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The purpose of this research work is to create empirical models for assessing the
profitability of granite aggregate production in Akure, Ondo State, aggregate quarries.
In addition, an Artificial Neural Network (ANN) model for granite profitability was
developed. A structured survey questionnaire was used to collect data for the study.
The data extracted from the case study mine for this study includes granite marketing
operations, royalty, production costs, and mine production information. In this study,
the efficacy of granite fragmentation was assessed using the WipFrag software. The
relationship between particle size distribution, blast design, blast efficiency, and
uniformity index were analyzed using the WipFrag result. The optimum blast design
was also identified and recommended for mine production. The result revealed that
large burden distances result in bigger X50, X80, and Xmax fragmentation sizes. A
burden distance of 2 m and a 2 m spacing were identified as the optimum burden and
spacing. The finding revealed that blast mean size and 80% passing mesh size have a
positive correlation. The result from this study indicated that the uniformity index has
a positive correlation with blast efficiency and a negative correlation with maximum
blast fragmentation size. The prediction accuracy of the developed models was
evaluated using the coefficient of determination (R2), root mean square error
(RMSE), and mean square error (MSE). The error analysis revealed that the ANN
model is suitable for predicting quarry-generated profit.

1. Introduction

Mining has played a crucial role in fostering
national development and driving technological
progress over the course of several centuries.
According to Osasan, a robust mining sector,
similar to other industries, serves as a fundamental
basis for the economic development of a nation [1].
Quarrying, which is a sub-division of the broader
mining industry, plays a fundamental role in the
construction sector of any economy. Solid minerals
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are inherently interconnected with the evolution and
development of human society and civilization.
According to Hirooka [2], the advancement of
civilization and the process of democratization,
together with the global push for industrial
economic growth, have led to a heightened
requirement and desire for robust mineral resources.
There is a parallel increase in technological
advancements, construction activities, and building
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projects to this surge in mineral demand. According
to [3], the growing need for industrial rock
commodities is crucial for maintaining our
technologically driven society, necessitating the
study of these resources. Based on the findings of
the United States Geological Survey, it has been
determined that Africa possesses a substantial
quantity of granite deposits and exhibits a
significant potential for the occurrence of precious
and base metals [4]. Additionally, the country in
question acts as a significant global supplier of
several key minerals and metals, boasting a
substantial share of around 30% of the world's
mineral reserves. Notably, it possesses a dominant
position in the reserves of platinum, chromium, and
tantalum, accounting for approximately 80% of the
global supply. Furthermore, it holds a significant
portion of the world's reserves for gold, diamond,
cobalt, manganese, and phosphate, amounting to
over 40% of each respective resource. According to
the findings of Mattew and Emmanuel, the presence
of Africa's extensive mineral resources can be
attributed to the continent's geology, as these
minerals are closely linked to the lithological
properties of the continent [3]. Africa is primarily
characterized by the prevalence of Precambrian
basement crystalline rocks, which consist of schist,
gneisses, green schist, and granites. Additionally,
Africa serves as a significant source, accounting for
nearly 80% of the global supply of solid minerals
[5]. According to [3], despite the significant
potential for income that natural resources have for
African countries, ongoing conflicts and political
instability have resulted in a regrettable situation
where this potential wealth remains unrealized.
According to [6], from the 1980s to the present,
Africa's level of investment in mineral exploration
has been noticeably deficient in comparison to other
significant mineral-producing regions around the
world. According to the Metal and Economics
Group [7], the global mining industry allocates
approximately 10% of its yearly production value
on exploration activities, but Africa's expenditure in
this regard amounts to only around 1%. Although
Africa possesses over 30% of the worldwide
mineral and metal resources, the allocated budget
for mineral exploration in 2010 amounted to around
$1.4 billion, representing a mere 13% of the total
global expenditures for that year [7]. Melodi et al.
[8] argue that inadequate marketing practices have
a negative impact on the production and supply of
quarry end products, resulting in limitations in the
supply rate between producers and industrial
customers. The origins of mineral exploration and
the mining business in Nigeria may be dated back to
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the early 20th century, specifically 1903-1904,
during the period of colonial rule. It was during this
time that the colonial government formed the
Mineral Surveys of Southern and Northern Nigeria
[9].

