AN IDENTITY RELATED TO θ-CENTRALIZERS IN SEMIPRIME RINGS | ||
Journal of Algebraic Systems | ||
دوره 12، شماره 2، فروردین 2025، صفحه 367-377 اصل مقاله (124.89 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2023.11856.1607 | ||
نویسنده | ||
Abbas Zivari-Kazempour* | ||
Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran. | ||
چکیده | ||
Let $R$ be a $ 2$-torsion-free semiprime ring and $\theta$ be an epimorphism of $R$. In this paper, under special hypotheses, we prove that if $T: R\longrightarrow R$ is an additive mapping such that $$ T(xyx)=θ(x)T(y)θ(x), $$ holds for all $x, y\in R$, then $T$ is a $θ$-centralizer either $R$ is unital or $θ(Z(R))=Z(R)$. | ||
کلیدواژهها | ||
semiprime ring؛ centralizer؛ $\theta$-centralizer؛ epimorphism | ||
مراجع | ||
1. E. Albas, On τ-centralizers of semiprime rings, Sib. Math. J., 48(2) (2007), 191–196.
2. M. N. Daif and M. S. Tammam El-Sayiad, On centralizers of semiprime rings (II), St. Petersburg Math. J., 21(1) (2010), 43–52.
3. H. Gahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc., 38(1) (2015), 155–164.
4. J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin., 40 (1999), 447–456.
5. J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolin., 42(2) (2001), 237–245.
6. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32(4) (1991), 609–614. | ||
آمار تعداد مشاهده مقاله: 323 تعداد دریافت فایل اصل مقاله: 284 |