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ON THE FINITENESS OF LOCAL HOMOLOGY MODULES

A. Fathi* and A. Hajikarimi

ABSTRACT. Let R be a commutative Noetherian ring and a be an ideal of R. Suppose
M is a finitely generated R-module and N is an Artinian R-module. We define the
concept of filter coregular sequence to determine the infimum of integers ¢ such that
the generalized local homology HY (M, N) is not finitely generated as an ]?‘l—module7
where R® denotes the a-adic completion of R. In particular, if R is a complete
semi-local ring, then HY (M, N) is a finitely generated R-module for all non-negative
integers 4 if and only if (0 :y a + Ann(M)) has finite length.

1. INTRODUCTION

In this paper, we consider a commutative Noetherian ring R with non-zero
identity, and an ideal a C R, as well as two R-modules M and N. We denote
the a-adic completion of N by Ay(N), and note that the a-adic completion
functor A4(-) is an additive covariant functor on the category of R-modules.
We use L{(-) to denote the i-th left derived functor of A4(-). However, since
the tensor functor is not left exact and the inverse limit is not right exact
on the category of R-modules, computing the left-derived functors of A4(+) is
generally difficult. Moreover, it is important to note that L§(-) 2 Aq(-).

Matlis studied L{(-) in the case where a is generated by a regular sequence
and R is a local ring in [10, 9], and proved some duality between this functor
and the local cohomology functor. Recently, Divaani-Aazar et al. in [4]
studied the containment of L(-) in a Serre class of R-modules up to a given
upper bound s > 0.

Cuong and Nam in [3] defined the i-th local homology H} (N) of N with
respect to a as follows:

H (N) = lim Tor;* (R/a", N).

neN

They also showed that L} (N) = H? (N) when N is Artinian. Similarly, the
i-th generalized local homology Hi (M, N) of M and N with respect to a is
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defined by
H}(M, N) := lim Tor;" (M/a"M, N);
neN
see [12, 13] for basic properties and more details.
Matlis in [8] introduced the concept of cosequence (or coregular sequence)
as a dual of the concept of regular sequence (see [14] and [16] for more details

and basic properties). If N is Artinian and (0 :x a) # 0, then all maximal
coregular N-sequences in a have the same length, denoted by width(a, N),
where (0 :y a) denotes the set of all elements x € N such that rx = 0 for all
r € a. Moreover,

width(a, N) = inf{i € Z : H* (N) # 0}

(see [2, Theorem 4.11]).

The filter regular sequences can be used to study the Artinianess of local
cohomology modules of finitely generated R-modules (see [5, Sec. 3]). In this
paper as a dual of the concept of filter regular sequence, we introduce the
concept of filter coregular sequence to study the finiteness of local homology
modules of Artinian R-modules.

Let Cosupp(/N) denote the set of all prime ideals of R containing Ann(V).
A sequence 1, ..., x, of elements of a is called a filter coregular N-sequence
(of length n) in a if

Cosupp ((0 :n (21, ..., 2i-1)R)/z:(0 :n (z1,...,2,-1)R)) C Max(R)
for all 1 < ¢ <n, where Max(R) denotes the set of all maximal ideals of R.

Assuming that M is finitely generated and N is Artinian, we prove that if
there exists a filter coregular N-sequence in a of infinite length, then every
filter coregular N-sequence in a can be extended to a filter coregular N-
sequence in a of infinite length, and in this case we set f-width(a, N) = oc.

Now suppose that all filter coregular N-sequences in a have finite length.
Then all maximal filter coregular N-sequences in a are of the same length,

denoted by f-width(a, N). We prove (see Theorem 2.8 and Remark 2.9) that:
f-width(Ann(M), N)
— inf{i € Ny : Tor’ (M, N) has infinite length as an R-module}
and
f-width(a + Ann(M), N)
— inf{i € Ny : H*(M, N) is not a finitely generated R*-module}.
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In particular,
f-width(a, N)
— inf{i € Ny : H(N) is not a finitely generated R®-module}.
We also show in Corollary 2.11 that if H}(M, N) is a finitely generated

R*-module for all i € Ny, then (0 :xy a+ Ann(M)) has finite length. The
converse statement is true when R is a semi-local ring that is complete with

respect to its Jacobson radical.

