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 The purpose of this research work is to create empirical models for assessing the 
profitability of granite aggregate production in Akure, Ondo State, aggregate quarries. 
In addition, an Artificial Neural Network (ANN) model for granite profitability was 
developed. A structured survey questionnaire was used to collect data for the study. 
The data extracted from the case study mine for this study includes granite marketing 
operations, royalty, production costs, and mine production information. In this study, 
the efficacy of granite fragmentation was assessed using the WipFrag software. The 
relationship between particle size distribution, blast design, blast efficiency, and 
uniformity index were analyzed using the WipFrag result. The optimum blast design 
was also identified and recommended for mine production. The result revealed that 
large burden distances result in bigger X50, X80, and Xmax fragmentation sizes. A 
burden distance of 2 m and a 2 m spacing were identified as the optimum burden and 
spacing. The finding revealed that blast mean size and 80% passing mesh size have a 
positive correlation. The result from this study indicated that the uniformity index has 
a positive correlation with blast efficiency and a negative correlation with maximum 
blast fragmentation size. The prediction accuracy of the developed models was 
evaluated using the coefficient of determination (R2), root mean square error 
(RMSE), and mean square error (MSE). The error analysis revealed that the ANN 
model is suitable for predicting quarry-generated profit. 
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1. Introduction 

Mining has played a crucial role in fostering 
national development and driving technological 
progress over the course of several centuries. 
According to Osasan, a robust mining sector, 
similar to other industries, serves as a fundamental 
basis for the economic development of a nation [1]. 
Quarrying, which is a sub-division of the broader 
mining industry, plays a fundamental role in the 
construction sector of any economy. Solid minerals 

are inherently interconnected with the evolution and 
development of human society and civilization. 
According to Hirooka [2], the advancement of 
civilization and the process of democratization, 
together with the global push for industrial 
economic growth, have led to a heightened 
requirement and desire for robust mineral resources. 
There is a parallel increase in technological 
advancements, construction activities, and building 
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projects to this surge in mineral demand. According 
to [3], the growing need for industrial rock 
commodities is crucial for maintaining our 
technologically driven society, necessitating the 
study of these resources. Based on the findings of 
the United States Geological Survey, it has been 
determined that Africa possesses a substantial 
quantity of granite deposits and exhibits a 
significant potential for the occurrence of precious 
and base metals [4]. Additionally, the country in 
question acts as a significant global supplier of 
several key minerals and metals, boasting a 
substantial share of around 30% of the world's 
mineral reserves. Notably, it possesses a dominant 
position in the reserves of platinum, chromium, and 
tantalum, accounting for approximately 80% of the 
global supply. Furthermore, it holds a significant 
portion of the world's reserves for gold, diamond, 
cobalt, manganese, and phosphate, amounting to 
over 40% of each respective resource. According to 
the findings of Mattew and Emmanuel, the presence 
of Africa's extensive mineral resources can be 
attributed to the continent's geology, as these 
minerals are closely linked to the lithological 
properties of the continent [3]. Africa is primarily 
characterized by the prevalence of Precambrian 
basement crystalline rocks, which consist of schist, 
gneisses, green schist, and granites. Additionally, 
Africa serves as a significant source, accounting for 
nearly 80% of the global supply of solid minerals 
[5]. According to [3], despite the significant 
potential for income that natural resources have for 
African countries, ongoing conflicts and political 
instability have resulted in a regrettable situation 
where this potential wealth remains unrealized. 
According to [6], from the 1980s to the present, 
Africa's level of investment in mineral exploration 
has been noticeably deficient in comparison to other 
significant mineral-producing regions around the 
world. According to the Metal and Economics 
Group [7], the global mining industry allocates 
approximately 10% of its yearly production value 
on exploration activities, but Africa's expenditure in 
this regard amounts to only around 1%. Although 
Africa possesses over 30% of the worldwide 
mineral and metal resources, the allocated budget 
for mineral exploration in 2010 amounted to around 
$1.4 billion, representing a mere 13% of the total 
global expenditures for that year [7]. Melodi et al. 
[8] argue that inadequate marketing practices have 
a negative impact on the production and supply of 
quarry end products, resulting in limitations in the 
supply rate between producers and industrial 
customers. The origins of mineral exploration and 
the mining business in Nigeria may be dated back to 

the early 20th century, specifically 1903–1904, 
during the period of colonial rule. It was during this 
time that the colonial government formed the 
Mineral Surveys of Southern and Northern Nigeria 
[9].  

