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Abstract 

In this paper, after reviewing the concept of Efficient Frontier (EF), an important inadequacy of the Variance 

based models for deriving EFs and the high necessity for applying another risk measure is exemplified. To 

meet the challenge, the traditional risk measure of Variance is replaced with Lower Partial Moment (LPM) 

of the first order. Because of the particular shape of the new risk measure, one part of the paper is devoted to 

a methodology for deriving EF on the basis of the new model. Then the model superiority over the old one is 

shown and finally shape of the new EFs under different situations is investigated. At last, it is concluded that 

application of LPM of the first order in financial models in the phase of deriving EF is completely wise and 

justifiable. 

Keywords: Efficient Frontier, Portfolio Optimization, Markowitz Model, Lower Partial Moment Model, 

Genetic Algorithm. 

1. Introduction 

The portfolio optimization problems have been 

one of the important research fields in modern 

financial knowledge. Investors including large 

institutions such as mutual funds and pension 

funds use portfolio management systems to 

support their asset allocations. In this regard, 

deriving EF on the basis of historical information 

is an essential initial step to remove inefficient 

portfolios otherwise the complexity of decision 

making increases considerably. A portfolio is 

efficient if there is no other portfolio with the 

same or higher expected return that has lower risk, 

the collection of portfolios with this property is 

called efficient set or efficient frontier. On the 

important position of EF in field of portfolio 

selection, it is good to refer to Ballestero and 

Romero [1] and Jasemi et al. [2] that recommend 

maximizing investors’ expected utility on EF to 

come to the best choice for the investment. 

Our study is categorized in the third direction with 

a risk measure of Lowe Partial Moment of the 

first order. The mean–variance objective function 

may not be the best choice available to investors 

in terms of an appropriate risk measure. 

Furthermore, other risk measures may be more 

appropriate. In this category of literature, when it 

comes to our selected risk measures that are 

sensibly coherent by Jasemi et al. [3] the literature 

has been essentially a vacant area while a good 

attention has been directed to the other risk 

measures. According to Bertsimas et al. [4], two 

main problems of LPM are computational and the 

fact that standard portfolio theory results have 

been broaden to the LPM risks only for some 

special values of  or for some special families of 

distributions. 

Achieving long-term and sustained economic 

growth requires optimized preparation and 

allocation of resources at economic level and this 

is not possible without a help from financial 

market especially an efficient and extensive 

capital market. In a healthy economy, the 

presence of an efficient financial system plays an 

essential role in appropriate distribution of capital 
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and financial resources. Risk measures always 

play a significant role in financial model 

especially in portfolio optimization and rarely can 

a model be found without risk measures. When 

the importance of efficient frontier is known in the 

financial literature, critical role of risk measures 

becomes apparent clearly.  

In relation to capital markets, extensive research 

has been done with the aim of maximization of 

investor's satisfaction in portfolio selection 

models. The development of these models is a 

difficult task because social, political and 

economic variables influencing capital markets 

are not predictable. However, the more realistic 

the risk measure, the more free the selection of 

return measure. In the present paper, first order 

LMP is put in a risky place. 

Then, using models with first order LMP risk 

measures, we concentrate on calculation and 

approximation challenges of drawing efficient 

frontier. Indeed, a mechanism is provided for 

drawing efficient frontier. 

But with respect to increasing complexity of 

calculations and presence of many influential 

factors in calculation of results, using traditional 

search methods and individual examination of 

each potential solution would not be appropriate; 

thus in recent decades there has been an increased 

tendency towards methods based on natural life 

such as evolutional algorithms of neural networks, 

ant algorithms and genetic algorithms. 

Following rapid development of various science 

branches in 20
th
 century, non-linear functions 

were developed in different engineering processes 

which need to numerical solution for them led to 

evolution of various structures for numerical 

solutions. Genetic algorithm as one of these 

structures was also created around three decades 

ago inspiring from natural structures [5].  

The most significant qualities of each numerical 

algorithm are: 1) generalizability, 2) convergence 

speed and 3) solution accuracy which in genetic 

algorithm the first one is in a good condition and 

this algorithm is approximately generalizable to 

every engineering structure. However, parts 2 and 

3 are usually in the opposite directions and the 

improvement in one of them leads to deterioration 

of the other.  