Historically, the extractive sector in Nigeria was
predominantly controlled by the government, leading
to adverse consequences for the mineral extraction
sector following the discovery of oil in 1956 [3].
After the occurrence of the oil boom, both the
government and industry redirected their attention
towards this emerging resource, resulting in the
country's  economic  development  centered
predominantly on oil income. Consequently, the
agriculture and solid mineral sectors were
marginalized. Nigeria is widely recognized for its
significant contributions to the natural resources
industry, particularly in the production of oil and gas.
It holds the sixth position globally in terms of oil and
gas output [10]. Granite is classified as an igneous
rock predominantly consisting of quartz, feldspar,
micas, amphiboles, and several trace minerals [11].
The diverse hues and textures of granite are attributed
to the presence of different minerals, their varying
quantities, and the extent of modification [12]. Rock
aggregate, a primary constituent in engineering
applications including roads, airports, bridges, and
water projects plays a pivotal role in the development
and implementation of a nation's infrastructure.
Aggregate is one of the priciest building materials,
according to a study by [13]. According to reference
[14], quarrying is a type of mining where rock or
mineral extraction takes place within a single bench.
Mine-extracted materials are well-recognized as
essential components in contemporary civil
engineering and construction projects. Stone products
play a crucial role in meeting various societal
demands by supplying essential minerals. These
minerals are predominantly utilized in the
construction of concrete structures, including
residential buildings, bridges, and roadways.
Quarried rock blocks find application in the
construction industry as face materials for buildings,
provided they undergo cutting, shaping, and carving
procedures. Additionally, rough blocks serve as
protective armor in marine defense structures.
Moreover, quarried materials indirectly contribute to
various industrial production processes, such as the
manufacturing of toothpaste, cosmetics, paints, and
plastic.

Granite mining in Nigeria offers economic
growth, job opportunities, and infrastructure
development. Predictive models can improve profit
by optimizing extraction, reducing waste, and
forecasting market demand [15]. The mining sector,
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encompassing quarrying activities, is a significant
portion of Nigeria's gross domestic product (GDP),
amounting to 37% [16]. The process of granite
aggregate production encompasses several stages,
including the controlled fragmentation of the stone
through blasting, the extraction of the stone using
heavy machinery, the transportation of the stone on
vehicles, and the subsequent crushing of the
materials into different sizes [17]. As stated by [18],
the improvement of granite project profitability
involves strategizing and managing the quarry
through some elements such as a technical aspect, a
specifically targeted economic aspect, and a more
comprehensive economic aspect that encompasses
financial and business factors that impact the
quarry's performance within the industry as a whole.
The significance and possibilities of granite
aggregate production within Nigeria's mineral
sector are of considerable importance, although the
monitoring of its production has not been
sufficiently conducted to comprehensively ascertain
its profitability. Although there is considerable
interest among governments in promoting the
industrial utilization of granite, there is a dearth of
empirical evidence regarding the profitability of
aggregate granite manufacturing. Thus this study is
very important for figuring out how profitable
granite aggregate will be in the future because it
looks at the current profit margin in producing
granite aggregate and the market structure of the
area being studied. Granite rock blasting operations
entail drilling holes into the granite, loading them
with explosives, and detonating the explosives to
break the rock into manageable chunks [16]. As
explained by Frank er al. [18], while blasting
operations are effective for quarrying, challenges
include controlling fragmentation, minimizing
environmental impact, and ensuring worker safety,
making precise blasting techniques crucial for
successful granite extraction. The constraints of
granite production caused by blast results include
increased fracturing and rock degradation, resulting
in more waste material and less usable stone.
Excessive blasting can also cause safety concerns,
environmental challenges, and increased production
costs, all of which have an impact on the overall
efficiency of granite quarrying.