Historically, the extractive sector in Nigeria was 
predominantly controlled by the government, leading 
to adverse consequences for the mineral extraction 
sector following the discovery of oil in 1956 [3]. 
After the occurrence of the oil boom, both the 
government and industry redirected their attention 
towards this emerging resource, resulting in the 
country's economic development centered 
predominantly on oil income. Consequently, the 
agriculture and solid mineral sectors were 
marginalized. Nigeria is widely recognized for its 
significant contributions to the natural resources 
industry, particularly in the production of oil and gas. 
It holds the sixth position globally in terms of oil and 
gas output [10]. Granite is classified as an igneous 
rock predominantly consisting of quartz, feldspar, 
micas, amphiboles, and several trace minerals [11]. 
The diverse hues and textures of granite are attributed 
to the presence of different minerals, their varying 
quantities, and the extent of modification [12]. Rock 
aggregate, a primary constituent in engineering 
applications including roads, airports, bridges, and 
water projects plays a pivotal role in the development 
and implementation of a nation's infrastructure. 
Aggregate is one of the priciest building materials, 
according to a study by [13]. According to reference 
[14], quarrying is a type of mining where rock or 
mineral extraction takes place within a single bench. 
Mine-extracted materials are well-recognized as 
essential components in contemporary civil 
engineering and construction projects. Stone products 
play a crucial role in meeting various societal 
demands by supplying essential minerals. These 
minerals are predominantly utilized in the 
construction of concrete structures, including 
residential buildings, bridges, and roadways. 
Quarried rock blocks find application in the 
construction industry as face materials for buildings, 
provided they undergo cutting, shaping, and carving 
procedures. Additionally, rough blocks serve as 
protective armor in marine defense structures. 
Moreover, quarried materials indirectly contribute to 
various industrial production processes, such as the 
manufacturing of toothpaste, cosmetics, paints, and 
plastic.  

Granite mining in Nigeria offers economic 
growth, job opportunities, and infrastructure 
development. Predictive models can improve profit 
by optimizing extraction, reducing waste, and 
forecasting market demand [15]. The mining sector, 
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encompassing quarrying activities, is a significant 
portion of Nigeria's gross domestic product (GDP), 
amounting to 37% [16]. The process of granite 
aggregate production encompasses several stages, 
including the controlled fragmentation of the stone 
through blasting, the extraction of the stone using 
heavy machinery, the transportation of the stone on 
vehicles, and the subsequent crushing of the 
materials into different sizes [17]. As stated by [18], 
the improvement of granite project profitability 
involves strategizing and managing the quarry 
through some elements such as a technical aspect, a 
specifically targeted economic aspect, and a more 
comprehensive economic aspect that encompasses 
financial and business factors that impact the 
quarry's performance within the industry as a whole. 
The significance and possibilities of granite 
aggregate production within Nigeria's mineral 
sector are of considerable importance, although the 
monitoring of its production has not been 
sufficiently conducted to comprehensively ascertain 
its profitability. Although there is considerable 
interest among governments in promoting the 
industrial utilization of granite, there is a dearth of 
empirical evidence regarding the profitability of 
aggregate granite manufacturing. Thus this study is 
very important for figuring out how profitable 
granite aggregate will be in the future because it 
looks at the current profit margin in producing 
granite aggregate and the market structure of the 
area being studied. Granite rock blasting operations 
entail drilling holes into the granite, loading them 
with explosives, and detonating the explosives to 
break the rock into manageable chunks [16]. As 
explained by Frank et al. [18], while blasting 
operations are effective for quarrying, challenges 
include controlling fragmentation, minimizing 
environmental impact, and ensuring worker safety, 
making precise blasting techniques crucial for 
successful granite extraction. The constraints of 
granite production caused by blast results include 
increased fracturing and rock degradation, resulting 
in more waste material and less usable stone. 
Excessive blasting can also cause safety concerns, 
environmental challenges, and increased production 
costs, all of which have an impact on the overall 
efficiency of granite quarrying.  

