- Warren, J. (2016). Evaporites: A Geological Compendium. 2nd edition, Springer Internal Publication Switzerland, 1813.
- El-Kammar, A., Surour, A., El-Sharkawi, M., & Khozyem, H. (2020). Mineral Resources in Egypt (II): Non- metallic Ore Deposits In Hamimi, et al. The Geology of Egypt. Springer, USA, 589-634.
- Said, R. (1990). The geology of Egypt. 1st edition, Taylor and Francis international publication, London, 734.
- Pandey, S. (1985). Principles and applications of photogeology. John Wiley and Sons, 366.
- Nguyen, N. (2010). Estimation of Above Ground Biomass In Tropical Forest Using Sar Data- A Case Study In Afram Headwaters Forest, Ghana, International Institute for Geo-information Science and Earth Observation. Dissertation (MD in Geology, International Institute for Geo-information Science and Earth Observation), 92.
- Öztan, S. & Süzen, L. (2011). Mapping evaporite minerals by Aster. International Journal of Remote Sensing, 32, 1651-1673.
- Orti-Cabo, F. (1976). An approach to the petrographical study of secondary gypsum microstructures and their origin. Dissertation (Diploma in sedimentary petrology, DJC, Imperial College, London), 140.
- Attia, O. (1993). Sedimentological and petrological studies of the middle Miocene evaporites on the eastern side of the Gulf of Suez, Sinai, Egypt. Dissertation (PhD in geology, Cairo University, Cairo), 159.
- Hosny, W., Gaafar, I. & Sabour, A. (1988). Miocene stratigraphic nomenclature in the Gulf of Suez region. Proceedings of the eighth Exploration Seminar, Cairo (1986), Egyptian General Petroleum Corporation, 1, 131-148.
- Thiriet, J., Burollet, P., Montenat, C., & Ott D’estevou, P. (1986). Evolution tectonique et sedimentaire neogene a la transition du Golfe de Suez et de la Mer Rouge: La Secteur De Port-Safaga (Egypte). Documents Et Travaux, Institution Geology Albert De Lapparent, 10, 93–116.
- Hume, W. (1921). Relations of the northern Red Sea and associated gulf areas to the “rift” theory. Proceedings of the Geology Society London, 77, 96-101.
- Montenat, C., Ott D'estevou, P., Jarrige, J., & Richert, J. (1998). Rift development in the Gulf of Suez and the north-western Red Sea: Structural Aspects And Related Sedimentary Processes, Sedimentation And Tectonics In Rift Basins Red Sea: Gulf Of Aden. Springer Science and Business Media, ch. (B5), 97-116.
- Jarrige, J., Ott D’estevou, P., & Sehans, P. (1986). Etude structural sur la marge occidentale de la Mer Rouge: le secteur du Gebel Duwi pres de Quseir (Egypte). Documents Et Travaux, Institution of Geology, Albert De L’apparent, 10, 117–127.
- Van Dijk, J., Ajayi, A., De Vincenzi, L., Ellen, H., Guney, H., & Santoni, S. (2018). A new model for the development of the Gulf of Suez Rifting; Implications for hydrocarbon exploration and production potential, project: geology and geophysics of the exploration and production assets (Algeria, Tunesia, Egypt, Afghanistan, Iraq, Turkmenistan) of Dragon Oil (Enoc Group). Society of Petroleum Engineers, SPE- 192978-MS, 10.
- Patton, T., Moustafa, A., Nelson, R., & Abdine, S. (1994). Tectonic evolution and structural setting of the Suez Rift (In Landon, S. Interior Rift Basins). AAPG Memoir, 59, 7–55.
- Colletta, B., Le Quellec, P., Letouzey, J., & Moretti, I. (1988). Longitudinal evolution of the Suez Rift structure (Egypt). Tectonophysics, 153, 221–233.
- Perry, S., & Schamel, S. (1990). The role of low-angle normal faulting and isostatic response in the evolution of the Suez Rift, Egypt. Tectonophysics, 174, 159–173.
- Bosworth, W., & Mcclay, K. (2001). Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: A synthesis (In Ziegler, P., Cavazza, W., Robertson, A. and Crasquin-Soleau, S. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins). Museum National D’histoire Naturelle De Paris, Memoir, 186, 567-606.
- Moustafa, A. (1976). Block faulting in the Gulf of Suez. Proceedings of the fifth Egyptian General Petroleum Corporation Exploration Seminar, Cairo, 35.
