Mineral Prospectivity Modeling with Airborne Geophysics and Geochemistry Data: a Case Study of Shahr-e-Babak Studied Area, Southern Iran | ||
Journal of Mining and Environment | ||
مقاله 17، دوره 15، شماره 4، دی 2024، صفحه 1477-1489 اصل مقاله (6.18 M) | ||
نوع مقاله: Case Study | ||
شناسه دیجیتال (DOI): 10.22044/jme.2024.13857.2575 | ||
نویسندگان | ||
Moslem Jahantigh؛ Hamid Reza Ramazi* | ||
Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran | ||
چکیده | ||
The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC1). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC1) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area. | ||
کلیدواژهها | ||
principal component analysis؛ aeromagnetic؛ airborne radiometric؛ Shahr-e-Babak؛ Porphyry | ||
مراجع | ||
[1]. Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., and Hu, Z. (2020). Data-Driven Predictive Modelling of Mineral Prospectivity using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals, 10(2), 102.
[2]. Echogdali, F. Z., Boutaleb, S., Abia, E. H., Ouchchen, M., Dadi, B., Id-Belqas, M., Abioui, M., Pham, L. T., Abu-Alam, T., and Mickus, K. L. (2022). Mineral prospectivity mapping: a potential technique for sustainable mineral exploration and mining activities – a case study using the copper deposits of the Tagmout basin, Morocco. Geocarto International, 37(25), 9110–9131.
[3]. Arogundade, A. B., Awoyemi, M. O., Ajama, O. D., Falade, S. C., Hammed, O. S., Dasho, O. A., and Adenika, C. A. (2022). Integrated Aeromagnetic and Airborne Radiometric Data for Mapping Potential Areas of Mineralisation Deposits in Parts of Zamfara, North West Nigeria. Pure and Applied Geophysics, 179(1), 351–369.
[4]. Thanh Pham, L., Eldosouky, A. M., Melouah, O., Abdelrahman, K., Alzahrani, H., Oliveira, S. P., and Andráš, P. (2021). Mapping subsurface structural lineaments using the edge filters of gravity data. Journal of King Saud University - Science, 33(8), 101594.
[5]. Elkhateeb, S. O. and Abdellatif, M. A. G. (2018). Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data. NRIAG Journal of Astronomy and Geophysics, 7(2), 361–376.
[6]. Ostrovskiy, E. Ya. (1975). Antagonism of radioactive elements in wallrock alterations fields and its use in aerogamma spectrometric prospecting. International Geology Review, 17(4), 461–468.
[7]. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.
[8]. Dempster, M., Dunlop, P., Scheib, A., and Cooper, M. (2013). Principal component analysis of the geochemistry of soil developed on till in Northern Ireland. Journal of Maps, 9(3), 373–389.
[9]. Jansson, N. F., Allen, R. L., Skogsmo, G., and Tavakoli, S. (2022). Principal component analysis and K-means clustering as tools during exploration for Zn skarn deposits and industrial carbonates, Sala area, Sweden. Journal of Geochemical Exploration, 233, 106909.
[10]. Jimenez-Espinosa, R., Sousa, A. J., and Chica-Olmo, M. (1993). Identification of geochemical anomalies using principal component analysis and factorial kriging analysis. Journal of Geochemical Exploration, 46(3), 245–256.
[11]. Liu, C., Wang, W., Tang, J., Wang, Q., Zheng, K., Sun, Y., Zhang, J., Gan, F., and Cao, B. (2023). A deep-learning-based mineral prospectivity modeling framework and workflow in prediction of porphyry–epithermal mineralization in the Duolong ore District, Tibet. Ore Geology Reviews, 157, 105419.
[12]. Zarasvandi, A., and Liaght, S., Zentilli, M. (2005). Porphyry Copper Deposits of the Urumieh-Dokhtar Magmatic Arc, Iran, Super Porphyry Copper and Gold deposits, A global perspective. PGC publishing Adelaide, 2,441-452.
[13]. Bigdeli, A., Maghsoudi, A., and Ghezelbash, R. (2023). Recognizing Geochemical Anomalies Associated with Mineral Resources Using Singularity Analysis and Random Forest Models in the Torud-Chahshirin Belt, Northeast Iran. Minerals, 13(11), 1399.
[14]. Montsion, R. M., Saumur, B. M., Acosta-Gongora, P., Gadd, M. G., Tschirhart, P., and Tschirhart, V. (2019). Knowledge-driven mineral prospectivity modelling in areas with glacial overburden: porphyry Cu exploration in Quesnellia, British Columbia, Canada. Applied Earth Science, 128(4), 181–196.
[15]. Riahi, S., Bahroudi, A., Abedi, M., Aslani, S., and Lentz, D. R. (2022). Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data‐driven methods. Geophysical Prospecting, 70(2), 421–437.
[16]. Anderson, E. D., Hitzman, M. W., Monecke, T., Bedrosian, P. A., Shah, A. K., and Kelley, K. D. (2013). Geological Analysis of Aeromagnetic Data from Southwestern Alaska: Implications for Exploration in the Area of the Pebble Porphyry Cu-Au-Mo Deposit. Economic Geology, 108(3), 421–436.
[17]. Salem, A., Williams, S., Fairhead, J. D., Ravat, D., and Smith, R. (2007). Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26(12), 1502–1505.
[18]. Mohammadpour, M., Abedi, M., and Bahroudi, A. (2020). Mineral prospectivity mapping of porphyry Cu deposit using VIKOR method. Earth Observation and Geomatics Engineering, 4(2), 148–168.
[19]. Tarshan, A. (2022). Detection of Uranium Anomalies and Alteration Zones using Airborne Gamma-Ray Spectrometry at Gabal Attala and its Surrounding Area, Eastern Desert, Egypt. Earth Sciences, 11(3), 121.
[20] Yousefi, M. and Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.
[21]. Deepika, K. K., Varma, P. S., Reddy, Ch. R., Sekhar, O. C., Alsharef, M., Alharbi, Y., and Alamri, B. (2022). Comparison of Principal-Component-Analysis-based Extreme Learning Machine Models for Boiler Output Forecasting. Applied Sciences, 12(15), 7671.
[22]. Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., and Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 100.
[23]. Gewers, F. L., Ferreira, G. R., Arruda, H. F. De, Silva, F. N., Comin, C. H., Amancio, D. R., and Costa, L. D. F. (2022). Principal Component Analysis. ACM Computing Surveys, 54(4), 1–34.
[24] Tatou, R. D., Kabeyene, V. K., and Mboudou, G. E. (2017). Multivariate Statistical Analysis for the Assessment of Hydrogeochemistry of Groundwater in Upper Kambo Watershed (Douala-Cameroon). Journal of Geoscience and Environment Protection, 05(03), 252–264.
[25]. Najafi, A., Karimpour, M. H., and Ghaderi, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. International Journal of Applied Earth Observation and Geoinformation, 33, 142–154.
[26]. Porwal, A., Carranza, E. J. M., and Hale, M. (2006). A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping. Natural Resources Research, 15(1), 1–14. | ||
آمار تعداد مشاهده مقاله: 203 تعداد دریافت فایل اصل مقاله: 391 |