Technical Report on the Um Balad/ ElUrf Exploration Concession Area in Egypt (Behre Dolbear Project Number J09-107).
[32]. Breitkreuz, C., Eliwa, H., Khalaf, I., El Gameel, K., Bühler, B., & Sergeev, S. (2010). Neoproterozoic SHRIMP U–Pb zircon ages of silica-rich dokhan volcanics in the north Eastern Desert, Egypt. Precambrian Research, 182(3),163-174.
[33]. Eliwa, H., Breitkreuz, C., Murata, M., Khalaf, I., Bühler, B., Itaya, T., Takahashi, T., Hirahara, Y., Miyazaki, T., & Kimura, J. (2014). SIMS zircon U–Pb and mica K–Ar geochronology, and Sr–Nd isotope geochemistry of Neoproterozoic granitoids and their bearing on the evolution of the north Eastern Desert, Egypt. Gondwana Research, 25(4), 1570-1598.
[34]. Azzaz, S.A., Kharbish, S., & El-Alfy, H.M. (2015). Geological and geochemical investigations on Hammamat molasse sediments, G. Kharaza, Eastern Desert, Egypt. Acta Universitatis Matthiae Belii, Seria Environmental Manazerstov, 2, 7-28.
[35]. Abd El-Rahman, Y., Seifert, T., Gutzmer, J., Said, A., Hofmann, M., G¨artner, A., & Linnemann, U. (2017). The South Um Mongol Cu-Mo-Au prospect in the Eastern Desert of Egypt: from a mid-Cryogenian continental arc to Ediacaran post-collisional appetite-high Ba-Sr monzogranite. Ore Geology Reviews, 80, 250-266.
[36]. Abd El-Rahman, Y., Seifert, T., & Said, A. (2018). The South Um Mongol Cu-Mo-Au prospect in the northern Eastern Desert of Egypt: Tonian porphyry-style mineralization with an Ediacaran hydrothermal iron oxide overprint. Ore Geology Reviews, 99, 217-234.
[37]. El-Desoky, H.M. & Hafez, H.M. (2018). Petrology, Geochemistry, and Mineralogy of the Hydrothermally Altered Rock Units at Wadi Dara. north Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, 103-140.
[38]. Kochine, G. G., & Bassuni, F. A. (1968) Mineral resources of the U.A.R.: Part I. Metallic minerals: Internal Report, Geological Survey of Egypt, 305-436.
[39]. El-Wardany, R., & Jiao, J. (2023). Perspective Chapter: History and Classification of Gold Mineralization in Egypt. In: M.T. Aide, Rare Earth Elements- Emerging Advances, Technology Utilization, and Resource Procurement, IntechOpen, Chapter 3, https://doi.org/10.5772/intechopen.110042.
[40]. Ferrier, G., White, K., Griffiths, G., & Bryant, R. (2002). The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23(2), 341-356.
[41]. Crosta, A.P., Souza Filho, C.R., Azevedo, F., & Bro- die, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233-4240.
[41]. Liu, L., Zhou, J., Jiang, D., Zhuang, D., Mansaray, L. R., & Zhang, B. (2013). Targeting mineral resources with remote sensing and field data in the Xiemisitai area, West Junggar, Xinjiang, China. Remote sensing, 5(7), 3156-3171.
[43]. Ali, A. S., & Pour, A. B. (2014). Lithological mapping and hydrothermal alteration using Landsat-8 data: a case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3) 199.
[44]. Pour, A., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42, 1309-1323.
[45]. Baumgartner, A., Ateger, C., Mayer, H., Eckstein, W., & Ebner, H. (1999). Automatic road extraction based on multi-scale, grouping, and context. Photogrammetric Engineering and Remote Sensing, 65, 777–785.
[46]. Madani, A. (2002). Selection of the optimum Landsat TM bands for lineament extraction, wadi Natash area, South Eastern Desert, Egypt. Asian Journal of Geoinformatics, 3, 71-76.
[47]. Arnous, M.O., ElMowafy, A.A., Azzaz, S.A., Omar, A.E., & Abdel Hafeez, W.M. (2021). Exploration radioactive mineralization using mappable data integration approach: an example from Wadi Dahab area, Southeastern Sinai, Egypt. Arabian Journal of Geosciences, 14,1-23.
[48]. Gabr, S.S., Sadek, M.F., & Hassan, S.M. (2015). Prospecting for new gold-bearing alteration zones in the El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geology Reviews, 71, 1–13.
[49]. Salem, S.M., El Sharkawi, M.A., El-Alfy, M.Z., Soliman, N.M., & Ahmed, S.E. (2016). Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses. Journal of African Earth Sciences, 117, 389-400.
[50]. Gupta, R.P. (2003). Remote sensing geology, Springer, Heidelberg, 438.
[51]. Fotze, Q.M.A., Lordon, A.E.D., Penaye, J., Sep, J.P., & Fru, M.I.N. (2019). Mapping hydrothermal alteration targets from Landsat 8 OLI/TIRS and magnetic data using digital image processing techniques in Garoua, north Cameroon. Geoscience, 7(1), 28-41.
[52]. Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., & Sutley, S.J. (2007). USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231. http://speclab.cr.usgs.gov/spectral-lib.html.
[53]. EMRA (2013). Geological and geochemical Exploration of gold and copper deposits in basement rocks at Wadi Dara and in sedimentary rocks at Wadi Araba, north Eastern Desert, Egypt. Internal Report (expedition No. G2-2013), Exploration Department, the Egyptian Mineral Resources Authority, 124.
[54]. Gabr, S.S., Diab, H., Abdel Fattah, T.A., Sadek, M.F., Khalil, I.K., & Youssef, M.A.S. (2022). Aeromagnetic and Landsat-8 data interpretation for structural and hydrothermal alteration mapping along the Central and Southern Eastern Desert boundary, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 11-20.
[55]. Elkhateeb, S.O., & Eldosouky, A.M. (2016). Detection of Porphyry Intrusions Using Analytic Signal (AS), Euler Deconvolution, and Center for Exploration Targeting (CET) Technique Porphyry Analysis at Wadi Allaqi Area, South Eastern Desert, Egypt. International Journal for Science and Engineering Research, 7(6), 471-477.
[56]. Eldosouky, A.M., Sehsah, H., Elkhateeb, S.O., & Pour, A.B. (2020). Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani suture zone, South Eastern Desert, Egypt. Advances in Space Research, 65, 1008-1024. | ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 443 |