In many cases, there is a simultaneous need to 

high accuracy and convergence speed, because of 

high computational volume and relative weakness 

of methods or impossibility of accurate 

determination of some parameters of the 

algorithm, solution time number of iterations 

before achieving solution greatly increases. With 

respect to the fact that new applications need to 

both qualities, various methods were proposed to 

simultaneous improvement of 2 and 3 among 

them [6,7,8,9] can be mentioned. 

With respect to the above, in section 1 of the 

present research, some important risk measures 

are addressed. Then in section 2, LPM is studied 

in a complete manner and in section 3, a method 

for obtaining efficient frontier of optimum 

portfolio based on LPM is provided and it is 

shown that by replacing model variance by LPM, 

the model turns into an NP-hard one and as the 

result of this, genetic algorithm is used to solve it. 

In section 4, data are analyzed and in final section 

research is concluded. 

2. Risk measures 

Risk measures have always played a significant 

role in financial models especially in portfolio 

optimization family and a model without a risk 

measure can rarely be found. In the field of 

portfolio theory, variance, semi-variance, adverse 

outcome probability, value at risk (VaR) and 

conditional value at risk (CVaR) and LPM are 

among the most well-known risk measures [2]. 

2.1. Variance 

Variance is the most acceptable definition for risk. 

According to this definition, if r is asset return and 

µ is expected value, risk of asset investment is:  

    2
 rErV                                                   

                                                                                                           

(1)  

2.2. Semi-variance  

This measure evaluates variability of below-

average returns. Mathematical description for 

semi-variance is as follows:  

     2
 rErSV (2) 

Where  
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2.3. Adverse outcome probability 

This measure defines risk as the probability that 

asset value becomes lower than a certain level. If 

b and r0 respectively indicate a fixed value and 

distance:                                                                                                              

  0Pr b r r  (4) 

According to downside risk measure, the above 

probability and (b-r) are respectively known as 

risk and loss of the investment. 
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2.4. Value at Risk 

Risk at value measure is very similar to adverse 

outcome probability in such a way that Huang 

[10] views it as another description for adverse 

outcome probability. If β is a predefined value, 

VaRβ is the portfolio with the least value of α in 

such a way that with a probability of 1- β, 

investment loss would be lower than α [2]. 

2.5. Conditional value at risk   

Some unfavorable characteristics of value at risk 

including lack of Sub-additivity and convergence 

led to development of conditional value at risk 

measure by Rockafellar et al. [2]. 

3. LPM 
The portfolio optimization problems have been 

one of the important research fields in modern 

financial knowledge. Investors including large 

institutions such as mutual funds and pension 

funds use portfolio management systems to 

support their asset allocations. In this regard, 

deriving efficient frontier (EF) on the basis of 

historical information is an essential initial step to 

remove inefficient portfolios otherwise the 

complexity of decision making increases 

considerably. On the important position of EF in 

the field of portfolio selection, it is good to refer 

to Ballestero et al. [1], [2]. 

Symmetric risk measures such as Removed

variance are generally downside measures such as 

LMP [11]. One class of downside risk measures 

which are consistent with definition of increasing 

risk for optional probability distribution is LPM. 

Attractiveness of these risk criteria are to some 

extent due to their consistency with the way the 

risk being perceived by individuals [12] and thus 

LMP approach is of significant importance for 

financial decision making. 

This class of risk measures is of significant 

efficiency from both theoretical and practical 

perspective. Bawa [13] showed that for each 

scalar amount Rnec and for each return distribution 

belonging to a specific class of distributions, LPM 

average model creates portfolios which are 

superior to other portfolios according to probable 

dominance concept. 

Bawa [13] introduced a general definition of 

downside risks in form of lower partial moment 

(LPM) and Fishburn [14] developed the ),( necR

model. This measure of order  around necR is 

defined in (5). 

       ; max 0,

100

R
nec

LPM R R R R dF R E R R
nec nec nec

 


          

(5) 

Where )(RF is cumulative distribution function 

of the investment return R, necR is the target 

parameter. By changing the parameters of 

necR different risk measures can be developed. In 

this study, LPM1 ),( RRnec that according to 

Fishburn [11] concerns a risk-neutral investor and 

has been discussed in some aspects by Spreitzer et 

al. [5] is used as is shown by (6). 