2. MAIN RESULTS

We shall use the following notations and terminologies. Let a be an ideal
of R and N be an R-module. The radical of a will be denoted by +/a; also,
Ann(N) will denote the ideal

{reR:rz=0forall x € N}
of R; and (0 :y a) will denote the submodule
{reN:re=0forall r €a}

of N. We denote by V (a) the set of all prime ideals of R containing a; and
we use Cosupp(M) to denote V (Ann(M)). The symbol N (respectively Ny)
will denote the set of positive (respectively non-negative) integers. We refer
the reader for any unexplained terminology or notation to [1, 11, 15].

Definition 2.1. Let N be an R-module. We say a prime ideal p of R is
an attached prime of N, if there exists a submodule M of N such that

p = Ann(N/M). We denote by Att(N) the set of all attached primes of

N.

For an R-module N, it is clear that Att(N) C Cosupp(N) (we
refer the reader to [I4] for basic properties and more details of these
notations). When N has a secondary representation in the sense of [7], our

definition of Att(N) coincides with that of Macdonald (see
[1, Exercise 7.2.5]). In particular, the set of attached primes of an Artinian
module is a finite set.

Definition 2.2. Let N be an R-module. A sequence zq,...,x, of
elements of R is called a filter coregular N-sequence (of length n)
whenever

Cosupp ((0 :n (21, ..., 2i-1)R)/z:(0 :y (z1,...,2,-1)R)) C Max(R)
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for all 1 < i < n, where Max(R) denotes the set of all maximal ideals of R.
If, in addition, x4, ..., z, belong to an ideal a, then we say that xq,...,x, is
a filter coregular N-sequence in a.

Lemma 2.3. Let N be an Artinian R-module. The following conditions are
equivalent:

(i) N has finite length;
(ii) Cosupp(N) C Max(R); and
(iii) Att(N) C Max(R).

Proof. Assume that N has finite length. Since NN is finitely generated, we
have Cosupp(N) = Supp(/N). Also, the Artinianness of N implies that
Supp(N) € Max(R), and so Cosupp(N) C Max(R). This proves the
implication (i)=-(ii). The implication (ii)=>(iii) is clear. Finally, to prove the
implication (iii)=(i), suppose that Att(N) C Max(R). Then, by [I, Propo-
sition 7.2.11], we have \/Ann(N) = (¢ ¢y 9, and so (ﬂqutt(N) q)"'N=0
for some positive integer n. It follows that N has finite length because Att(V)
consists of finitely many maximal ideals. ]

Proposition 2.4. Let xy,...,x, be elements of R, and let N be an Artinian
R-module. The following conditions are equivalent:

(i) x1,...,xy, 1S a filter coreqular N-sequence;
(ii)) (0 :ny (z1,...,2-1)R)/x;(0 :n (21,...,251)R) has finite length for all
1 << n;

(iii) Att ((0 :n (z1,...,2i—1)R)/x;(0 :y (z1,...,2i-1)R)) C Max(R) for all
1 <1< n;and
(V) i & Upeass(on (e R)\Max(ry P Jor all 1 <@ <m.

Proof. The statements (i)—(iii) are equivalent by Lemma 2.3. For each
1 <i < n, weset Nj.y == (0 :xy (21,...,2;-1)R). Then, in view of
[11, Proposition 2.13], we have ; & Upear(n, 1 )\Max(r) P if and only if

Att(Ni_l/xiNi_l) =V (.IZR) M Att(Ni_l) Q MaX(R)

Therefore (iii) and (iv) are also equivalent. [
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Proposition 2.5. Let M and N be R-modules, and let x4, ..., x, be elements
of R. For each i € Ny, there are the following inclusions:

Cosupp (Torf12 (M, (0 :n (21,...,2,)R)))

C (U Cosupp (Torf (M, N)))