According to the research conducted by Taiwo
et al. [19], the blast fragment uniformity index is
utilized to assess the uniformity of fragment sizes
that arise from an explosion. Additionally, Morin
and Ficarazzo provide a definition of blast fragment
size homogeneity [20]. The homogeneity index
normally ranges from 0.6 to 2.2. The value of 'n'
determines the shape of a curve [21]. Chung and
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Katsabanis [22] noted that a uniformity value of 0.6
indicates a lack of uniformity in the muck pile,
whereas a value of 2.2 signifies a uniform muck pile
where the majority of pieces are in close proximity
to the 50% passing size. According to multiple
research works, it has been observed that in order
for a blast outcome to be considered favorable, the
blast design parameters must be well designed and
the fragmentation must possess a uniformity index
equal to or greater than unity. Sereshki and Hoseinie
[24] worked on ways to design the optimum burden
distance for good fragmentation using a case study
of the Sungun copper mine in Iran. Their
comparison results show that the Anderson, Pears,
Allsman, Langefors, and energy transition methods
give a good representation of the optimum burden.
A well-executed blast design offers several benefits
in mining and construction, as Kahraman and Kilic
mention [25]. [26, 27] explained that blast design
with adequate modification enhances safety by
controlling fragmentation, minimizing flyrock, and
reducing ground vibrations, ensuring a secure
working environment. The issue of environmental
impacts is mitigated as controlled blasting also
minimizes air overpressure and limits the release of
dust and gases [28-30].

According to Manashti et al., WipFrag is a visual
analysis framework used to assess the particle size
distribution of blasted rock. To analyze fragment
sizes, several images are collected to ascertain the
size of the fragmented particles and the regularity of
the blast outcome, as explained by several authors
[32-34]. The present study aims to evaluate and
analyze the uniformity index of the quarry under
investigation using WipFrag software. This
assessment will be conducted in order to investigate
the potential correlation between the blast uniformity
index and two key wvariables: maximum
fragmentation boulder (MFB) and blast efficiency.
Cunningham [35] elucidated the significance of
investigating the correlation between Dblast
fragmentation size distribution and uniformity index.
The comprehension of these two variables is of
utmost importance as it facilitates the optimization of
explosives utilization, enhances the efficiency of
material handling, and guarantees consistent product
quality, consequently augmenting blasting efficiency
within these sectors. Linear models were formulated
to predict MFB, blast efficiency, and blast
fragmentation size using traditional methodologies.

The utilization of empirical models for
predicting the profitability of granite mines is
limited due to their inability to account for the
internal complexities within the input parameters,
leading to inaccurate estimations [35, 36]. In many
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cases, the utilization of blast fragmentation size and
uniformity index have been identified. Doktan [37]
investigated the effect of fragmentation size and
uniformity index on truck shovel fleet performance
to improve shovel productivity. Doktan [37]
developed a relationship between loader dig times
and blast fragment mean size (Xso) and uniformity
index in his findings, as shown in Equation (1).

LDT =K —Z X Xso X1 (1)

where LDT id the loader digging time in minute,
k and z are constant equal to 8.9942 and -0.068706,
respectively, Xso is mean fragmentation, and n is
uniformity index.

To improve loading operation at Gol-e-Gohar
mine, Osanloo and Hekmat [38] conducted a study
on the relationship between the blast fragmentation
size distribution and the shovel productivity. In their
findings, the noted that blast fragmentation
properties have an effect on bucket fill factor, swell
factor, job efficiency and rock density. Using
Fragmentation mean size, 80% passing size and
uniformity index, they establish a prediction model
for shovel loafing productivity as illustrate in
Equation (2).

PD = 1769 — 9.63ds, + 444.45n —3.37ndg,  (2)

where dso is the average particle size, n is the
uniformity coefficient, and dgo represent 80% weight
of material less than a certain size.

It was found that there exists an inverse
relationship between shovel productivity and the
size of blast fragmentation particles, whereby larger
particles result in decreased production. The model
also proposes that dgo values, which guarantee
increased shovel output, should fall within the range
of 200 to 400 mm. The aforementioned research
failed to consider the comprehensive influence of
blasting efficiency, including the effects of oversize
and undersize particle sizes on the profitability of
production and the efficiency of blasting in relation
to the primary crusher's gape.

1.1. Significance of study

In order to mitigate the deficiencies of empirical
predictors and overcome the constraints in
evaluating the profitability of granite aggregate, an
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Artificial Neural Network (ANN) was employed to
construct empirical models for the prediction of the
overall profit of granite aggregate. In this study, the
efficacy of granite fragmentation had been assessed
using the utilization of WipFrag software. The
relationship between particle size distribution, blast
design, blast efficiency and uniformity index were
analyzed using the WipFrag result. The optimum
blast design was also identified and recommended
for the mine for optimum blast production. To the
best of the author's knowledge, this is the first study
to estimate quarry profitability by incorporating soft
computing models into a mathematically driven
equation using the machine learning layers of
weight and bias. The author also noted that the
knowledge gape between fragmentation size
distribution, uniformity index, blast design block
size and uniformity index had been bridged with
detail analysis in this study.