   
100

.
nec

R

necR R f R dR



  (6) 

On the field of deriving EF by a risk measure 

other than the famous variance, except for the 

family of LPM, the literature is full. The models 

that are based on the semi-variance are such as 

Homaifar and Graddy [10], Markowitz [15], Rom 

and Ferguson [16], Chow and Denning [9], 

Grootveld and Hallerbach  [17] and Enrique [18]

that proposed a semi-variance based EF model.

Konno et al. [19] showed large scale mean semi 

variance models are solvable by mathematical 

programming or Huang [20] developed a fuzzy 

Mean semi variance model. About the mean 

absolute deviation, Konno [21]; and Konno and 

Yamazaki [22] first proposed a mean absolute 

deviation portfolio optimization model while the 

model can be solved by linear methods. On the 

basis of this model, Speranza [5] introduced a 

model with a weighted risk function considering 

minimum transaction lots and maximum number 

of securities. Mansini and Speranza [23] regarded 

transaction costs with and without minimum 

transaction lots based on Konno model. Konno 

[24] and Konno and Koshizukawell [7] discussed 

the computational advantages of it over the 

Markowitz model. Another alternative definition 

of risk is the probability of an adverse outcome 

that parallel to the publication of Markowitz 

model developed by Roy [25] Mao [26] and 

Williams [27] minimizing the probability of an 

adverse outcome. Ortobellil and Rachev [8]

studied the stable Paretian approach and the 

safety-first analysis in portfolio selection theory in 

coherence with the empirical evidence and the 

stochastic dominance theory and Rambaud et al. 

[28] focus on new considerations on the classical 

models and many other valuable works. However, 

there is scarcity in the literature focusing on LPM.

According to Bertsimas et al. [4], two main 

problems of LPM are computational difficulties 

and the fact that standard portfolio theory results 
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have been broaden to the LPM risks only for some 

special values of necR or for some special families 

of distributions. 

4. The methodology 

4.1. The classical EF model 

Portfolio is to deal with the problem of how to 

allocate wealth among several assets. The 

classical EF model, which was firstly developed 

by Markowitz [29] is as follows: 

  nxxPRiskMin ,...,1

s.t: 
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Where, Risk: Risk function. 

xi: Share of stock i in the portfolio. 

P(x1,...,xn) : The portfolio whose shares of stocks 

are x1,...,xn.  

ir : Indicator of stock i past performance from the 

perspective of return. 

a: Desired number of stocks in the portfolio. 

il : Lower limit for share of stock i in the portfolio. 

iu : Upper limit for share of stock i in the 

portfolio. 

3.2. The LPM of the first order of a portfolio to 

calculate LPM1 ( RRnec , ) of P(x1,...,xn), the 

approach by  (7) is applied. 

 ,...,100 1 1 11

R
nec n n n

R x r f x r d x r
nec i i i i i iRP x xi i in

     
        
     

        
(7) 

Where ),...,( 1 nxxRP is return of the portfolio 

with shares of nxx ,...,1 .  

The first step to approximate 

)),..,(,( 11 nnec xxRPRLPM on the basis of (7) is 

estimation of ),..,( 1 nRP xxf that in this study will 

be done by drawing the associated histograms. If 

it is assumed that the time horizon is of length T, 

return of a portfolio with shar nxx ,...,1 on the t
th
 

time unit is calculated by (8). 

 ,..., . . ... . . 1,2,...,
1 1 1 2 2

1

n
RP x x x ar x ar x ar x ar t T

t n t t n nt i it
i

     
 (8)

Where itar is the return of asset i on the t
th
 time 

unit. After calculating, the portfolio returns for all 

the T time units according to (8), the necessary 

data to draw a histogram are available while in the 

intended histogram, the intervals are too short to 

encompass more than one distinct data; i.e. two 

different data surely fall in two separate intervals. 

Naturally, here the data itself represents the 

interval. Bowker et al. [30] has referred to the 

strategy by saying that if instead of frequency of 

each interval, the number of observations that 

relates to a distinct data is cited, better results can 

be achieved. Figure1 shows a typical histogram of 

this kind while ir denotes the i
th
 smallest return of 

the asset, if determines frequency of ir and N is 

the number of different returns of the asset. 

Figure 1. A typical histogram that is drawn by the first 
strategy [2]. 

Since the histograms based on this strategy are 

discrete, calculation of the LPM in its continuous 

form of (6) is not possible and the equation should 

be converted to its equivalent discrete one as (9). 