- Meshref, W., Refai, E., & Abdel Baki, S. (1976). Structural interpretation of the Gulf of Suez and its oil potentialities. Proceedings of the fifth Egyptian General Petroleum Corporation Exploration Seminar, Cairo, 21.
- Moustafa, A. (1996). Internal structure and deformation of an accommodation zone in the northern part of the Suez Rift. Structural Geology, 18, 93-107.
- Moustafa, A. (1998). Gebel Surf el Dara accommodation zone, southwestern part of the Suez Rift. Middle Eastern Research Center, Ain Shams University, Earth Science, 2, 227-239.
- Amgad, I., & Mcclay, K. (2002). Development of accommodation zones in the Gulf of Suez-Red Sea Rift, Egypt. AAPG Bulletin, 86(6), 1003-1026.
- Bosworth, W. (1985). Geometry of Propagating Continental Rifts. Nature, 316, 625-627.
- Moustafa A. (2004). Explanatory notes for the geologic maps of the eastern side of the Suez Rift (Western Sinai Peninsula), Egypt. Ain Shams University, 34.
- Peijs, J., Bevan, T., & Piombino, J. (2012). The Suez rift basin. In: Roberts, D., & Bally, A. (eds) Regional geology and tectonics: phanerozoic rift systems and sedimentary basins. 1st edition, Elsevier Publication, ch.(B), 165–194.
- Evans, A. (1990). Miocene sandstone provenance relations in the Gulf of Suez: insights into synrift unroofing and uplift history. AAPG Bulletin, 74, 1386–1400.
- Hantar, G. (1965). Remarks on the distribution of the Miocene sediments in the Gulf of Suez region. Proceedings of the fifth Arab Petroleum Congress, Cairo, Egypt, 13.
- Saoudi, A., & Khalil, B. (1986). Distribution and hydrocarbon potential of Nukhul sediments in the Gulf of Suez. Proceedings of the seventh EGPC Exploration Seminar, 1984, 75–96.
- Moustafa, A., & Khalil, S. (2017). Control of extensional transfer zones on syntectonic and posttectonic sedimentation: implications for hydrocarbon exploration. Journal of Geologic Society, London, 174, 318–335.
- Garfunkel, Z., & Bartov, Y. (1977). The tectonics of the Suez rift. Geologic Survey Bulletin, 71, 44.
- National Stratigraphic Sub-Committee of Egypt (1974). Rock-stratigraphy of the Miocene in the Gulf of Suez Region. Egyptian Journal of Geology, 1(1), 21-43.
- Always, R., Tudoran, A., Knabe, K., Liu, C. & Strohmenger, C. (2002). New biostratigraphic and sequence stratigraphic constraints on Miocene synrift sequences from the northern Red Sea. Proceedings of the fifth Middle East Geoscience Conference, GEO 2002, GeoArab Abstract, 7(2), 208.
- Bosworth, W., & McClay, K. (2001). Structural and stratigraphic evolution of the Suez rift, Egypt: a synthesis. In: Zeigler, P., Cavazza, W., Robertson, A., & Crasquin-Soleau, S. (eds) Peri-Tethyan rift-wrench basins and passive margins. Museum of National Histoire Naturelle, 567–606.
- Evans, A. (1988). Neogene tectonic and stratigraphic events in the Suez rift area, Egypt. Tectonophysics, 153, 235–247.
- Moon, F., & Sadek, H. (1923). Preliminary geological report on Wadi Gharandal area north of Gebel Hammam Faraun Western Sinai. Petroleum Research Bulletin, Cairo, 12, 42.
- Awney, F., Hussein, R., & Nakhla, A. (1990). Blayim Marine and Land oil fields structural styles. Proceedings of the tenth EGPC Petroleim Exploration and Production Conference, 1, 400 –430.
- Slater, P., Thome, K., Aria, K., Fujisada, H., Kieffer, H., Ono, A., Sakuma, F., Palluconi, F., & Yamaguchi, Y. (1995). Radiometric calibration of ASTER data. Journal of Japan Society for Remote Sensing, 15(2), 16-23.
- Herman, B., & Browning, S. (1965). A numerical solution to the equation of radiative transfer. Journal Atmospheric Science, 22, 559-566.
- Fujisada, H., Sakuma, F., Ono, A., & Kudoh, M. (1998). Design and pre-flight performance of aster instrument protoflight model. Transactions On Geoscience And Remote Sensing, 36(4), 1152 –1160.