According to the research conducted by Taiwo 
et al. [19], the blast fragment uniformity index is 
utilized to assess the uniformity of fragment sizes 
that arise from an explosion. Additionally, Morin 
and Ficarazzo provide a definition of blast fragment 
size homogeneity [20]. The homogeneity index 
normally ranges from 0.6 to 2.2. The value of 'n' 
determines the shape of a curve [21]. Chung and 

Katsabanis [22] noted that a uniformity value of 0.6 
indicates a lack of uniformity in the muck pile, 
whereas a value of 2.2 signifies a uniform muck pile 
where the majority of pieces are in close proximity 
to the 50% passing size. According to multiple 
research works, it has been observed that in order 
for a blast outcome to be considered favorable, the 
blast design parameters must be well designed and 
the fragmentation must possess a uniformity index 
equal to or greater than unity. Sereshki and Hoseinie 
[24] worked on ways to design the optimum burden 
distance for good fragmentation using a case study 
of the Sungun copper mine in Iran. Their 
comparison results show that the Anderson, Pears, 
Allsman, Langefors, and energy transition methods 
give a good representation of the optimum burden. 
A well-executed blast design offers several benefits 
in mining and construction, as Kahraman and Kilic 
mention [25]. [26, 27] explained that blast design 
with adequate modification enhances safety by 
controlling fragmentation, minimizing flyrock, and 
reducing ground vibrations, ensuring a secure 
working environment. The issue of environmental 
impacts is mitigated as controlled blasting also 
minimizes air overpressure and limits the release of 
dust and gases [28–30].  

According to Manashti et al., WipFrag is a visual 
analysis framework used to assess the particle size 
distribution of blasted rock. To analyze fragment 
sizes, several images are collected to ascertain the 
size of the fragmented particles and the regularity of 
the blast outcome, as explained by several authors 
[32–34]. The present study aims to evaluate and 
analyze the uniformity index of the quarry under 
investigation using WipFrag software. This 
assessment will be conducted in order to investigate 
the potential correlation between the blast uniformity 
index and two key variables: maximum 
fragmentation boulder (MFB) and blast efficiency. 
Cunningham [35] elucidated the significance of 
investigating the correlation between blast 
fragmentation size distribution and uniformity index. 
The comprehension of these two variables is of 
utmost importance as it facilitates the optimization of 
explosives utilization, enhances the efficiency of 
material handling, and guarantees consistent product 
quality, consequently augmenting blasting efficiency 
within these sectors. Linear models were formulated 
to predict MFB, blast efficiency, and blast 
fragmentation size using traditional methodologies. 

The utilization of empirical models for 
predicting the profitability of granite mines is 
limited due to their inability to account for the 
internal complexities within the input parameters, 
leading to inaccurate estimations [35, 36]. In many 
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cases, the utilization of blast fragmentation size and 
uniformity index have been identified. Doktan [37] 
investigated the effect of fragmentation size and 
uniformity index on truck shovel fleet performance 
to improve shovel productivity. Doktan [37] 
developed a relationship between loader dig times 
and blast fragment mean size (X50) and uniformity 
index in his findings, as shown in Equation (1). 

ܶܦܮ = ܭ − ܼ × ܺହ଴ × ݊ (1) 

where LDT id the loader digging time in minute, 
k and z are constant equal to 8.9942 and -0.068706, 
respectively, X50 is mean fragmentation, and n is 
uniformity index.  

To improve loading operation at Gol-e-Gohar 
mine, Osanloo and Hekmat [38] conducted a study 
on the relationship between the blast fragmentation 
size distribution and the shovel productivity. In their 
findings, the noted that blast fragmentation 
properties have an effect on bucket fill factor, swell 
factor, job efficiency and rock density. Using 
Fragmentation mean size, 80% passing size and 
uniformity index, they establish a prediction model 
for shovel loafing productivity as illustrate in 
Equation (2). 

ܦܲ = 1769 − 9.63݀ହ଴ + 444.45݊ − 3.37଼݊݀଴ (2) 

where d50 is the average particle size, n is the 
uniformity coefficient, and d80 represent 80% weight 
of material less than a certain size.  

It was found that there exists an inverse 
relationship between shovel productivity and the 
size of blast fragmentation particles, whereby larger 
particles result in decreased production. The model 
also proposes that d80 values, which guarantee 
increased shovel output, should fall within the range 
of 200 to 400 mm. The aforementioned research 
failed to consider the comprehensive influence of 
blasting efficiency, including the effects of oversize 
and undersize particle sizes on the profitability of 
production and the efficiency of blasting in relation 
to the primary crusher's gape. 