     1

100

, .
necR

nec necLPM R R R R p R


  (9) 

Where )(Rp is the associated probability function 

and the steps of the sigma are determined by the 

nrr ,...,1 Now if 1 kk rr  , ),( RRLPM nec is 

calculated by (10). 
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Based on what has been discussed, the final 

optimization model, however in its simplest form 
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without the optional constraints, to get the 

intended EF is as follows. 
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Where rpi (x1,…,xn), is ith smallest return for 

portfolio with investment percentages of x1,…xn

In above model, parameters k and rpi are non-

linear functions of problem decision variables 

(x1,x2,…,xn). Solving many non-linear problems is 

a time-consuming and complex task and with 

increase in problem size, the solution time 

increases in an exponential manner and makes it 

harder. Thus our problem is an NP-hard one. 

Today, to solve many of such problems heuristic 

algorithms especially genetic one are used and 

present study also exploits genetic algorithm. 

5. Solution algorithm  

The model obtained in the formula is of a high 

computational complexity. Solving these types of 

problems is difficult using accurate methods. 

Genetic algorithm is a powerful tool to solve such 

type of models [31]. 

5.1. Genetic algorithm 

Based on the Darwin principle ‘‘the fittest 

survive” in nature, genetic algorithm (GA) was 

first initiated by Holland [32] sand has rapidly 

become the best-known evolutionary techniques 

Goldberg [33]. Since the pioneering method by 

Holland, numerous related GA-based portfolio 

selection approaches have been published. 

Arnone, Loraschi, and Tettamanzi [34] presented 

a GA for the unconstrained portfolio optimization 

problem with the risk associated with the portfolio 

being measured by downside risk. Lin and Liu 

[35] proposed that GA for portfolio selection 

problems with minimum transaction lots. Chang 

et al. [36] try to solve three models separately 

with risk measures of semi-variance, mean 

absolute deviation and variance with skewness by 

genetic algorithm. Soleimani [3] consider 

Markowitz model with three constraints of 

Minimum transaction lots, cardinality constraints 

and market capitalization and solved it by genetic 

algorithm.  

Recently, GA has attracted much attention in 

portfolio optimization problems. In GA, an initial 

population containing constant number of 

chromosomes is generated randomly. With regard 

to portfolio optimization problems, each 

chromosome represents the weight of individual 

stock of portfolio and is optimized to reach a 

possible solution. An evaluation function is 

formed to evaluate the fitness for each 

chromosome, which defines how good a solution 

the chromosome represents. By using crossover, 

mutation values and natural selection, the 

population will converge to one containing only 

chromosomes with good fitness. Where the larger 

the fitness value is, the better objective function 

value the solution has. The basic steps in GA are 

shown as follows: 

Step 1: Initialize a randomly generated 

population. 

Step 2: Evaluate fitness of individual in the 

population. 

Step 3: Apply elitist selection: carry on the best 

individuals to the next generation from 

reproduction, crossover, and mutation. 

Step 4: Replace the current population by the new 

population. 

Step 5: If the termination condition is satisfied 

then stop, else go to Step 2. 

Through this reproduction once, the children of 

two chromosomes are generated. The 

reproduction process is operated until all 

chromosomes of a new population have been 

generated thoroughly. Through specified 

maximum generations, the best solution ever 

found is the answer.   

Genetic algorithm is a search technique in 

computing science which aims to find an 

approximate way for optimization. Genetic 

algorithm is a specific type of evolutional 

algorithms which uses such techniques as 

inheritance and mutation [37]. It was initially 

proposed by john Holland [38] in 1960 but its 

usual form was provided by Goldberg [39]. 

Genetic algorithm is an innovative search method 

which follows evolutional trend of nature based 

on Darwin theory. 

5.2. Fitness estimation and primary population

In this phase, a primary population (a set of 

chromosomes) is generated in a random manner. 

Some of them do not meet equation constraints. 

Thus, the production of chromosomes is 

controlled using death penalty method in order to 

achieve reasonable chromosomes. 
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5.3. GA operators 

GA operators such as crossover and mutation ones 

contribute to generation of the next population. 

In crossover process, a pair of mature 

chromosomes should generate two children. This 

is done randomly by a pair of chromosomes from 

the same generation with probability of Pc. In 

present research, two point crossover method is 

used. In mutation, a chromosome is randomly 

selected from the population and position of one 

gene of it is replaced by random selection of a 

number within parameter range. 