J=t
n i+24n—~k
OZN (SL‘l,...,ZUk_l)R) ))
U Cosu Torf (M, ( (21
<H j:LiJQ PP ( J xk(O ‘N (ZUl,...,l'k_l)R) ( )

and if, in addition, x1,...,x, belong to Ann(M), then
Cosupp (TorZR (M, N))
C Cosupp (Tor}, (M, (0 :x (z1,...,24)R)))
no it2—k
0: o 1R
U U U Cosupp (Torf (M, (0:x (@1, 251) F) )) . (2.2)

k=1 j=i+1—k (0N (21, 21-1) R)

Proof. We prove the claimed inclusions by induction on n. The
following commutative diagram with exact rows

09(0 ZleR)%Nil‘lNHO

oy

0—— 21N == N — N/z;N =0

induces the commutative diagram

o)
cee > T;(O ‘N .ClllR) — T;(N) — T;(.CClN) —=> T%_l(o ‘N .ClllR) i (23)

. X
s

fi

with exact rows, where Tj(-) := Tor’ (M,-) and ajgi) = Tork (idyy, z1).
Therefore |11, Proposition 2.9(4)] implies that

Cosupp (T3(0 :x 1R))

C Cosupp (T;(N)) U Cosupp (Ti41(x1N))

C Cosupp (T;(N)) U Cosupp (Ti+1(N)) U Cosupp (Ti+o(N/x1N))  (2.4)
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for all i € Ny (we note that if L — M — N is an exact sequence of R-modules,
then we can deduce from [14, Proposition 2.9(4)] that

Cosupp(M) C Cosupp(L) U Cosupp(N).

This proves the inclusion (2.1) in the case when n = 1. Now assume,
inductively, that n > 1 and the inclusion (2.1) holds for smaller values of
n. If we replace N by (0 :x x1R), then, by the inductive hypothesis for
elements xo, ..., x,, we have

Cosupp (T;(0 :x (21, ...,2,)R))

C < U Cosupp (75(0 :x le))>

(UTU, o (n (Geti) e

(note that if we set y; :==x9,...,yp_1 :=ax,and l:=k—1,then 1 <[ <n-1
and i+2 < j<i+24+n—1—lyield2<k<nandi+2<j<i+2+n—k).
Now combining the inclusion (2.4) with the inclusion (2.5) yields the inclusion
(2.1) and the inductive step is complete.

Now assume that x;M = 0 for all 1 < j < n and we prove, by induction
on n, that the inclusion (2.2) holds. Since the functor T;(-) is R-linear, the
endomorphism of T;(/N) given by multiplication by x; is the zero map for all
i € Ngand all 1 < j < n. The triangle in the diagram (2.3) commutes, and

so Im ajgi) C Ker f; for all « € Ny. Therefore

Cosupp (Im xgl)) C Cosupp (Ker f;) € Cosupp (T;41(N/x1N)) . (2.6)
Also, the exactness of rows in the diagram (2.3) implies that

Cosupp (T;(z1N)) € Cosupp (Im xgz)) U Cosupp (7;-1(0 :y 1))  (2.7)
and

Cosupp (T;(N)) C Cosupp (Ti(x1N)) U Cosupp (T;(N/x1N)) . (2.8)
The inclusions (2.6)—(2.8) yield
Cosupp (T;(N)) € Cosupp (1;-1(0 :x z1RR))

U Cosupp (T; (N/z1N))
U Cosupp (Ti4+1 (N/x1N)) . (2.9)
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Hence, the inclusion (2.2) is true in the case when n = 1. Next suppose,
inductively, that n > 1 and that the inclusion (2.2) has been proved for
smaller values of n. If we use (0 :y z1R) and i — 1 instead of N and i
respectively, then the inductive hypothesis for elements xo, ..., x, yields

Cosupp (T;-1(0 :x 1 R))
C Cosupp (T;-(0 :ny (x1,...,2,)R))
noit2—k
(O ‘N (331, RN ,Sl/‘kfl)R)
U U U Cosupp (TJ <37k(0 - P— ,$k—1)R)>> . (2.10)

k=2 j=i+l1—k

By combining the inclusions (2.9) and (2.10), we obtain the inclusion (2.2).
This completes the inductive step. ]

