پیشبینی نرخ نفوذ TBM در انواع سنگ با استفاده از پارامترهای سیستم طبقهبندی RMR به روش آنالیز رگرسیون مبتنی بر یادگیری ماشین | ||
مهندسی تونل و فضاهای زیرزمینی | ||
دوره 11، شماره 3، مهر 1401، صفحه 233-257 اصل مقاله (3.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22044/tuse.2023.13396.1480 | ||
نویسندگان | ||
آمنه دردشتی1؛ رسول اجللوئیان* 2؛ جمال رستمی3؛ جعفر حسن پور4؛ علیرضا سلیمی5 | ||
1دانشجوی دکتری زمینشناسی مهندسی؛ دانشکده علوم، دانشگاه اصفهان | ||
2استاد زمینشناسی مهندسی؛ دانشکده علوم، دانشگاه اصفهان | ||
3استاد مکانیک سنگ؛ دانشکده معدن، Colorado School of Mines | ||
4دانشیار زمینشناسی مهندسی؛ دانشکده علوم، دانشگاه تهران | ||
5دکترای مهندسی ژئوتکنیک/تونل زنی و مهندسی سنگ؛ ZETCON Ingenieur GmbH برلین، آلمان | ||
چکیده | ||
علیرغم استفاده گسترده از ماشینهای حفر تمام مقطع تونل در صنعت تونلسازی، برآورد دقیق عملکرد آنها به ویژه در شرایط پیچیده زمینشناسی هنوز هم میتواند چالشبرانگیز باشد. هدف از این مطالعه، بررسی امکان استفاده از سیستمهای طبقهبندی تودهسنگ معمول برای تخمین عملکرد ماشین حفر تونل در انواع مختلف سنگ، با استفاده از آنالیز رگرسیون مبتنی بر الگوریتمهای یادگیری ماشین است. بدین منظور دادههای واقعی عملکرد ماشین و همچنین دادههای زمینشناسی از 10 پروژه تونلسازی در یک پایگاه داده جامع با 523 مقطع تونل در انواع مختلف سنگ جمعآوری و برای توسعه روابط جدید برای تخمین اندیس نفوذ صحرایی FPI بر اساس پارامترهای ورودی سیستم طبقهبندی RMR استفاده شد. از آنجا که انواع مختلف سنگها، بافت، ساختار و ترکیب کانیشناسی متفاوتی دارند و به نیروهای برشی ماشین پاسخ متفاوتی میدهند، ترکیب اثرات نوع سنگ در مدلهای پیشبینی عملکرد میتواند دقت تخمینها را بهبود بخشد. این روابط به ویژه در مرحله طراحی و برنامهریزی یک پروژه تونلسازی، میتوانند مفید واقع شوند. | ||
کلیدواژهها | ||
عملکرد دستگاه TBM؛ سیستم طبقه بندی تودهسنگ RMR؛ آنالیز رگرسیون؛ یادگیری ماشین | ||
مراجع | ||
Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, N., Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnel Under. Space Technol., 63, 29–43.
Bieniawski, Z.T., Celada, B., Galera, J.M., Alvarez, M. (2006). Rock Mass Excavability (RME) Indicator: New Way to Selecting the Optimum Tunnel Construction Method. ITA World Tunnelling Congress, Seoul, South Korea.
Bruland, A. (1998). Hard rock tunnel boring. Ph.D. Thesis, Norwegian University of Science & Technology, Trondheim.
Fatemi, S.A. (2016). Prediction of TBM penetration rate by rock mass classification system. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran.
Gholami, M., Shahriar, K., Sharifzadeh, M., Hamidi, J.K. (2012). A comparison of artificial neural network & multiple regression analysis in TBM performance prediction. ISRM Regional Symposium-7th Asian Rock Mechanics Symposium: International Society for Rock Mechanics.
Gong, Q., Lu, J., Xu, H., Chen, Z., Zhou, X., Han, B. (2021). A modified rock mass classification system for TBM tunnels & tunneling based on the HC method of China. Int. J. Rock Mech. Min. Sci., 137, 104551.
Grima, A., Bruines, M., Verhoef, P. N. W. (2000). Modeling tunnel boring machine performance by neuro-fuzzy methods. Tunnel Under. Space Technol., 15(3), 259–269.