5.4. Selection of chromosome and stop 

condition 

Reasonable chromosomes have to compete on 

selection in the next phase. Selection operator 

chooses chromosomes from existing population 

for the next phase based on their fitness value. 

Several selection method such as roulette wheel, 

tournament selection, rank selection, elitism 

selection have been mentioned in investigations 

by Michalewicz [40].  

Thus Npop chromosomes are selected among 

parents and children with the most fitness. In GA, 

stop condition is the last step. In present research, 

a certain number of generations are used given the 

parameter setting in test design. 

In present study, running genetic algorithm was 

done using MATLAB software. 

5.5. Methodology of comparison of two models 

The main goal of present section is to show the 

major drawback of mean-variance models for 

extraction of efficient frontier.  

Consider a situation in which there are only two 

stocks with returns of r1 and r2 in a way that r1>r2. 

If an investor wants to form the best portfolio 

from r1 and r2, which combination of them should 

be selected?!  

In order to examine performance of variance-

based efficiency frontier models in such 

situations, a financial period of 301 days with 300 

positive returns of r1 and r2 is considered where 

r2= r1\2. 

       2 2
var var var 2 cov ,1 2 1 21 1 2 2 1 2 1 2

2 2
0.0107 0.0027 0.01071 2 1 2

Min x r x r x r x r x x r r

x x x x

   

  

St: 

121  xx

dRxx  21 3027.06053.0

0, 21 xx

Table1. Portfolio forming the efficient frontier. 

 

 

 

 

 

 

 

 

 

Point X1 X2 variance Rd

1 0.9957 0.0053 0.0106 0.6043

2 0.9434 0.0573 0.0098 0.5884

3 0.8905 0.1104 0.009 0.5725

4 0.8381 0.1628 0.0083 0.5566

5 0.7852 0.2158 0.0076 0.5406

6 0.7329 0.2677 0.007 0.5247

7 0.6799 0.321 0.0064 0.5087

8 0.6273 0.3736 0.0058 0.4928

9 0.5747 0.4263 0.0053 0.4769

10 0.5221 0.4789 0.0049 0.461

11 0.4694 0.5316 0.0044 0.445

12 0.4168 0.5842 0.0041 0.4291

13 0.3642 0.6367 0.0037 0.4132

14 0.3129 0.6867 0.0035 0.3972

15 0.2609 0.7381 0.0032 0.3813

16 0.2082 0.7908 0.003 0.3654

17 0.1556 0.8434 0.0029 0.3495

18 0.103 0.896 0.0028 0.3335

19 0.051 0.948 0.0027 0.3178

20 0.0011 0.9979 0.0027 0.3027
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Figure 2. Efficient frontier based on data of Table 1. 

Results from table 1 are also plotted in figure 2. 

As can be seen, the model proposes more than one 

point while the most surprising fact is that even an 

investment of 100 percent in r2, which is never 

justifiable in practice, has been proposed. It 

should be mentioned that columns x1 and x2 of 

table1 indicate percentage investment in r1 and r2,

respectively. 

5.6. New efficient frontier model (LPM) 

In order to see performance of new efficient 

frontier model with respect to case presented in 

section 5.4, the model was initiated with Rnec = 

20%. 

Table2. Portfolio forming efficient frontier with LPM and Rnec= 20%. 

Point X1 X2 LPM Rd

1 0.0032 0.9969 0.0006 0.3071

2 0.0566 0.9427 0.0004 0.3228

3 0.1088 0.891 0.0003 0.3386

4 0.1614 0.8384 0.0002 0.3543

5 0.2149 0.7842 0.0001 0.3701

6 0.2667 0.733 0 0.3858

7 0.3201 0.6789 0 0.4016

8 0.3684 0.6316 0 0.4163

9 0.4211 0.5789 0 0.4321

10 0.4737 0.5263 0 0.4478

11 0.5263 0.4737 0 0.4636

12 0.5789 0.4211 0 0.4793

13 0.6316 0.3684 0 0.4951

14 0.6842 0.3158 0 0.5108

15 0.7368 0.2632 0 0.5266

16 0.7895 0.2105 0 0.5423

17 0.8421 0.1579 0 0.5581

18 0.8947 0.1053 0 0.5738

19 0.9474 0.0526 0 0.5896

20 1 0 0 0.6053

0
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0.4

0.5

0.6

0.7

0 0.002 0.004 0.006 0.008 0.01 0.012
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Figure 3. Efficient frontier of LPM model with Rnec= 20%. 

