SOME RESULTS ON ORDERED AND UNORDERED FACTORIZATION OF A POSITIVE INTEGER | ||
Journal of Algebraic Systems | ||
دوره 12، شماره 2، فروردین 2025، صفحه 257-267 اصل مقاله (150.91 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2023.12044.1618 | ||
نویسندگان | ||
Daniel Yaqubi* 1؛ Madjid Mirzavaziri2 | ||
1Department of Computer science, University of Torbat e Jam, Torbat e Jam, Iran. | ||
2Department of Pure Mathematics, University of Ferdowsi, Mashhad, Iran. | ||
چکیده | ||
A well-known enumerative problem is to count the number of ways a positive integer $n$ can be factorised as $n=n_1\times n_2\times\cdots\times n_{k}$, where $n_1\geqslant n_2 \geqslant \cdots \geqslant n_{k} >1$. In this paper, we give some recursive formulas for the number of ordered/unordered factorizations of a positive integer $n$ such that each factor is at least $\ell$. In particular, by using elementary techniques, we give an explicit formula in cases where $k=2,3,4$. | ||
کلیدواژهها | ||
Multiplicative partition function؛ Set partitions؛ Partition function؛ Perfect square؛ Euler's Phi function | ||
مراجع | ||
1. S. Barati, B. Bényi, A. Jafarzaded and D. Yaqubi, Mixed restricted Stirling numbers, Acta Math. Hungar., 158 (2019), 159–172.
2. R. E. Canfield, P. Erdos and C. Pomerance, On a problem of Oppenheim concerning factorisatio numerorum, J. Number Theory, 17(1) (1983), 1–28.
3. V. C. Harris and M. V. Subbarao, On product partitions of integers, Canad. Math. Bull., 34(4) (1991), 474–479.
4. A. Knopfmacher and M. E. Mays, A survey of factorization counting functions, Int. J. Number Theory, 1(4) (2005), 563–581.
5. P. A. MacMahon, Memoir on the theory of the compositions of numbers, Philos. Trans. Roy. Soc. London (A), 184 (1893), 835–901.
6. L. E. Mattics and F. W. Dodd, Estimating the number of multiplicative partitions, Rocky Mountain J. Math., 17(4) (1987), 797–813.
7. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
8. D. Yaqubi, M. Mirzavaziri and Y. Saeednezhad, Mixed r-Stirling number of the second kind, Online J. Anal. Comb., 11 (2016), 5 | ||
آمار تعداد مشاهده مقاله: 403 تعداد دریافت فایل اصل مقاله: 561 |