1.1. Significance of study 

In order to mitigate the deficiencies of empirical 
predictors and overcome the constraints in 
evaluating the profitability of granite aggregate, an 

Artificial Neural Network (ANN) was employed to 
construct empirical models for the prediction of the 
overall profit of granite aggregate. In this study, the 
efficacy of granite fragmentation had been assessed 
using the utilization of WipFrag software. The 
relationship between particle size distribution, blast 
design, blast efficiency and uniformity index were 
analyzed using the WipFrag result. The optimum 
blast design was also identified and recommended 
for the mine for optimum blast production. To the 
best of the author's knowledge, this is the first study 
to estimate quarry profitability by incorporating soft 
computing models into a mathematically driven 
equation using the machine learning layers of 
weight and bias. The author also noted that the 
knowledge gape between fragmentation size 
distribution, uniformity index, blast design block 
size and uniformity index had been bridged with 
detail analysis in this study. 

1.2. Description of studied area 

Akure is the largest city and capital of Ondo State 
in South-Western Nigeria. According to the 2006 
census, the city has a population of 484,798 people 
[39]. Akure is located between 7°15' 9.22" N and 5°11' 
35.23" E (see Figure 1). On the outskirts of Akure, 
rock engravings dating back to the Mesolithic period 
have been discovered. Granite and Charnokite are the 
most important rocks in Akure. According to [40], the 
old granite and metamorphic rock formation in the 
location axis consists primarily of amphibolite and 
gneisses. 

Two quarries (Q1 and Q2) located at Akure north 
were considered as case study in this study as shown 
in Figure 1. 

2. Research Methodology 

The research methodology employed in the quarry 
case study included the gathering of production cost 
data, sales data, and market reports. The data utilized 
in this study was obtained from a combination of 
primary and secondary sources, specifically mining 
data records. The data was collected with the purpose 
of assessing the production attributes of granite and 
developing predictive models for the profitability of 
quarry mining operations. The study technique is 
depicted in Figure 2. 
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Figure 1. Geological map of Ondo state showing Q1 and Q2. 

 
Figure 2. A flow chart of the empirical modeling work. 

Development of 
granite mine profit 
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production cost impact on 
granite profit margin
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2.1. Primary data collection 

The study employed a comprehensive and 
meticulously designed survey questionnaire to gather 
primary data, encompassing information on mine 
production rate, pricing, and sales. The survey 
questionnaire was purposefully crafted to monitor 
many aspects of the granite value chain at the quarries 
examined in the case study. These aspects include 
production rate, supply prices, production volumes, 
and transaction costs in both the source and final 
markets. The determination of the sample size was 
calculated based on the methodology outlined in 
reference [41], as seen in Equation (3). 

ܰ =
.ଶݖ .݌ ݍ

݁ଶ  (3) 

where N is sample size, z is confidence interval (z-
value, 1.96 at 95%), p is 0.5% (the expected 
proportion of the population of the granite traders), q 
is 1-0.5 and e is 8% (the allowable margin of error). 

Therefore, N is approximately 140 samples (70 
from Q1 and 70 from Q2). Royalty paid per tone 
was calculated based on the payment standard per 
ton as published by Nigeria Ministry of Mine and 
Steel Development [42]. 

2.2. Data analysis method 

For analyzing the data collected from the granite 
industry and developing a sale profitability 
predictive model, two types of data analysis will be 
used: descriptive statistics and soft computing 
analysis. The proposed prediction models were 
developed using 45 datasets from two case study 
quarries.  

2.3. Fragmentation evaluation 

The image analysis technique was used to study 
and analyze five blasting operations. During the 
charging, blasting, and post-blast operations, each 
blast round will be monitored. Blast design 
parameters will be measured for the blast rounds, and 
an image of the blast outcome will be obtained for 
efficiency evaluation. Separately, the acquired blast 
images were examined with WipFrag software, and 
the blast fragmentation efficiency was determined 
using the mine's main crusher inlet size in mm. In this 
study, blast efficiency was determined by examining 
the link between the blasted material's 80% passing 
size and the primary crusher's input size. A smaller 
80% passing size with respect to the crusher's inlet 
indicates improved efficiency. The relationship 
between particle size distribution, blast design, blast 
efficiency, and uniformity index were analyzed using 
the WipFrag result. The optimum blast design was 
identified and recommended for the mine for 
optimum blast production. 

2.4. ANN model development  

The input and output data for the models were 
extracted from mine production records for a 
minimum of eight years at the first and second 
quarters. The ANN and MVR models each had five 
input parameters and one output parameter (see Table 
1). The inputs considered for modeling are those that 
are most sensitive to the literature outputs. The inputs 
are interconnected, which means that changing one 
parameter affects the other. These inputs and outputs 
are fed into a MATLAB-based ANN system to 
determine the best model for profit generation.  