According to definition of efficient frontier and 

figure3, for each Rnec, only the last point in left 

side which suggests an investment of 100% can be 

accepted as efficient frontier.  

Thus, mean LPM model has produced the most 

acceptable results. 

5.7. Analysis of model data 

After examining the model and after LPM model 

turned into a NP-hard model, we used genetic 

algorithm to obtain efficient frontier based on data 

from New York Exchange and implementation of 

it was done using MATLAB software. 

In order to run the algorithm, we used monthly 

prices of 20 firms listed on New York Stock 

Exchange. In this way, price returns were 

calculated and using them, previous performance 

index for portfolio was calculated. 

Thus, in order to obtain efficient frontier and 

observe the trend and results of them, each time 

some pairs were selected from 20 stocks with the 

aim of deriving efficient frontier and this trend 

was repeated up to 16 stocks. For example, at 

first, 8 stocks from total 20 ones were selected and 

this process continued up to 16 stocks. 

Figure 4. Efficient frontier with constraint of selecting 8 stocks from 20 ones for LPM model with Rnec= 0. 
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Figure 5. Efficient frontier with constraint of selecting 10 stocks from 20 ones for LPM model with Rnec= 0. 

 
Figure 6. Efficient frontier with constraint of selecting 12 stocks from 20 ones for LPM model with Rnec= 0. 

 
Figure 7. Efficient frontier with constraint of selecting 14 stocks from 20 ones for LPM model with Rnec= 0. 
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Figure 8. Efficient frontier with constraint of selecting 16 stocks from 20 ones for LPM model with Rnec= 0. 

6. Conclusion 

The concept of EF was the main focus of this 

paper, and the difference between this study and 

the others of the field can be summarized in the 

two following items. 

 Considering the risk measure of LPM of the 

first order for deriving EF. 

 Presenting a practical approach to derive EF 

on the basis of the LPM while the approach is not 

restricted by factors like stochastic characteristics 

of the stocks returns or number of stocks that 

compose the portfolio. The attained results

extracted from previous research suggest that 

applying the lower partial moment to financial 

model in the stage of obtaining efficient frontier 

given clear and complete market constraints is 

more rational and justified. In present study, two 

models of Markowitz variance and LPM were 

implemented using genetic algorithm and a 

comparison was done between them. Then,

efficient frontier was gained for 20 firms listed on 

New York Stock Exchange. On the other hand, 

graphs presented in section 4 indicate that 

efficient frontier of portfolio is concaved and also 

our efficient frontier obtains acceptable order with

an increase in stock number. Surely, this trend is 

not always the case and it is possible that with an 

increase in number of stocks, efficient frontier 

becomes afflicted with disorder. Finally, the 

simulation results prove that the LMP model 

have high efficiency compared with other 

models.  
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 چکیذٌ:

ّای هبتٌی بز ٍاریاًس بزای استخزاج هزسّای کارا ٍ ضزٍرت بالای کاربزد یک هعیار اس هزٍری بز هفَْم هزس کارا، یک ًقع هْن هذل در ایي هقالِ بعذ

ت. بِ ریسک دیگز با هثال ًطاى دادُ ضذُ است. بزای چالص هشبَر، هعیار سٌتی ٍاریاًس با هعیار گطتاٍر جشئی پاییٌی هزتبِ اٍل جایگشیي ضذُ اس

بزای استخزاج هزس کارا بز اساس هذل جذیذ اختصاظ دادُ ضذُ است. سپس بزتزی  رٍشل خاظ هعیار جذیذ، بخطی اس هقالِ بِ تَسعِ یک خاطز ضک

قزار گزفتِ است. در  ضَد ٍ در ًْایت ضکل هزس کارای جذیذ تحت ضزایط هختلف هَرد تحقیقٍ اهتیاس هذل جذیذ بِ ّوتای سٌتیص ًطاى دادُ هی

  .را کاهلا هٌطقی ٍ قابل تَجیِ استاستخزاج هزس کا هزحلِّای هالی در ضَد کِ کاربزد گطتاٍر جشئی پاییٌی هزتبِ اٍل در هذلگیزی هیپایاى ًتیجِ

 .، الگَریتن صًتیکهذل گطتاٍر جشئی پاییٌیساسی پَرتفَی، هذل هارکٍَیتش، هزس کارا، بْیٌِ :کلمات کلیذی
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