Hassanpour, J., Ghaedi Vanani, A.A., Rostami, J., Cheshomi, A. (2016). Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros water conveyance tunnel (ZWCT2). Tunnel Under. Space Technol., 52, 147-156.
Hassanpour, J., Rostami, J., Khamchian, M. (1402). Engineering Geology & Tunneling: Evaluation of TBM Performance in Rock Tunnels, Tehran University Press, 479 pages.
Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. (2009). Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomech. Geoeng. Int. J, 4, 287-297.
Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H. (2010). TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mech. Rock Eng., 43(4), 427-445.
Hassanpour, J., Rostami, J., Zhao, J. (2011). A new hard rock TBM performance prediction model for project planning. J. Tunnel. Under. Space Technol., 26, 595–603.
Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning, Data Mining, Inference & Prediction. Springer New York: Springer Series in Statistics: 2nd Edition, 745p.
He, B., Armaghani, D. J., & Lai, S. H. (2022). A Short Overview of Soft Computing Techniques in Tunnel Construction. The Open Construction & Building Technology Journal, 16(1), 1–6.
Jain, P. (2014). Evaluation of engineering geological & geotechnical properties for the performance of a tunnel boring machine in Deccan traps rocks-a case study From Mumbai, India. Ph.D. thesis, Indian Institute of Technology Bombay, India (Unpublished).
Khademi Hamidi, J., Shahriar, K., Rezai, B., & Rostami, J. (2010). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnel Under. Space Technol., 25(4), 333–345.
Koopialipoor, M., Nikouei, S. S., Marto, A., Fahimifar, A., Jahed Armaghani, D., Mohamad, E. T. (2019). Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology & the Environment, 78(5), 3799–3813.
Nelson, P. (1983). Tunnel boring machine performance in sedimentary rock. Ph.D. Thesis, Cornell University, Ithaca, NY.
Pourhashemi, S. M., Ahangari, K., Hassanpour, J., Eftekhari, M. (2021). TBM performance analysis in very strong & massive rocks; case study: Kerman water conveyance tunnel project, Iran. Geomech. Geoeng. Int. J, https:..doi.org.10.1080.17486025.2021.1912410.
Rostami, J. (1997). Development of a force estimation model for rock fragmentation with disc cutters through theoretical modelling & physical measurement of crushed zone pressure. Ph.D. Thesis, Colorado School of Mines, Golden, Colorado, USA.
Rostami, J. (2016). Role of rock mass classification in TBM performance prediction, Where Are We Now, Where Are We Heading. International Conference on Tunnel Boring Machines in Difficult Grounds (TBM-DIGS), Istanbul-Turkey.
Salimi, A. (2021). Investigation & Evaluation of Rock Mass Characteristics for Development of New TBM Performance Prediction Model in Hard Rock Conditions. Ph.D. Thesis, Stuttgart University, Germany.
Salimi, A., Rostami, J., Moormann, C. (2019). Application of rock mass classification systems for performance estimation of rock TBMs using regression tree & artificial intelligence algorithms. Tunnel Under. Space Technol., 92, 103046. https:..doi.org. 10.1016. j.tust. 2019.103046.
Salimi, A., Rostami, J., Moormann, C., & Delisio, A. (2016). Application of non-linear regression analysis & artificial intelligence algorithms for performance prediction of hard rock TBMs. Tunnel Under. Space Technol., 58, 236–246.
Sapigni, M., Berti, M., Behtaz, E., Busillo, A., Cardone, G. (2002). TBM performance estimation using rock mass classification. Int. J. Rock Mech. Min. Sci., 39, 771-788.
SCE Company. (2004). Geological & Engineering Geological Report for Ghomrood Water Conveyance Tunnel Project (Lots 3 & 4), Unpublished report.
SCE Company. (2006). Geological & Engineering Geological Report for Karaj Water Conveyance Tunnel Project (Lot1), Unpublished report.
Yagiz, S., Karahan, H. (2011). Prediction of hard rock TBM penetration rate using particle swarm optimization. Int. J. Rock Mech. Min. Sci., 48(3), 427–433.
Zhou, J., Bejarbaneh, B. Y. (2019). Forecasting of TBM advance rate in hard rock condition based on artificial neural network & genetic programming techniques. Bulletin of Engineering Geology & the Environment. doi.org.10.1007.s10064-019-01626-8. | ||
آمار تعداد مشاهده مقاله: 588 تعداد دریافت فایل اصل مقاله: 170 |