Table 1. Model input and output parameter representation. 
Model input parameters Input symbols Model output parameters Output symbols 

Total production TP Generated Profit GP 
Total product cost TPC   
Royalty R   
Total revenue TR   
Other expenses OE   

 
The Bayesian Regularization algorithm was used 

to train the ANN model. This algorithm is typically 
slower, but it can produce good generalization for 
difficult, small, or noisy datasets. Training is halted 
based on adaptive weight minimization 
(regularization). A set of targets is chosen for the 
given set of inputs. The network computes some 
outputs using transfer functions using random 
weights (i.e. transig and logsig). The optimized 

model is applied to a series of Q1 and Q2 production 
data in order to optimize fragmentation.  

2.4.1. Development of a multivariate regression 
model 

A multivariate regression model is a statistical 
procedure that is used to determine the relationship 
between dependent and independent variables. The 
established model predicts the values of a target 
(dependent) variable based on the values of a set of 
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independent variables. In general, the multi variants 
model is created using Equation (4). 

෠ܻ = ଴ߚ + ଵݔଵߚ + ଶݔଶߚ + ⋯ +  ௡ (4)ݔ௡ߚ

where β1, β2, … βn are the coefficients of 
regression model, β0 is the intercept, ෠ܻis the 
predictive value, x1, x2, …, xn are the independent 
variables. 

2.5. Evaluation of developed model 
performance 

The best network architecture is chosen after 
successful training, validation, and testing with 
various network architectures. To evaluate the 
developed model, three evaluator indices include; 
root mean square error (RMSE, Equation 5), Mean 
Square error (MSE, Equation 6), and coefficient od 
determination (R2, Equation 7) [43]. 

RMSE =ට∑ (௓೛ି௓ೌ)ಿ
೔సభ ଶ

ே
 (5) 

MSE = 
∑ (௓೛ି௓ೌ)ಿ

೔సభ ଶ
ே

 (6) 

R2 = ∑ ൫௓೛ି௓ೌ൯ଶ
∑(ଢ଼୮୰ୣୢ୧)ଶ௜  (7) 

where ܼ௣ is the predicted output, ܼ௔  is the 

measured output, and N is the number of inputs–
output data pairs. 

3. Results and Discussion 

The results and findings of the research are 
presented in this section.  

3.1. Blast efficiency result 

The result from five production blast were 
collected and evaluated using WipFrag software and 
primary crusher in let size. The fragmentation 
analysis result from the five-production blast is 
presented in Figure 3. Table 2 presents the blast 
fragmentation analysis result and the blast design 
parameters. The result shows that the case study mine 
blast has uniformity ranging from 1.05-1.36, mean 
size of 107-160.45 mm, 80% passing size of 191.38-
245.86, and blast efficiency of 50.53-65.82%. The 
result shows that change in burden distance affects 
the fragmentation size distribution of blasted rock. 
Burden distance refers to the distance between the 
blasthole and the free face or the rock that is being 
blasted. The result revealed that large burden distance 
result in bigger Fragmentation size including X50, X80, 

and Xmax fragmentation size. Burden distance of 2 m 
and 2 m spacing was identified as the optimum 
burden and spacing as illustrated in Figure 4. 

Table 2. Blast fragmentation efficiency result. 
 X50 (mm) X80 (mm) Xmax (mm) n Efficiency 

Blast-1 107.76 191.38 291 1.36 65.825 
Blast-2 125.46 235.96 395 1.2 57.86429 
Blast-3 160.45 277 421 1.05 50.53571 
Blast-4 131.97 245.86 387 1.36 56.09643 
Blast-5 121.42 232.63 421 1.22 58.45893 

Burden (m) Spacing (m) Hole diameter (mm) Depth (m) Stemming length (m) 
1 2 90 10 2.5  

2 2 90 10 2.5  

2.5 2 90 10 2.5  

1.5 2 90 10 2.5  

2 2 90 10 2.5  
      
 Crusher gape Clearance    
 700 560    

 

 



Taiwo et al. Journal of Mining & Environment, Vol. 15, No. 2, 2024 

 

504 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Fragmentation analysis result with size distribution rate. 
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(d) 

 
(e) 

Continuous of Figure 3. Fragmentation analysis result with size distribution rate. 