Corollary 2.6. Let M and N be R-modules, and let x1,...,x, be a filter
coreqular N-sequence in Ann(M). Then

Cosupp (Torf (M, N)) C Max(R) (2.11)
for alli < n, and
Cosupp (Tor/ (M, N)) U Max(R)

= Cosupp (M ®z (0 :x (x1,...,2,)R)) UMax(R). (2.12)
Proof. For each 1 < k < n, since
(0:n (z1,...,2-1)R) )
Cosu C Max(R),
PP <xk(0 ~ r ok ) € Max(R)

we have

Cosupp (TorZR ( M, xi(ZONN(:& 2 x{f;i@{))) CMax(R)  (2.13)

for all i € Ny. Hence the inclusion (2.11) is an immediate consequence of the
inclusion (2.2). Now we prove the equation (2.12). If we set i = 0 in the
inclusion (2.1), then it follows from the inclusions (2.11) and (2.13) that

Cosupp (M ®g (0 :x (21,...,2,)R))
C Cosupp (Torf (M, N)) UMax(R). (2.14)

Conversely, if we set ¢ = n in the inclusion (2.2), then the inclusion (2.13)
implies that

Cosupp (Tor} (M, N))
C Cosupp (M @z (0 :x (z1,...,2,)R)) U Max(R). (2.15)
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Now the equation (2.12) follows from the inclusions (2.14) and (2.15). O]

Lemma 2.7. Let M, N and L be R-modules such that M and L are finitely
generated, and let n € N. If Cosupp (Tor/" (M, N)) € Max(R) for all i < n
and Supp(L) C Supp(M), then

Cosupp (Torf (L, N)) C Max(R)

for all i < n. In particular, Cosupp (TorZR (L,N)) C Max(R) for alli < n
if and only if Cosupp (Tor/ (M,N)) C Max(R) for all i < n whenever
Supp(L) = Supp(M).

Proof. Assume that Cosupp (TorlR (M,N)) C Max(R) for all i < n and we
prove by induction on n that for every finitely generated R-module L with
Supp(L) C Supp(M), Cosupp (Tor/* (L, N)) C Max(R) for all i < n. Assume
that L is a finitely generated R-module such that Supp(L) C Supp(M). By
Gruson’s theorem [17, Theorem 4.1] there exists a chain

0=LyCLiC---CLy=0L

of submodules of L such that, for each 1 < j <m, L;/L;_; is a homomorphic
image of a direct sum of finitely many copies of M. For each 1 < j < m, the
exact sequence

0—Lj1—L;—L;/Li_y =0
induces the following long exact sequence
.-+ = Tor}" (Lj_1, N) — Tor}" (Lj, N) — Tor/ (L;/Lj—1,N) — - --
Hence

Cosupp(Tor!* (L;, N))
C Cosupp(Torf (L;_1, N)) U Cosupp(Tor (L;/L;_1,N))
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for all 1 < j < m and all 7. It follows that

Cosupp(Tor’ (L, N))

— Cosupp(Tor? (L,,, N))

C Cosupp(Tor? (L,,_1, N)) U Cosupp(Tor? (L, /L1, N))

C Cosupp(Tor? (Ly, N)) U (U Cosupp(Tor}* (L;/L; 1, N))

j=1
U osupp(Tor! ( L;i/L;i_1,N)

for all 4. Thus to prove the assertion it is sufficient for us to prove that
Cosupp(Tor;* (L;/L;_1,N) C Max(R) for all 1 < j < m and all i < n. Hence
the situation can be reduced to the case m = 1. Thus there exists an exact
sequence

0+ K—>M - L0

for some ¢t € N and some finitely generated R-module K. This exact sequence
induces the following long exact sequence

- — Tor® (M, N)" — Torl* (L, N) — Tor® | (K, N) — - . (2.16)
For n = 1, it follows from the exact sequence
(M®rN)! - LRrN —0

that
Cosupp(L ®r N) C Cosupp(M ®r N) C Max(R).