1.2. Description of studied area

Akure is the largest city and capital of Ondo State
in South-Western Nigeria. According to the 2006
census, the city has a population of 484,798 people
[39]. Akure is located between 7'15'9.22" Nand 5°11'
35.23" E (see Figure 1). On the outskirts of Akure,
rock engravings dating back to the Mesolithic period
have been discovered. Granite and Charnokite are the
most important rocks in Akure. According to [40], the
old granite and metamorphic rock formation in the
location axis consists primarily of amphibolite and
gneisses.

Two quarries (Q1 and Q2) located at Akure north
were considered as case study in this study as shown
in Figure 1.

2. Research Methodology

The research methodology employed in the quarry
case study included the gathering of production cost
data, sales data, and market reports. The data utilized
in this study was obtained from a combination of
primary and secondary sources, specifically mining
data records. The data was collected with the purpose
of assessing the production attributes of granite and
developing predictive models for the profitability of
quarry mining operations. The study technique is
depicted in Figure 2.
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Figure 1. Geological map of Ondo state showing Q1 and Q2.

Fragmentation efficiency
assessment using WipFrag
Software

Granite production
assessment and cost
analysis

Development of
granite mine profit
prediction model
using Artificial
intelligence approach

Figure 2. A flow chart of the empirical modeling work.
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2.1. Primary data collection

The study employed a comprehensive and
meticulously designed survey questionnaire to gather
primary data, encompassing information on mine
production rate, pricing, and sales. The survey
questionnaire was purposefully crafted to monitor
many aspects of the granite value chain at the quarries
examined in the case study. These aspects include
production rate, supply prices, production volumes,
and transaction costs in both the source and final
markets. The determination of the sample size was
calculated based on the methodology outlined in
reference [41], as seen in Equation (3).

2
N:Z.gz.q 3)
e

where N is sample size, z is confidence interval (z-
value, 1.96 at 95%), p is 0.5% (the expected
proportion of the population of the granite traders), q
is 1-0.5 and e is 8% (the allowable margin of error).

Therefore, N is approximately 140 samples (70
from Q1 and 70 from Q2). Royalty paid per tone
was calculated based on the payment standard per
ton as published by Nigeria Ministry of Mine and
Steel Development [42].

2.2. Data analysis method

For analyzing the data collected from the granite
industry and developing a sale profitability
predictive model, two types of data analysis will be
used: descriptive statistics and soft computing
analysis. The proposed prediction models were
developed using 45 datasets from two case study
quarries.
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2.3. Fragmentation evaluation

The image analysis technique was used to study
and analyze five blasting operations. During the
charging, blasting, and post-blast operations, each
blast round will be monitored. Blast design
parameters will be measured for the blast rounds, and
an image of the blast outcome will be obtained for
efficiency evaluation. Separately, the acquired blast
images were examined with WipFrag software, and
the blast fragmentation efficiency was determined
using the mine's main crusher inlet size in mm. In this
study, blast efficiency was determined by examining
the link between the blasted material's 80% passing
size and the primary crusher's input size. A smaller
80% passing size with respect to the crusher's inlet
indicates improved efficiency. The relationship
between particle size distribution, blast design, blast
efficiency, and uniformity index were analyzed using
the WipFrag result. The optimum blast design was
identified and recommended for the mine for
optimum blast production.

2.4. ANN model development

The input and output data for the models were
extracted from mine production records for a
minimum of eight years at the first and second
quarters. The ANN and MVR models each had five
input parameters and one output parameter (see Table
1). The inputs considered for modeling are those that
are most sensitive to the literature outputs. The inputs
are interconnected, which means that changing one
parameter affects the other. These inputs and outputs
are fed into a MATLAB-based ANN system to
determine the best model for profit generation.

Table 1. Model input and output parameter representation.