 
Figure 4. Relationship between blast efficiency and 

burden distance. 

4.1. Relationship between blast efficiency and 
uniformity index 

Figure 5 presents the relationship between blasting 
efficiency (BE), maximum blast fragment size 
(MBF), and uniformity index (n). As mentioned by 
Jug et al. [44], the higher this value, the more uniform 
the fragmented material will be. The result from this 
study indicated that uniformity index has a positive 
correlation with blast efficiency and negative 
correlation with Maximum blast fragmentation size. 
The blast efficiency was found to increase as blast 
fragmentation uniformity improves.  
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Figure 5. Relationship between MBF, BE, and uniformity index. 

Figure 6 present the relationship between 
fragmentation 50% and 80% passing size. The 
findings revealed that blast mean size and 80% 

passing mesh size for each of the blast round have a 
positive correlation relationship. 

 
Figure 6. Relationship between mean fragmentation size and 80% passing size mesh. 

5. Granite Production Assessment Analysis 
5.1 Number of years in operation by selected 
quarries 

Figure 7 shows that 17% of the selected quarries 
have been in business for 1 to 5 years, while the 

majority (83%) have been in business for 6 to 10 
years. This finding implies that the majorities of the 
studied quarries are no longer new to the industry 
and must have attained a reasonable level of 
professionalism in order to improve their 
operational efficiency.  

BE = 31.737n + 18.465 (R² = 0.559)
MBF= -284.39x + 735.07 (R² = 0.4699)
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Figure 7. Number of years in operation Q1 and Q2. 

5.2. Annual production capacity of quarries 

Figure 8 shows that Q1 has higher production at 
the start of the early years (year one and two data). 
The annual production capacity of the Q1 and Q2 

mines ranges from 891830 to 411930 tons per year 
and 675500 to 455500 tons per year, respectively. It 
was discovered that Q1 produces more than Q2, as 
shown in Figure 8. 

  
Q1 Mine Q2 Mine 

(a) (b) 
Figure 8. Annual production capacity. 

5.3. Operational cost per year 

The result in Figure 9 reveals that the average 
total production cost per year for Q1 and Q2 ranges 
from N 114,600,000 to N 40030693.6 and 
N85,81,07,60 to N 58,98,11,60, respectively. The 
production rate of granite depended mainly on the 

total amount of capital incurred on the operation in 
the mine as noted by [45] on the evaluation of Bench 
Drilling Phase of Diamond Wire Sawing Technique 
cost for Granite Mining. As shown in Figure 9, the 
production cost was found to increase in a positive 
correlation order with the production rate.  
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Q1 Mine Q2 Mine 

(a) (b) 
Figure 9. Mine operational cost per month a. Q1 mine, b. Q2 mine. 

6. Profitability model development result 
6.1 ANN model results 

For the development of the model proposed in 
this study, the Bayesian Regularization training 
algorithm with architecture 5-6-1 was used. The 
training revealed that the Bayesian algorithm takes 
significantly longer to train data than other ANN 
training algorithms. Figure 10 depicts the training 
performance graphs and interface. The Bayesian 
Regularization algorithm was used in the network's 
training. The Bayesian Regularization algorithm 
typically takes more time but can produce good 

generalization for small datasets. As indicated by 
variable weight minimization, the model training 
terminates (regularization). 

 Figure 11 compares the predicted values of the 
developed ANN model to the actual Generated Profit 
value. The prediction result shows a strong 
coefficient of determination (R2) = 0.996 close to 
unity between the predicted Generated profit and the 
calculated Generated profit from the best ANN 
model. The developed ANN model was extracted into 
mathematical equations using the weight and bias of 
the optimum model input, hidden and output layers. 
Equation (8) shows the mathematical equation 
developed from optimum proposed model.  

 
N1 = 1.4689Tanh (0.27288TP – 0.5051TPC - 0.2732OE + 0.2878R + 0.2491TR - 0.9578) 

N2 = -0.0031Tanh (0.3721TP – 0.375TPC - 0.3967OE + 0.4038R + 0.3327TR - 0.2911) 

N3 = 1.0322Tanh (0.0722TP – 0.3122TPC - 0.3634OE + 0.2766R + 0.3051TR + 0.0407) 

N4 = -2.7454Tanh (0.2297TP + 0.4373TPC + 0.2129OE - 0.4757R - 0.3784TR - 0.2151) 

N5 = 1.7737Tanh (0.2166TP – 0.44843TPC -0.3325OE + 0.3249R + 0.2398TR - 0.8092) 