Therefore the result holds for n = 1. Now assume, inductively, that n > 1
and the result has been proved for smaller values of n. It follows from the
exact sequence (2.16) that

Cosupp(Tor (L, N))

C Cosupp(Tor (M, N)) U Cosupp(Tor? | (K, N)) (2.17)
for all 4. Since Supp(K) C Supp(M ), the induction hypothesis implies that
Cosupp(Torf (K, N)) C Max(R)
for all i < n — 1. Thus, by the hypothesis and the inclusion (2.17), we have
Cosupp(Tor’ (L, N)) € Max(R)
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for all © < n. This completes the inductive step. ]

Now, we are ready to state and prove the main result of this paper. Let a be
an ideal of R and let NV be an Artinian R-module. Among the other things,
the following theorem shows that the infimum of integers ¢ with the property
that the local homology module HY (V) is not finitely generated as an R°-
module and the common length of all maximal filter coregular N-sequences
in a are same.

Theorem 2.8. Let a be an ideal of R, and let M and N be R-modules such
that M is finitely generated and N is Artinian. For each n € N, the following
conditions are equivalent:

(i) there is a filter coreqular N-sequence in a of length n;

(i) any filter coreqular N -sequence in a of length less than n can be extended
to a filter coreqular N-sequence in a of length n;

(ili) Cosupp (Tor;' (R/a, N)) C Max(R) (or equivalently Tor;' (R/a,N) has
finite length) for alli < n;

(iv) if Supp(M) = V (a), then Cosupp (Tor;' (M,N)) C Max(R) (or equiv-
alently Tor® (M, N) has finite length) for all i < n; and

(v) if Aun(M) C a, then H} (M, N) is a finitely generated R*-module for all
1< n.

Proof. The statements (iii) and (iv) are equivalent by Lemma 2.7. The
implication (ii)=-(i) is clear. Also, (i)=-(iii) is an immediate consequence
of the inclusion (2.11) in Corollary 2.6.

(ili)=-(ii). Assume that Cosupp (Torf (R/a,N)) C Max(R) for all i < n,

and suppose, for the sake of contradiction, that x1, ..., z,, is a maximal filter
coregular N-sequence in a of length 0 < m < n. The maximality of 1, ..., 2,
yields

Since Att (0 :x (z1,...,2,)R) is a finite set, it follows from the Prime
Avoidance Theorem that a C p for some

peAtt(0:n (z1,...,2,)R) \ Max(R).
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Hence, by the equation (2.12) in Corollary 2.6 and the hypothesis, we have

peV(a)NAtt(0 :x (21,...,2,)R)
= Att(R/a®p (0:n (21,...,2,)R))
C Cosupp(R/a ®g (0:n (z1,...,7m)R))
C Cosupp(Tor? (R/a, N)) U Max(R)
C Max(R),
which is a contradiction. Hence the statements (i)—(iv) are equivalent.
(i)<(v). We prove, by induction on n, that (i) and (v) are equivalent.
Assume that M is a finitely generated R-module such that Ann(M) C a. We
first assume that n = 1. Since M ®p N is Artinian, we have
Hi(M,N) = Ay(M ®@p N)
= (M ®g N)/a>(M @ N)
>~ Torl! (M /a’M, N)
for all sufficiently large integers s. Also, since Supp(M/a*M) = V (a), the
equivalence of (i) and (iv) implies that Hj(M, N) is a finitely generated

R-module or equivalently it is a finitely generated R*module if and only
if a contains a filter coregular element on N (note that since H{(M, N) is

a-torsion, its submodules as an R-module and as an R*-module are same; see
[0, Lemma 1.3]). Thus the result holds in the case n = 1.