Model input parameters Input symbols Model output parameters Output symbols
Total production TP Generated Profit GP
Total product cost TPC
Royalty R
Total revenue TR
Other expenses OE

The Bayesian Regularization algorithm was used
to train the ANN model. This algorithm is typically
slower, but it can produce good generalization for
difficult, small, or noisy datasets. Training is halted
based on adaptive weight minimization
(regularization). A set of targets is chosen for the
given set of inputs. The network computes some
outputs using transfer functions using random
weights (i.e. transig and logsig). The optimized

model is applied to a series of Q1 and Q2 production
data in order to optimize fragmentation.

2.4.1. Development of a multivariate regression
model

A multivariate regression model is a statistical
procedure that is used to determine the relationship
between dependent and independent variables. The
established model predicts the values of a target
(dependent) variable based on the values of a set of
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independent variables. In general, the multi variants
model is created using Equation (4).

Y =Bo + Brx1 + Boxo + -+ Brxp 4)

where B;, B, ... B. are the coefficients of
regression model, f is the intercept, Yis the
predictive value, x;, x2, ..., x» are the independent
variables.

2.5. Evaluation of developed model
performance

The best network architecture is chosen after
successful training, validation, and testing with
various network architectures. To evaluate the
developed model, three evaluator indices include;
root mean square error (RMSE, Equation 5), Mean
Square error (MSE, Equation 6), and coefficient od
determination (R*, Equation 7) [43].

Z?Ll(zp_za)z

RMSE = \[ ®)
N
E?’:ﬂzp _Za)z
MSE = 2i=1%p 72 (6)
2y B2z
R™= Zi Y. (Ypredi)2 (7)

where Z,1is the predicted output, Z,is the
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measured output, and N is the number of inputs—
output data pairs.

3. Results and Discussion

The results and findings of the research are
presented in this section.

3.1. Blast efficiency result

The result from five production blast were
collected and evaluated using WipFrag software and
primary crusher in let size. The fragmentation
analysis result from the five-production blast is
presented in Figure 3. Table 2 presents the blast
fragmentation analysis result and the blast design
parameters. The result shows that the case study mine
blast has uniformity ranging from 1.05-1.36, mean
size of 107-160.45 mm, 80% passing size of 191.38-
245.86, and blast efficiency of 50.53-65.82%. The
result shows that change in burden distance affects
the fragmentation size distribution of blasted rock.
Burden distance refers to the distance between the
blasthole and the free face or the rock that is being
blasted. The result revealed that large burden distance
result in bigger Fragmentation size including Xso, Xso,
and Xmax fragmentation size. Burden distance of 2 m
and 2 m spacing was identified as the optimum
burden and spacing as illustrated in Figure 4.

Table 2. Blast fragmentation efficiency result.

Xs0 (mm) Xso (mm) Xmax (mm) n Efficiency
Blast-1 107.76 191.38 291 1.36 65.825
Blast-2 125.46 235.96 395 1.2 57.86429
Blast-3 160.45 277 421 1.05 50.53571
Blast-4 131.97 245.86 387 1.36 56.09643
Blast-5 121.42 232.63 421 1.22 58.45893
Burden (m) Spacing (m) Hole diameter (mm) Depth (m) Stemming length (m)
1 2 90 10 2.5
2 2 90 10 2.5
2.5 2 90 10 2.5
1.5 2 90 10 2.5
2 2 90 10 2.5
Crusher gape Clearance
700 560
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Figure 3. Fragmentation analysis result with size distribution rate.
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o correlation with blast efficiency and negative
0 05 1 15 2 26 3 correlation with Maximum blast fragmentation size.
Burden distance (m) The blast efficiency was found to increase as blast
Figure 4. Relationship between blast efficiency and fragmentation uniformity improves.

burden distance.
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Figure 5. Relationship between MBF, BE, and uniformity index.

Figure 6 present the relationship between
fragmentation 50% and 80% passing size. The
findings revealed that blast mean size and 80%

300

X80 = 1.509(X50) + 41.282

R?=0.9148

NN
S W
S O

—
()]
(e

80% passing size (mm)

50

40 60

passing mesh size for each of the blast round have a
positive correlation relationship.

80 100 120 140 160 180

50% passing size (mm)

Figure 6. Relationship between mean fragmentation size and 80% passing size mesh.