N6 = -1.3820Tanh (- 0.3161TP + 0.5293TPC + 0.5153OE - 0.2723R - 0.4666TR - 1.1801) 
 
 

GP = [Tanh (N1 + N2 + N3.….. + N6) - 0.0127] (8) where TP is Total production rate, TPC is total 
production cost in ₦, OE is the other expense in ₦, 
TR is total revenue in ₦, and GP is generated profit. 
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(a) (b) 

 
(c) (d) 

Figure 10. ANN model training and validation coefficient of correlation: (a), (b) training algorithm architecture; 
(c), (d) training response and training regression. 
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Figure 11. Relationship between production rate and production cost. 

6.2. Multivariate regression model result 

The MVR model was developed using the 
collected data set in SPSS© Window. The result 

from the modeling was transformed into 
mathematical equations. Eq (9) shows the MVR 
model developed for the prediction of Generated 
Profit in granite quarries. 

 

GP = -1.914e - 12TP + 0.0023TPC - 48.5OE + 0.00006R + 0.5TR -1.386e - 10 (9) 

 
where TP is Total production rate, TPC is total 

production cost in ₦, OE is the other expense in ₦, 
TR is total revenue in ₦, and GP is generated profit. 

 
 
 
 

6.3. Comparison between MVR and ANN 
developed model prediction performance 

The model was validated with the training dataset 
and visualized as presented in Figure 12. The 
obtained coefficient of correlation (R2) value for the 
empirical model is 0.985 and it is suitable for 
predicting generated profit. 

  
(a) (b) 

Figure 12. Model evaluation result, a. ANN, b. MVR. 
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The model performance was evaluated using three 
model prediction evaluators including RMSE, MSE. 
The error analysis result is presents in Figure 13. The 

result shows that the ANN model have the lowest 
RSME and MSE value.  

 
Figure 12. Error analysis result for MVR and ANN models. 

The result of the performance indices as indicated 
that the ANN models are more accurate than MVR 
model predicted values. The evaluation result also 
indicated that ANN model with 5-6-1 network 
architecture has the lowest RMSE, MSE, and highest 
coefficient of determination (R2) closer to unity, 
making it the best predictive model. 

7. Conclusions 

Granite mining in Nigeria offers economic 
growth, job opportunities, and infrastructure 
development. Predictive models can improve profit 
by optimizing extraction, reducing waste, and 
forecasting market demand. Predicting granite, mine 
profits with AI models helps optimize resource 
allocation, plan investments, and enhance 
sustainability by minimizing waste, thus ensuring a 
more efficient and profitable mining operation. This 
study developed artificially intelligent empirical 
prediction models for determining the profitability of 
granite aggregate production. The study's specific 
objectives include investigating the operation 
characteristics of the selected granite aggregate 
quarries in the case study area, assessing the blast 
production and efficiency of the case study mine, 
conducting a profitability analysis of granite 
aggregate production in the selected quarries, 
developing an ANN and an MVR empirical model for 

predicting granite aggregate overall profit, and 
comparing the developed models using three model 
performance indicators. The data for this study was 
gathered using a formal survey questionnaire. The 
information gathered included information on granite 
marketing operations, royalty, production costs, and 
the number and relative importance of various 
participants in terms of flow volume. The study 
utilized descriptive statistics, MATLAB 2017© and 
SPSS16.0© software in analyzing and modeling the 
data collected from granite traders in the studied 
areas. 

The following conclusions were drawn from the 
results of the analysis: 

1. The result revealed that large burden distance 
result in bigger Fragmentation size including X50, 
X80, and Xmax fragmentation size. Burden distance 
of 2 m and 2 m spacing was identified as the 
optimum burden and spacing. 

2. The findings revealed that blast mean size and 80% 
passing mesh size for each of the blast round have 
a positive correlation relationship. 

3. The result from this study indicated that uniformity 
index has a positive correlation with blast 
efficiency and negative correlation with Maximum 
blast fragmentation size. 

4. The mine characteristics were such that 17% of the 
selected quarries had been in business for 1 to 5 
years, while the majority (83%) had been in 
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business for 6 to 10 years. This finding implies that 
the majority of the studied quarries is no longer 
new to the industry and must have attained a 
reasonable level of professionalism in order to 
improve their operational efficiency. It was 
discovered that Q1 has higher production at the 
start of early years (year one and two data). The 
annual production capacity of the Q1 and Q2 mines 
ranges from 891830 to 411930 tons per year and 
675500 to 455500 tons per year, respectively. It 
was discovered that Q1 produces more than Q2. 
Furthermore, the average total production cost per 
year for Q1 and Q2 ranges from N114,600,000 to 
N40030693.6 and from N85,81,07,60 to 
N58,98,11,60, respectively. The production cost 
was discovered to rise in tandem with the rate of 
production.  