Now assume, inductively, that n > 1 and the result has been proved for
smaller values of n. Since N is Artinian, there exists ¢ € N such that

a*N = a'N for all s > t and so Ag(N) = N/a'N. Assume that either (i)
or (v) holds. Since n > 1 and

HS(M, N) = Torl (M/a*M, N)

for sufficiently large integers s, if (v) holds, then Tor{ (M /a*M, N) has finite
length by the hypothesis of (v). Since

Supp(R/a’) = Supp(M/a*M),
by Lemma 2.7,
Ao(N) =2 Torl (R/dat, N)

has finite length in this case. Also, if (i) holds, then, by the equivalence of (i)
and (iv), Ag(N) = Tor{ (R/a’, N) has finite length. Therefore in both cases
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Aq(N) has finite length. Now, the exact sequence
0—a'N—N— A(N)—0
of Artinian R-modules induces the following long exact sequences
oo = HE (M, Ag(N)) — HY (M, a'N) — H(M, N)
— HY (M, Ay(N)) — - (2.18)
(see [12, Proposition 2.4]), and
.-+ — Torf | (R/a, Ag(N)) — Tor/* (R/a,a'N) — Tor/* (R/a, N)

— Torf (R/a, Ag(N)) — - - - . (2.19)

Since Aq(N) is Artinian, by [13, Theorems 2.3(i) and 3.2], we have
HY (M, Ao(N)) = H; (Aa(M @5 FL)),

where F, is a free resolution of Aq(N). Now Aq(N) is finitely generated and
so we can assume that every component of F, is finitely generated. On the
other hand, A4(-) is an additive exact functor on the category of finitely
generated R-modules, and hence it commutes with the homological functor
in this category. Therefore

H; (A(M ®p F)) = Ay (H; (M ®p F))) = A (Tor]* (M, Aq(N))) .
Since Tor? (M, Aq(N)) is Artinian, we obtain
Aq (Tor;" (M, Aq(N))) = Tor;' (M, Ae(N)) /a" Tor (M, Ag(N))

for all sufficiently large integers r. Since a” Tor’ (M, Aq(N)) = 0 for r > t,
the above isomorphisms yield

HY (M, Ay(N)) = Torf (M, Ay(N)) = Tor)* (M, N/a'N).

Hence HY (M, Ay(N)) is a finitely generated R-module for all i € Ny. Also, the
above isomorphism shows that HY(M,A,(N)) is a-torsion, and so
HY(M, Aq(N)) is a finitely generated R®-module for all i € Ny by [0, Lemma
1.3]. Now, for each ¢ € Ny, it follows from the long exact sequence (2.18)
that HY(M, N) is a finitely generated R®-module if and only if HY(M, a’N)
is a finitely generated R*module. Also, for each ¢ € Ny, it follows from the
long exact sequence (2.19) that Tor? (R/a, N) has finite length if and only if
Tor’ (R/a,a’N) has finite length because Tor® (M, Aq(N)) has finite length
for all 7. Thus to prove the equivalence of (i) and (v), in view of the equiv-

alence of (i) and (iii), we can replace N by a’N and assume, in addition,
that aN- = N. Therefore V (a) N Att(N) = 0, and so a & Uycppn) b Let
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21 € a\ Upeawvy - Then V (z1R) NAtt(N) = 0, and so N = z;N. The
exact sequence

0= (0:y21R) - N N—0
induces the long exact sequence
o= HE (M, N) =5 HE (M, N) — HY(M, (0 :x 21R))
— HY(M,N) =5 ... (2.20)

We first assume that (i) holds. By the equivalence of (i) and (ii), we can
extend z; to a filter coregular N-sequence of length n in a, say z1, o, ..., z,.
Hence w9, ..., x, is a filter coregular (0 :y x1R)-sequence in a, and so, by the
inductive hypothesis, H}(M,(0 :xy x1R)) is a finitely generated
R*-module for all i < n — 1. It follows from long exact sequence (2.20) that
HY(M,N)/z1H}(M,N) and consequently its homomorphic image
HY(M, N)/(aR®*) H(M, N) are finitely generated R%-modules for all i < n.
Also, by [12, Proposition 2.3(i)], we have

((aR*)! HA(M,N) = ()(a'R*) H{(M,N) = (| a' HY(M,N) = 0.

teN teN teN

Hence, by [11, Theorem 8.4], HY(M, N) is a finitely generated R®-module
for all ©+ < n. Conversely, assume that H}(M, N) is a finitely generated
R*-module for all i < n. It follows from the long exact sequence (2.20) that
HY(M, (0 :x z1R)) is a finitely generated R*-module for all i < n— 1, and so,
by the inductive hypothesis, there is a filter coregular (0 :x z1 R)-sequence in
a of length n — 1, say xo,...,x,. Therefore x1, 29, ..., x, is a filter coregular
N-sequence in a. This completes the inductive step. ]