5. Granite Production Assessment Analysis
5.1 Number of years in operation by selected
quarries

Figure 7 shows that 17% of the selected quarries
have been in business for 1 to 5 years, while the

majority (83%) have been in business for 6 to 10
years. This finding implies that the majorities of the
studied quarries are no longer new to the industry
and must have attained a reasonable level of
professionalism in order to improve their
operational efficiency.
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Figure 7. Number of years in operation Q1 and Q2.

5.2. Annual production capacity of quarries

Figure 8 shows that Q1 has higher production at
the start of the early years (year one and two data).
The annual production capacity of the Q1 and Q2

mines ranges from 891830 to 411930 tons per year
and 675500 to 455500 tons per year, respectively. It
was discovered that Q1 produces more than Q2, as
shown in Figure 8.
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Figure 8. Annual production capacity.

5.3. Operational cost per year

The result in Figure 9 reveals that the average
total production cost per year for Q1 and Q2 ranges
from N 114,600,000 to N 40030693.6 and
N85,81,07,60 to N 58,98,11,60, respectively. The
production rate of granite depended mainly on the

total amount of capital incurred on the operation in
the mine as noted by [45] on the evaluation of Bench
Drilling Phase of Diamond Wire Sawing Technique
cost for Granite Mining. As shown in Figure 9, the
production cost was found to increase in a positive
correlation order with the production rate.
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Figure 9. Mine operational cost per month a. Q1 mine, b. Q2 mine.

6. Profitability model development result
6.1 ANN model results

For the development of the model proposed in
this study, the Bayesian Regularization training
algorithm with architecture 5-6-1 was used. The
training revealed that the Bayesian algorithm takes
significantly longer to train data than other ANN
training algorithms. Figure 10 depicts the training
performance graphs and interface. The Bayesian
Regularization algorithm was used in the network's
training. The Bayesian Regularization algorithm
typically takes more time but can produce good

generalization for small datasets. As indicated by
variable weight minimization, the model training
terminates (regularization).

Figure 11 compares the predicted values of the
developed ANN model to the actual Generated Profit
value. The prediction result shows a strong
coefficient of determination (R*) = 0.996 close to
unity between the predicted Generated profit and the
calculated Generated profit from the best ANN
model. The developed ANN model was extracted into
mathematical equations using the weight and bias of
the optimum model input, hidden and output layers.
Equation (8) shows the mathematical equation
developed from optimum proposed model.

N1 = 1.4689Tanh (0.27288TP — 0.5051TPC - 0.27320E + 0.2878R + 0.2491TR - 0.9578)

N2 =-0.0031Tanh (0.3721TP — 0.375TPC - 0.39670E + 0.4038R + 0.3327TR - 0.2911)

N3 =1.0322Tanh (0.0722TP — 0.3122TPC - 0.36340E + 0.2766R + 0.3051TR + 0.0407)

N4 =-2.7454Tanh (0.2297TP + 0.4373TPC + 0.21290E - 0.4757R - 0.3784TR - 0.2151)

N5 =1.7737Tanh (0.2166TP — 0.44843TPC -0.33250E + 0.3249R + 0.2398TR - 0.8092)

N6 =-1.3820Tanh (- 0.3161TP + 0.5293TPC + 0.51530E - 0.2723R - 0.4666TR - 1.1801)

GP = [Tanh (N1 + N2 + N3..... +N6)- 0.0127]  (8)
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Figure 10. ANN model training and validation coefficient of correlation: (a), (b) training algorithm architecture;
(¢), (d) training response and training regression.
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6.2. Multivariate regression model result

The MVR model was developed using the
collected data set in SPSS© Window. The result

from the modeling was transformed into
mathematical equations. Eq (9) shows the MVR
model developed for the prediction of Generated
Profit in granite quarries.

GP =-1.914¢ - 12TP + 0.0023TPC - 48.50E + 0.00006R + 0.5TR -1.386¢ - 10 9

where TP is Total production rate, TPC is total
production cost in ¥, OE is the other expense in N,
TR is total revenue in N, and GP is generated profit.

6.3. Comparison between MVR and ANN
developed model prediction performance

The model was validated with the training dataset
and visualized as presented in Figure 12. The
obtained coefficient of correlation (R?) value for the
empirical model is 0.985 and it is suitable for
predicting generated profit.
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Figure 12. Model evaluation result, a. ANN, b. MVR.
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The model performance was evaluated using three
model prediction evaluators including RMSE, MSE.
The error analysis result is presents in Figure 13. The

2 ANN Model

Index Value
—_— = N NN W W R RN WD
SO Wb O L © Wnm o wnm O©

R2
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result shows that the ANN model have the lowest
RSME and MSE value.