5. ANN and MVR soft computing were used to 
create two models. The ANN model was built 
with a 5:6:1 training architecture and a Bayesian 
algorithm. The developed model was converted 
into four neuron series expression mathematical 
equations. The ANN model has a coefficient of 
determination (R2) of 99.6%, an RSME of 4.355, 
and an MSE of 474.0668. The MVR model was 
created using SPSS software, and it provided a 
98.5% coefficient of correlation with the actual 
measured blast efficiency values, as well as high 
RSME and MSE values. Due to the high 
prediction error, the RMSE and MSE show that 
the model is unsuitable for predicting generated 
profit in a typical quarry. The two models' 
prediction accuracy was compared using the R2, 
RMSE, and MSE model evaluators. The 
accuracy evaluation reveals that the ANN model 
is more accurate than the MVR model. As a 
result, the ANN model can reasonably predict 
granite quarry blast efficiency with a high degree 
of accuracy.  

The authors’ future work will focus on assessing 
the effect of blasting efficiency on loading operation 
and overall mine profit and operation cost. This 
study will also assess the impact of explosive energy 
on particle size distribution using deep learning 
motivated image analysis approach. 
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و   یاضیبر ر یمبتن ی: کاربرد مدل هوش مصنوعتیگران یدستنییپا دیوابسته به تول  ياندازه و سودآور یابی ارز
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  چکیده:

مدل   کی ن،یاوندو است. علاوه بر ا التیدر معادن سنگدانه آکوره، ا تیسنگدانه گران دیتول يسودآور یابیارز يبرا یتجرب يهامدل  جادیا یقاتیکار تحق نیهدف از ا
براANN(  یمصنوع   یشبکه عصب آور  يتوسعه داده شد. برا  تیگران  يسودآور  ي)  براداده  يجمع  استفاده شد.    افتهیساختار  شیمایاز پرسشنامه پ  قیتحق  يها 

  ن یمعدن است. در ا  دیو اطلاعات تول  دی تول  يها  نهیهز  از،یحق امت  ،یتیگران  یابیبازار  اتیمطالعه شامل عمل  نیا  يبرا  ياستخراج شده از معدن مطالعه مورد  يهاداده
انفجار، راندمان انفجار و شاخص    یاندازه ذرات، طراح  ع یتوز  نیگرفت. رابطه ب   رقرا  یابیمورد ارز  WipFragبا استفاده از نرم افزار    تی تکه تکه شدن گران  ییمطالعه کارا

نشان داد که    جهیشد. نت  هیمعدن توص  دیتول  يو برا  ییشناسا  زیانفجار ن  نهیبه  یقرار گرفت. طراح  لیو تحل   هیمورد تجز  WipFrag  جهیبا استفاده از نت  یکنواختی
  یی شناسا  نهیمتر به عنوان بار و فاصله به  2متر و فاصله    2شود. فاصله بار  ی م  Xmaxو    X50  ،X80  خردایش  يهاه بزرگ منجر به بزرگتر شدن انداز  سنگفواصل بار

با    یکنواختیمطالعه نشان داد که شاخص    نیحاصل از ا  ج یمثبت دارند. نتا  یدرصد همبستگ  80داد که اندازه متوسط انفجار و اندازه مش عبور ها نشان  افته یشد.  
  ن ییتع بیبا استفاده از ضر افتهیتوسعه   يهامدل  ینیبش ی دارد. دقت پ یمنف یانفجار همبستگ خردایش حاصل ازمثبت و با حداکثر اندازه   یانفجار همبستگ ان راندم

)R2مربعات خطا ( نیانگیم شهی)، رRMSEمربع خطا ( نیانگ ی) و مMSEخطا نشان داد که مدل  لیو تحل هیشد. تجز یابی) ارزANN د یسود تول ینیبشیپ يبرا  
  شده از معدن مناسب است.  

  .ی اقتصاد معدن ت،یانفجار، گران خردایش حاصل از ،یکنواختیراندمان انفجار، شاخص  کلمات کلیدي:

 

 