Remark 2.9. Let a be an ideal of R, and let NV be an Artinian R-module.
When there exists a filter coregular N-sequence in a of infinite length, then, by
the equivalence of (i) and (ii) in Theorem 2.8, any filter coregular N-sequence
in a can be extended to a filter coregular N-sequence in a of arbitrary length,
and in this case we set

f-width(a, V) = oo.
Now assume that all filter coregular N-sequences in a have finite length.
Again, by the equivalence of (i) and (ii) in Theorem 2.8, we can extend any

filter coregular N-sequence in a to a maximal one, and all maximal filter
coregular N-sequences in a are of the same length which we denote this
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common length by f-width(a, V). Moreover, if M is a finitely generated R-
module such that Supp(M) =V (a), then, by Theorem 2.8, we have

f-width(a, N)

= inf{i € Ny : Cosupp (Tor/* (M, N)) ¢ Max(R)}

— inf{i € Ny : Tor? (M, N) has infinite length as an R-module}

— inf{i € Ny : H® (N) is not a finitely generated R®module} (2.21)

(we note that HY (R, N) = HY (IV)). Also, for an arbitrary finitely generated
R-module L, since H?JFAHH(L)(L, N) = H}(L, N), if we replace a by a+Ann(L)
in Theorem 2.8, then the equivalence of (ii) and (v) in Theorem 2.8 yields

f-width(a 4+ Ann(L), N)
— inf{i € Ny : HY(L, N) is not a finitely generated R®module}. (2.22)

Finally, since V (a) =V (\/E), it follows from the first equality in the equation
(2.21) that f-width(a, N) = f-width(y/a, N).

Proposition 2.10. Let a be an ideal of R, and let N be an Artinian R-
module. If f-width(a, N) = oo, then (0 :y a) has finite length. The converse
statement holds whenever R is a semi-local ring which is complete with respect
to its Jacobson radical.

Proof. Assume that f-width(a, N) = oo, and z1, x9, z3, . .. is a filter coregular
N-sequence of infinite length in a. There is the following descending chain of
submodules of N

(0:x5 21R) D (0:n (z1,22)R) 2 (0 :n (21,22, 23)R) D -+~ .

Hence (0 :y (z1,...,2p-1)R) = (0 :y (21,...,2,)R) for some n € N, and so
(0 :n (21,...,2,-1)R) = 0. Thus (0 :y (x1,...,2,-1)R) has finite length
because (0 :y (21,...,24-1)R) /2, (0 :x (21,...,2,-1)R) has finite length by
definition. Hence (0 :y a) C (0 :ny (x1,...,2,-1)R) has finite length. To
prove the converse statement, assume that R is a complete semi-local ring
and that (0 :y a) has finite length. Hence

Cosupp(0 :y a) = Supp(0 :x a) C Max(R).
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On the other hand, for each i € Ny, a + Ann(N) € Ann(Tor! (R/a, N)).
Therefore, in view of [14, Proposition 2.12], we have

Cosupp(Torf (R/a, N)) C V (a + Ann(N))
=V (a) N Cosupp(N)
= Cosupp(0 :y a)
C Max(R)
for all i € Ny. Hence Theorem 2.8 implies that f-width(a, N) = oc. ]

Corollary 2.11. Let a be an ideal of R, and let M and N be R-modules such
that M is finitely generated and N is Artinian.

(i) If Tor® (M, N) has finite length for all i € Ny, then (0 :ny Ann(M)) has
finite length.

(i) If H}(M,N) is a finitely generated R*-module for all © € Ny, then
(0 :x a+ Ann(M)) has finite length. In particular, (0 :y a) has
finite length whenever HY (N) is a finitely generated R*-module for all
1 € Np.

Moreover, the converse statements hold when R is a complete semi-local ring.

Proof. 1t follows by the equations (2.21), (2.22) and Proposition 2.10. ]
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