EMVR Model

RSME

MSE

Evaluation index

Figure 12. Error analysis result for MVR and ANN models.

The result of the performance indices as indicated
that the ANN models are more accurate than MVR
model predicted values. The evaluation result also
indicated that ANN model with 5-6-1 network
architecture has the lowest RMSE, MSE, and highest
coefficient of determination (R?) closer to unity,
making it the best predictive model.

7. Conclusions

Granite mining in Nigeria offers economic
growth, job opportunities, and infrastructure
development. Predictive models can improve profit
by optimizing extraction, reducing waste, and
forecasting market demand. Predicting granite, mine
profits with AI models helps optimize resource
allocation, plan investments, and enhance
sustainability by minimizing waste, thus ensuring a
more efficient and profitable mining operation. This
study developed artificially intelligent empirical
prediction models for determining the profitability of
granite aggregate production. The study's specific
objectives include investigating the operation
characteristics of the selected granite aggregate
quarries in the case study area, assessing the blast
production and efficiency of the case study mine,
conducting a profitability analysis of granite
aggregate production in the selected quarries,
developing an ANN and an MVR empirical model for

predicting granite aggregate overall profit, and
comparing the developed models using three model
performance indicators. The data for this study was
gathered using a formal survey questionnaire. The
information gathered included information on granite
marketing operations, royalty, production costs, and
the number and relative importance of various
participants in terms of flow volume. The study
utilized descriptive statistics, MATLAB 2017© and
SPSS16.0© software in analyzing and modeling the
data collected from granite traders in the studied
areas.

The following conclusions were drawn from the
results of the analysis:

1. The result revealed that large burden distance
result in bigger Fragmentation size including Xs,
Xsgo, and Xmax fragmentation size. Burden distance
of 2 m and 2 m spacing was identified as the
optimum burden and spacing.

The findings revealed that blast mean size and 80%
passing mesh size for each of the blast round have
a positive correlation relationship.

The result from this study indicated that uniformity
index has a positive correlation with blast
efficiency and negative correlation with Maximum
blast fragmentation size.

The mine characteristics were such that 17% of the
selected quarries had been in business for 1 to 5
years, while the majority (83%) had been in
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business for 6 to 10 years. This finding implies that
the majority of the studied quarries is no longer
new to the industry and must have attained a
reasonable level of professionalism in order to
improve their operational efficiency. It was
discovered that Q1 has higher production at the
start of early years (year one and two data). The
annual production capacity of the Q1 and Q2 mines
ranges from 891830 to 411930 tons per year and
675500 to 455500 tons per year, respectively. It
was discovered that Q1 produces more than Q2.
Furthermore, the average total production cost per
year for Q1 and Q2 ranges from N114,600,000 to
N40030693.6 and from N85,81,07,60 to
N58,98,11,60, respectively. The production cost
was discovered to rise in tandem with the rate of
production.

5. ANN and MVR soft computing were used to
create two models. The ANN model was built
with a 5:6:1 training architecture and a Bayesian
algorithm. The developed model was converted
into four neuron series expression mathematical
equations. The ANN model has a coefficient of
determination (R?) of 99.6%, an RSME of 4.355,
and an MSE of 474.0668. The MVR model was
created using SPSS software, and it provided a
98.5% coefficient of correlation with the actual
measured blast efficiency values, as well as high
RSME and MSE values. Due to the high
prediction error, the RMSE and MSE show that
the model is unsuitable for predicting generated
profit in a typical quarry. The two models'
prediction accuracy was compared using the R?,
RMSE, and MSE model evaluators. The
accuracy evaluation reveals that the ANN model
is more accurate than the MVR model. As a
result, the ANN model can reasonably predict
granite quarry blast efficiency with a high degree
of accuracy.

The authors’ future work will focus on assessing
the effect of blasting efficiency on loading operation
and overall mine profit and operation cost. This
study will also assess the impact of explosive energy
on particle size distribution using deep learning
motivated image analysis approach.
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