- Chrysoulakis, N., Abrams, M., Feidas, H., & Arai, K. (2010). Comparison of atmospheric correction methods using Aster data for the area of Crete, Greece. International Journal of Remote Sensing, 31(24), 6347–6385.
- Du, Q., Gungor, O., & Shan, J. (2005). Evaluation for pan-sharpening techniques. Performance, 7803-9050, 3.
- Ninomiya, Y. (2002). Mapping quartz, carbonate minerals, and mafic ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proceedings of SPIE, 191–203.
- Shuai, S., Zhang, Z., Xinbiao, L., & Hao L. (2022). Assessment of new spectral indices and multi- seasonal ASTER data for gypsum mapping. Carbonates and Evaporites, 37(34), 19.
- Pour, A., & Hashim, M. (2011). Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. International Journal of Physics Science, 6, 7657 –7668.
- Parashar, C. (2015). Mapping of alteration mineral zones by combining techniques of remote sensing and spectroscopy in the parts of se-rajasthan, Environmental Science, Geology. Indian institue of remote sensing, ISRO, department of space, Government of India Dehradun. Dissertation (MD of technology in remote sensing and GIS, University of Andhra, India), 62.
- Buhe, A., Tsuchiya, B., Kaneko, C., Ohtaishi, C., & Mahmut, H. (2007). Land cover of oases and forest in XinJiang, China retrieved from ASTER data Aosier. Advances in Space Research, 39, 39 – 45.
- Salati, S., Van Ruitenbeek, F., Van der Meer, F., & Naimi, B. (2014). Detection of Alteration Induced by Onshore Gas Seeps from ASTER and WorldView-2 Data. Remote sensing, 6(4), 3188-3209.
- Fakhari, S., Alireza, J., Peyman, A., & Mohammad, L. (2019). Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iran. Journal of Earth Sciences, 11, 80-92.
- Bakardjiev, D., & Popov, K. (2015). ASTER spectral band ratios for detection of hydrothermal alterations and ore deposits in the Panagyurishte Ore Region, Central Srednogorie, Bulgaria. Advances in Space Research, pt.1, 76, 79–88.
- Youssef, A., Hassan, A., & El-Haddad, A. (2009). Mapping of Prerift – Synrift Sedimentary units using Enhanced Thematic Mapper Plus (ETM+): Sidri – Feiran Area, Southwestern Sinai Peninsula, Egypt. Journal of Indian Society of Remote sensing, 37, 377–393.
- Sabins, F. (1999). Remote Sensing for Mineral Exploration. Ore Geology Review, 14, 77-82.
- Wahi, M., Taj-Eddine, K., & Laftouhi, N. (2013). ASTER VNIR and SWIR Band Enhancement for Lithological Mapping - A case study of the Azegour Area (Western High Atlas, Morocco). Journal of Environment and Earth Science, 3(12), 11.
- Moradi, M., Basiri, S., Ali, K., & Kabiri, K. (2013). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Information, 9.
- Doğru, M., & Yücel, M. (2017). Araştırma Makalesi / Research Article LANDSAT 8 OLI Multispektral Verileri Kullanılarak Litolojik Harita Yapımı, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. AKU Journal of Science and Engineering, 17, 172-184.
- Soha, J., & Schwartz, A. (1979). Multispectral Histogram Normalization Contrast Enhancement. Proceedings of Fifth Canadian Symposium of Remote Sensing, 86-93.
- Gillespie, A., Kahle, A., & Walker, R. (1986). Color enhancement of highly correlated images- Decorrelation and HSI contrast stretches. Remote sensing and Environment, 20, 209–235.
- Özyavaş, A. (2016). Assessment of image processing techniques and ASTER SWIR data for the delineation of evaporates and carbonate outcrops along the Salt Lake Fault, Turkey. International Journal of Remote sensing, 1366-5901.
- Khan, A., Faisal, S., Shafique, M., Khan, S., & Sherbacha, A. (2020). Aster-based remote sensing investigation of gypsum in the Kohat Plateau, North Pakistan. Carbonates and Evaporites, 35(3), 13.
- Kruse, F., Lefkoff, A., Boardman, J. (1993). The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote sensing Environment, 44, 145 –163.
- De Carvalho, O., & Meneses, P. (2000). Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM). Ninth JPL airborne earth science workshop, National Aeronautics and Space Administration of US, 9.
- Ranganathan, P. & Siddan, A. (2020). Geospatial assessment of ultramafic rocks and ore minerals of Salem, India. Arabian Journal of Geosciences, 13, 1095.
|